Skip to main content

Phenotypic Testing of Bacterial Antimicrobial Susceptibility

  • Chapter

Abstract

Phenotypic testing of bacterial antimicrobial resistance has been widely used in clinical and diagnostic microbiology laboratories. These methods have been well studied and standardized. They have the advantages of being low cost, easy to perform (automated systems), and interpretation criteria readily available for commonly encountered organisms. These assays also are essential for new resistance discovery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albayrak, F., Cokca, F., Erdem, B., & Aysev, A. D. (2004). Predictive value of nalidixic acid resistance for detecting salmonellae with decreased ciprofloxacin susceptibility. Int. J Antimicrob Agents, 23(4), 332–336.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, J. M., Bradley, J. E., & Wise, R. (1993). Comparison of ‘E’ test with conventional agar MIC. J Antimicrob Chemother, 31(5), 802–803.

    Article  PubMed  CAS  Google Scholar 

  • Barry, A. L. (1991). Procedures and theoretical considerations for testing antimicrobial agents in agar media. In: Antibiotics in Laboratory Medicine, 3rd ed. The Williams & Wilkins Co., Baltimore, MD.

    Google Scholar 

  • Boutiba-Ben Boubaker, I., Ben Abbes, R., Ben Abdallah, H., et al. (2004). Evaluation of a cefoxitin disk diffusion test for the routine detection of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect, 10(8), 762–765.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, P. A. (2001a). Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev, 14(4), 933–951.

    Article  CAS  Google Scholar 

  • Bradford, P. A. (2001b). What’s new in beta-lactamases? Curr Infect Dis Rep, 3(1), 13–19.

    Google Scholar 

  • Brown, D. F. (2001). Detection of methicillin/oxacillin resistance in staphylococci. J Antimicrob Chemother, 48(Suppl S1), 65–70.

    Article  PubMed  CAS  Google Scholar 

  • Bush, K. (2001). New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin. Infect. Dis, 32(7), 1085–1089.

    Article  PubMed  CAS  Google Scholar 

  • Caierao, J., Musskopf, M., Superti, S., et al. (2004). Evaluation of phenotypic methods for methicillin resistance characterization in coagulase-negative staphylococci (CNS). J Med Microbiol, 53(Pt 12), 1195–1199.

    Article  PubMed  CAS  Google Scholar 

  • Casin, I., Breuil, J., Darchis, J. P., et al. (2003). Fluoroquinolone resistance linked to GyrA, GyrB, and ParC mutations in Salmonella enterica typhimurium isolates in humans. Emerg Infect Dis, 9(11), 1455–1457.

    PubMed  CAS  Google Scholar 

  • Chambers, H. F. (1993). Detection of methicillin-resistant staphylococci. Infect Dis Clin North Am, 7(2), 425–433.

    PubMed  CAS  Google Scholar 

  • Chambers, H. F. (1997). Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications, Clin Microbiol Rev, 10(4), 781–791.

    PubMed  CAS  Google Scholar 

  • Chambers, H. F. (2003). Solving staphylococcal resistance to beta-lactams. Trends Microbiol, 11(4), 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Chandel, D. S., & Chaudhry, R. (2001). Enteric fever treatment failures: a global concern. Emerg Infect Dis, 7(4), 762–763.

    Article  PubMed  CAS  Google Scholar 

  • CLSI (2005). Performance Standards for Antimicrobial Susceptibility Testing. Supplement M100–S15. CLSI, Wayne, PA.

    Google Scholar 

  • D’Amato R, F., Thornsberry, C., Baker, C. N., & Kirren, L.A. (1975). Effect of calcium and magnesium ions on the susceptibility of Pseudomonas species to tetracycline, gentamicin polymyxin B, and carbenicillin. Antimicrob Agents Chemother, 7(5), 596–600.

