Advertisement

Genes, Transcripts and Proteins of CD137 Receptor and Ligand

  • Dass S. Vinay
  • Byoung S. Kwon
Chapter

Abstract

CD137 and CD137L belong to the tumor necrosis factor (TNF) superfamily, a group of cysteine-rich cell surface molecules.With a few exceptions, both CD137 and its ligand, CD137L, are activation induced. CD137 activates CD8+ T cells more strongly than CD4+ T cells, and is a potent inducer of IFN. Stimulation through CD137L also relays activation signals toBcells and monocytes. These signals elicit activation of NF-κB via the TRAF-NIK pathway and lead to the induction of a plethora of immune modulators that accentuate the ongoing immune reaction. CD137 and CD137L-deficient mice develop normally, have normal numbers of T and B cells and only demonstrate modest immune malfunction. However, in vivo administration of agonistic anti-CD137 mAb protects strongly against a variety of autoimmune and non-autoimmune diseases. The basis of this protection is unclear; however, it seems to involve an indoleamine dioxygenase (IDO)-dependent process in which pathogenic T cells are killed/suppressed by “regulatory CD11c+CD8+ T cells.” In this review, the origins and functional features of CD137 and CD137L are discussed.

Keywords

Tumor Necrosis Factor Receptor CD137 Receptor Soluble CD137 Acute Myocarditis CD137 Transcript 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitage, R.J. (1994). Tumor necrosis factor receptor superfamily members and their ligands. Curr. Opin. Immunol., 6, 407–413.PubMedCrossRefGoogle Scholar
  2. Blobel, G., and Dobberstein, B. (1975). Transfer to proteins across membranes. II. Reconstitutuion of functional rough microsomes from heterologous components. J. Cell. Biol., 67, 852–862.PubMedCrossRefGoogle Scholar
  3. Bretcher, P., and Cohn, M. (1970). A theory of self-non-self discrimination. Science, 169, 1042–1049.CrossRefGoogle Scholar
  4. Broll, K., Richter, G., Pauly, S., Hofstaedter, F., and Schwarz, H. (2001). CD137 expression in tumor vessel walls. High correlation with malignant tumors. Am. J. Clin. Pathol., 115, 543–549.PubMedCrossRefGoogle Scholar
  5. Chalupny, N.J., Peach, R., Hollenbaug, D., Ledbetter, J.A., Farr, A.G., and Aruffo, A. (1992). T cell activation molecule 4-1BB binds to extracellular matrix proteins. Proc. Natl. Acad. Sci., U.S.A., 89, 10360–10364.PubMedCrossRefGoogle Scholar
  6. Chu, N.R., DeBenedette, M.A., Stiernholm, B.J., Barber, B.H., and Watts, T.H. (1997). Role of IL-12 and 4-1BBL in cytokine production by CD28+ and CD28- T cells. J. Immunol., 158, 3081–3089.PubMedGoogle Scholar
  7. Croft, M. (2003). Co-stimulatory members of TNFR family: keys to effective T cell immunity. Nat. Rev. Immunol., 3, 609–620.PubMedCrossRefGoogle Scholar
  8. DeBenedette, M.A., Shahinian, A., Mak, T.W., and Watts T.H. (1997). Co-stimulation of CD28- T lymphocytes by 4-1BB ligand. J. Immunol., 158, 551–559.PubMedGoogle Scholar
  9. DeBenedette, M.A., Wen, T., Bachmann, M.F., Ohashi, P.M., Barber, B.H., Stocking, K.L., Peschon, J.J., and Watts, T.H. (1999). Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. J. Immunol., 163, 4833–4841.PubMedGoogle Scholar
  10. Diehl, L., van Mierlo, G.J., den Boer, A.T., van der Voort, E., Fransen, M., van Bostelen, L., Krimpenfort, P., Melief, C.J., Mittler, R., Toes, R.E., and Offringa, R. (2002). In vivo triggering through 4-1BB enables Th-independent priming of CTL in the presence of an intact CD28 costimulatory pathway. J. Immunol., 168, 3755–3762.PubMedGoogle Scholar
  11. Foell, J., Strahotin, S., O’Neil, S.P., McClausland, M.M., Suwyn, C., Haber, M., Chander, P.N., Bapat, A.S., Yan, X.J., Chiorazzi, N., Hoffmann, M.K., and Mittler, R.S. (2003). CD137 costimulatory T cell receptor engagement reverses acute disease in lupus-prone NZB × NZW F1 mice. J. Clin. Invest., 111, 1505–1518.PubMedCrossRefGoogle Scholar
  12. Futugawa, T., Akiba, H., Kodama, T., Takeda, K., Hosoda, Y., Yagita, H., and Okukura, K. (2002). Expression and function of 4-1BB and 4-1BBL on murine dendritic cells. Int. Immunol., 14, 275–276.CrossRefGoogle Scholar