    Google Scholar 

  • Doern, G. V., Jones, R. N. (1999). Haemophilus influenzae and Moraxella catarrhalis from patients with community-acquired respiratory tract infections: antimicrobial susceptibility patterns from the SENTRY antimicrobial Surveillance Program (United States and Canada, 1997). Antimicrob Agents Chemother, 43(2), 385–389.

    PubMed  CAS  Google Scholar 

  • Donay, J. L., Mathieu, D., Fernandes, P., et al. (2004). Evaluation of the automated phoenix system for potential routine use in the clinical microbiology laboratory. J Clin Microbiol, 42(4), 1542–1546.

    Article  PubMed  CAS  Google Scholar 

  • Drinkovic, D., Fuller, E. R., Shore, K.P. et al. (2001). Clindamycin treatment of Staphylococcus aureus expressing inducible clindamycin resistance. J Antimicrob Chemother, 48(2), 315–316.

    Article  PubMed  CAS  Google Scholar 

  • Eady, E. A., Ross, J., Tipper, J. L. et al. (1993). Distribution of genes encoding erythromycin ribosomal methylases and an erythromycin efflux pump in epidemiologically distinct groups of staphylococci. J Antimicrob Chemother, 31(2), 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Fines, M., Perichon, B., Reynolds, P. et al. (1999). VanE, a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405. Antimicrob Agents Chemother, 43(9), 2161–2164.

    PubMed  CAS  Google Scholar 

  • Garnier, F., Taourit, S., Glaser, P., et al. (2000). Characterization of transposon Tn1549, conferring VanB-type resistance in enterococcus spp. Microbiol 146(Pt 6), 1481–1489.

    CAS  Google Scholar 

  • Ghoshal, U., Prasad, K. N., Singh, M., et al. (2004). A comparative evaluation of phenotypic and molecular methods for the detection of oxacillin resistance in coagulase-negative staphylococci. J Infect Chemother, 10(2), 86–89.

    Article  PubMed  CAS  Google Scholar 

  • Gradelski, E., Valera, L., Aleksunes, L., et al. (2001). Correlation between genotype and phenotypic categorization of staphylococci based on methicillin susceptibility and resistance. J Clin Microbiol, 39(8), 2961–2963.

    Article  PubMed  CAS  Google Scholar 

  • Greenwood, D. (1981). In vitro veritas? Antimicrobial susceptibility tests and their clinical relevance. J Infect Dis, 144(4), 380–385.

    PubMed  CAS  Google Scholar 

  • Gregory, P. D., Lewis, R. A., Curonock, S. P., et al. (1997). Studies of the repressor (BlaI) of beta-lactamase synthesis in Staphylococcus aureus. Mol Microbiol, 24(5), 1025–1037.

    Article  PubMed  CAS  Google Scholar 

  • Hageman, J. C., Fridkin, S. K., Mohammed, J. M., et al. (2003). Antimicrobial proficiency testing of National Nosocomial Infections Surveillance System hospital laboratories. Infect Control Hosp Epidemiol, 24(5), 356–361.

    Article  PubMed  Google Scholar 

  • Hamilton-Miller, J. M., & Shah, S. (2000). Patterns of phenotypic resistance to the macrolide-lincosamide-ketolide-streptogramin group of antibiotics in staphylococci. J Antimicrob Chemother, 46(6), 941–949.

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu, K., Aritaka, N., Hanaki, H., et al. (1997). Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350(9092), 1670–1673.

    Article  PubMed  CAS  Google Scholar 

  • Horstkotte, M. A., Knobloch, J. K., Rohde, H., et al. (2004). Evaluation of the BD PHOENIX automated microbiology system for detection of methicillin resistance in coagulasenegative staphylococci. J Clin Microbiol, 42(11), 5041–5046.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh, S. R. (2000). Antimicrobial susceptibility and species identification for clinical isolates of enterococci. J Microbiol Immunol Infect, 33(4), 253–257.

    PubMed  CAS  Google Scholar 

  • Huang, M. B., Gay, T. E., Baker, C. N., et al. (1993). Two percent sodium chloride is required for susceptibility testing of staphylococci with oxacillin when using agar-based dilution methods. J Clin Microbiol, 31(10), 2683–2688.

    PubMed  CAS  Google Scholar 

  • Jones, R. N. (2001). Method preferences and test accuracy of antimicrobial susceptibility testing: updates from the College of American Pathologists Microbiology Surveys Program. Arch Pathol Lab Med, 125(10), 1285–1289.

    PubMed  CAS  Google Scholar 

  • Jorgensen, J. H., CrawfordS. A., McElmeel, M. L., et al. (2004). Detection of inducible clindamycin resistance of staphylococci in conjunction with performance of automated broth susceptibility testing. J Clin Microbiol, 42(4), 1800–1802.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, J. H., & Ferraro, M. J. (2000). Antimicrobial susceptibility testing: special needs for fastidious organisms and difficult-to-detect resistance mechanisms. Clin Infect Dis, 30(5), 799–808.

    Article  PubMed  CAS  Google Scholar 

  • Katsanis, G. P., Spargo, J., Ferraro, M. J., et al. (1994). Detection of Klebsiella pneumoniae and Escherichia coli strains producing extended-spectrum beta-lactamases. J Clin Microbiol, 32(3), 691–696.

    PubMed  CAS  Google Scholar 

  • Korgenski, E. K., & Daly, J. A. (1998). Evaluation of the BIOMIC video reader system for determining interpretive categories of isolates on the basis of disk diffusion susceptibility results. J Clin Microbiol. 36(1), 302–304.

    PubMed  CAS  Google Scholar 

  • Liu, C., & Chambers, H. F. (2003). Staphylococcus aureus with heterogeneous resistance to vancomycin: epidemiology, clinical significance, and critical assessment of diagnostic methods. Antimicrob Agents Chemother, 47(10), 3040–3045.

    Article  PubMed  CAS  Google Scholar 

  • Louie, L., Goodfellow, J., Mathieu, P., et al. (2002). Rapid detection of methicillin-resistant staphylococci from blood culture bottles by using a multiplex PCR assay. J Clin Microbiol, 40(8), 2786–2790.

    Article  PubMed  CAS  Google Scholar 

  • McKessar, S. J., Berry, A. M., Bell, J. M., et al. (2000). Genetic characterization of vanG, a novel vancomycin resistance locus of Enterococcus faecalis. Antimicrob Agents Chemother, 44(11), 3224–3228.

    Article  PubMed  CAS  Google Scholar 

  • McKinney, T. K., Sharma, V. K., Caig, W. A., et al. (2001). Transcription of the gene mediating methicillin resistance in Staphylococcus aureus (mec A) is corepressed but not coinduced by cognate mec A and beta-lactamase regulators. J Bacteriol, 183(23), 6862–6868.

    Article  PubMed  CAS  Google Scholar 

  • Medeiros, A. A., & Crellin, J. (1997). Comparative susceptibility of clinical isolates producing extended spectrum beta-lactamases to ceftibuten: effect of large inocula. Pediatr Infect Dis J, 16(3 Suppl), S49–55.

    Article  PubMed  CAS  Google Scholar 

  • Murray, P. R., Baron, E. J., Jorgensen, J. H., Pfaller, M. A., & Yolken, R. H. (2003). Manual of Clinical Microbiology, 8th ed. American Society for Clinical Microbiology, Washington, DC.

    Google Scholar 

  • Navarro, F., & P. Courvalin, P. (1994). Analysis of genes encoding D-alanine-D-alanine ligase-related enzymes in Enterococcus casseliflavus and Enterococcus flavescens. Antimicrob Agents Chemother, 38(8), 1788–1793.

    PubMed  CAS  Google Scholar 

  • NCCLS (1996). Evaluating Production Lots of Dehydrated Mueller-Hinton Agar. Approved standard M6-A. NCCLS, Wayne, PA.

    Google Scholar 

  • NCCLS (2000). Performance Standards for Antimicrobial Susceptibility Testing. Supplement M100–S10. NCCLS, Villanova, PA.

    Google Scholar 

  • NCCLS (2001). Development of in vitro susceptibility testing criteria and quality control parameters, 2nd ed. NCCLS document M23–A2. NCCLS, Wayne, PA.

    Google Scholar 

  • NCCLS (2003). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard M7–A6. NCCLS, Wayne, PA.

    Google Scholar 

  • Nonhoff, C., Rottiers, S., & Struelens, M. J. (2005). Evaluation of the Vitek 2 system for identification and antimicrobial susceptibility testing of Staphylococcus spp. Clin Microbiol Infect, 11(2), 150–153.

    Article  PubMed  CAS  Google Scholar 

  • Parry, C. M. (2003). Antimicrobial drug resistance in Salmonella enterica. Curr Opin Infect Dis 16(5), 467–472.

    Article  PubMed  CAS  Google Scholar 

  • Paterson, D. L., W. C. Ko, W. C., Von Gottberg, A., et al. (2001). Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol, 39(6), 2206–2212.

    Article  PubMed  CAS  Google Scholar 

  • Perichon, B., Reynolds, P., & Courvalin, P. (1997). VanD-type glycopeptide-resistant Enterococcus faecium BM4339. Antimicrob Agents Chemother, 41(9), 2016–2018.

    PubMed  CAS  Google Scholar 

  • Pootoolal, J., Neu, J., et al. (2002). Glycopeptide antibiotic resistance. Annu Rev Pharmacol Toxicol, 42, 381–408.

    Article  PubMed  CAS  Google Scholar 

  • Queenan, A. M., Foleno, B., & Gownley, C., et al. (2004). Effects of inoculum and betalactamase activity in AmpC- and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates tested by using NCCLS ESBL methodology. J Clin Microbiol, 42(1), 269–275.

    Article  PubMed  CAS  Google Scholar 

  • Rabatsky-Ehr, T., Whichard, J., & Rossiter, S., et al. (2004). Multidrug-resistant strains of Salmonella enterica Typhimurium, United States, 1997–1998. Emerg Infect Dis, 10(5), 795–801.

    PubMed  CAS  Google Scholar 

  • Rice, L. B., Yao, J. D., & Klimm, K., et al. (1991). Efficacy of different beta-lactams against an extended-spectrum beta-lactamase-producing Klebsiella pneumoniae strain in the rat intra-abdominal abscess model. Antimicrob Agents Chemother, 35(6), 1243–1244.

    PubMed  CAS  Google Scholar 

  • Richter, S. S., Brueggemann, A. B., Hugnh, H. K., et al. (1999). A 1997–1998 national surveillance study: Moraxella catarrhalis and Haemophilus influenzae antimicrobial resistance in 34 US institutions. Int J Antimicrob Agents, 13(2), 99–107.

    Article  PubMed  CAS  Google Scholar 

  • Roper, D. I., Huyton, T., et al. (2000). The molecular basis of vancomycin resistance in clinically relevant enterococci: crystal structure of D-alanyl-D-lactate ligase (VanA). Proc Natl Acad Sci U S A, 97(16), 8921–8925.

    Article  PubMed  CAS  Google Scholar 

  • Rybak, M. J., Cha, R., & Cheung, C. M., et al. (2005). Clinical isolates of Staphylococcus aureus from 1987 and 1989 demonstrating heterogeneous resistance to vancomycin and teicoplanin. Diagn Microbiol Infect Dis, 51(2), 119–125.

    Article  PubMed  CAS  Google Scholar 

  • Ryffel, C., Kayser, F. H., & Berger-Bachi, B. (1992). Correlation between regulation of mecA transcription and expression of methicillin resistance in staphylococci. Antimicrob Agents Chemother, 36(1), 25–31.

    PubMed  CAS  Google Scholar 

  • Sakoulas, G., Gold, H. S.,Venkataraman, L., et al. (2001). Methicillin-resistant Staphylococcus aureus: comparison of susceptibility testing methods and analysis of mecA-positive susceptible strains. J Clin Microbiol, 39(11), 3946–3951.

    Article  PubMed  CAS  Google Scholar 

  • Siberry, G. K., Tekle, T., Carroll, K., & Dick, J. (2003). Failure of clindamycin treatment of methicillin-resistant Staphylococcus aureus expressing inducible clindamycin resistance in vitro. Clin Infect Dis, 37(9), 1257–1260.

    Article  PubMed  Google Scholar 

  • Srinivasan, A., Dick, J. D., & Perl, T. M. (2002). Vancomycin resistance in staphylococci. Clin Microbiol Rev, 15(3), 430–438.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, E., Kuwahara-Arai, K., Richardson, J. F., et al. (1993). Distribution of mec regulator genes in methicillin-resistant Staphylococcus clinical strains. Antimicrob Agents Chemother, 37(6), 1219–1226.

    PubMed  CAS  Google Scholar 

  • Tenover, F. C., Lancaster, M. V., Hill, B. C., et al. (1998). Characterization of staphylococci with reduced susceptibilities to vancomycin and other glycopeptides. J Clin Microbiol, 36(4), 1020–1027.

    PubMed  CAS  Google Scholar 

  • Thauvin-Eliopoulos, C., Tripodi, M. F., Moellering, R. C., Jr. & Eliopoulos, G. M., et al. (1997). Efficacies of piperacillin-tazobactam and cefepime in rats with experimental intra-abdominal abscesses due to an extended-spectrum beta-lactamase-producing strain of Klebsiella pneumoniae. Antimicrob Agents Chemother, 41(5), 1053–1057.

    PubMed  CAS  Google Scholar 

  • Tomasz, A., Drugeon, H. B., et al. (1989). New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity. Antimicrob Agents Chemother, 33(11), 1869–1874.

    PubMed  CAS  Google Scholar 

  • Tveten, Y., Jenkins, A., Digranes, A., et al. (2004). Comparison of PCR detection of mecA with agar dilution and Etest for oxacillin susceptibility testing in clinical isolates of coagulase-negative staphylococci. Clin Microbiol Infect, 10(5), 462–465.

    Article  PubMed  CAS  Google Scholar 

  • Unal, S., Werner, K., DeGirolami, P., et al. (1994). Comparison of tests for detection of methicillin-resistant Staphylococcus aureus in a clinical microbiology laboratory. Antimicrob Agents Chemother, 38(2), 345–347.

    PubMed  CAS  Google Scholar 

  • van Griethuysen,Pouw, A. M., van Leeuwen, N., et al. (1999). Rapid slide latex agglutination test for detection of methicillin resistance in Staphylococcus aureus. J Clin Microbiol, 37(9), 2789–2792.

    PubMed  CAS  Google Scholar 

  • Walsh, T. R., & Howe, R. A. (2002). The prevalence and mechanisms of vancomycin resistance in Staphylococcus aureus. Annu Rev Microbiol, 56, 657–75.

    Article  PubMed  CAS  Google Scholar 

  • York, M. K., Gibbs, L., Chehab, F., & Brooks, G. F. (1996). Comparison of PCR detection of mecA with standard susceptibility testing methods to determine methicillin resistance in coagulase-negative staphylococci. J Clin Microbiol, 34(2), 249–253.

    PubMed  CAS  Google Scholar 

  • Zhang, H. Z., Hackbarth, C. J., Chansky, K. M., & Chambers, H. F. (2001). A proteolytic transmembrane signaling pathway and resistance to beta-lactams in staphylococci. Science, 291(5510), 1962–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Qi, C., Stratton, C.W., Zheng, X. (2006). Phenotypic Testing of Bacterial Antimicrobial Susceptibility. In: Advanced Techniques in Diagnostic Microbiology. Springer, Boston, MA. https://doi.org/10.1007/0-387-32892-0_5

Download citation

Publish with us

Policies and ethics