  13. Garni-Wagner, B.A., Lee, Z.H., Kim, Y.J., Wilde, C.E., Kang, C.Y., and Kwon, B.S. (1996). 4-1BB is expressed on CD45 RAhi ROhi translational T cells in humans. Cell. Immunol., 169, 91–98.PubMedCrossRefGoogle Scholar
  14. Goh, C.R., and Porter, A.G. (1990). Structural and functional domains in human tumor necrosis factors. Protein Eng., 4, 385–389.CrossRefGoogle Scholar
  15. Goodwin, R.G., Din, W.S., Davis-Smith, T., Anderson, D.M., Gimpel, S.D., Sato, T.A., Maliszewski, C.R., Brannan, C.I., Copeland, N.G., Jenkins, N.A., Farrah, T., Armitage, R.J., Fanslow, W.C., and Smith, C.A. (1993). Molecular cloning of a ligand for the inducible T cell gene 4-1BB: A member of an emerging family of cytokines with homology to tumor necrosis factor. Eur. J. Immunol., 23, 2631–2641.PubMedCrossRefGoogle Scholar
  16. Gramaglia, I., Cooper, D., Miner, K.T., Kwon, B.S., and Croft, M. (2000). Co-stimulation of antigen-specific CD4 T cells by 4-1BB ligand. Eur. J. Immunol., 30, 392–402.PubMedCrossRefGoogle Scholar
  17. Halstead, E.S., Mueller, Y.M., Altman, J.D., and Katsikis, P.D. (2002). In vivo stimulation of CD137 broadens primary antiviral CD8+ T cells responses. Nat. Immunol., 3, 536–541.PubMedCrossRefGoogle Scholar
  18. Hurtado, J.C., Kim, Y.J., and Kwon, B.S. (1997). Signals through 4-1BB are costimulatory to previously activated splenic T cells and inhibit activation-induced cell death. J. Immunol., 158, 2600–2609.PubMedGoogle Scholar
  19. Jung, H.W., Choi, S.W., Choi, J.I., and Kwon, B.S. (2004). Serum concentrations of soluble 4-1BB and 4-1BB ligand correlated with the disease severity in rheumatoid arthritis. Exp. Mol. Med., 36, 13–22.PubMedGoogle Scholar
  20. Kienzel, G., and von Kempis, J. (2000). CD137 (ILA/4-1BB), expressed by primary human monocytes, induces monocyte activation and apoptosis of B lymphocytes. Int. Immunol., 12, 73–82.CrossRefGoogle Scholar
  21. Kim, Y.J., Kim, S.H., Mantel, P., and Kwon, B.S. (1998). Human 4-1BB regulates CD28 co-stimulation to promote Th1 cells responses. Eur. J. Immunol., 28, 881–889.PubMedCrossRefGoogle Scholar
  22. Kim, K.M., Kim, H.W., Kim, J.O., Baek, K.M., Kim, J.G., and Kang, C.Y. (2002). Induction of 4-1BB (CD137) expression by DNA damaging agents in human T lymphocytes. Immunology, 107, 472–479.PubMedCrossRefGoogle Scholar
  23. Kim, J.O., Kim, H.W., Baek, K.M., and Kang, C.Y. (2003). NF-kB and AP-1 regulate activation-dependent CD137 (4-1BB) expression in T cells. FEBS Lett., 541, 163–170.PubMedCrossRefGoogle Scholar
  24. Kim, J., Choi, W.S., La, S., Suh, J.H., Kim, B.S., Cho, H.R., Kwon, B.S., and Kwon, B. (2004). Stimulation with 4-1BB (CD137) inhibits chronic graft-versus-host disease by inducing activation-induced cell death of donor CD4+ T cells. Blood, 105, 2206–2213.PubMedCrossRefGoogle Scholar
  25. Kwon, B.S., Kim, C.S., Prystowski, M.B., Lancki, D.W., Sabath, D.E., Pan, J.L., and Weissman, S.M. (1987). Isolation and initial characterization of multiple species of T lymphocyte subset cDNA clones. Proc. Natl. Acad. Sci. U.S.A., 84, 2896–2900.PubMedCrossRefGoogle Scholar
  26. Kwon, B.S., and Weissman, S.M. (1989). cDNA sequences of two inducible T cell genes. Proc. Natl. Acad. Sci. U.S.A., 86, 1963–1967.PubMedCrossRefGoogle Scholar
  27. Kwon, B.S., Kestler, D.P., Eshhar, Z., Oh, K., and Wakulchik, M. (1989). Expression characteristics of two potential T cell mediator genes. Cell. Immunol., 121, 414–422.PubMedCrossRefGoogle Scholar
  28. Kwon, B.S., Hurtado, J.C., Lee, Z.H., Kwack, K.B., Seo, S.K., Choi, B.K., Koller, B.H., Wolisi, G., Broxmeyer, H.E., and Vinay, D.S. (2002). Immune responses in 4-1BB (CD137)-deficient mice. J. Immunol., 168, 5483–5490.PubMedGoogle Scholar
  29. Laderach, D., Wesa, A., and Galy, A. (2003). 4-1BB ligand is regulated on human dendritic cells and induces the production of IL-12. Cell. Immunol., 226, 37–44.PubMedCrossRefGoogle Scholar
  30. Langstein, J., Michel, J., Fritsche, J., Kreutz, M., Anderson, R., and Schwarz, H. (1998). CD137 (ILA/4-1BB), a member of the TNF receptor family induces monocyte activation via bidirectional signaling. J. Immunol., 160, 2488–2494.PubMedGoogle Scholar
  31. Lim, H.Y., Kim, K.K., Zhou, F.C., Yoon, J.W., Hill, J.M., and Kwon, B.S. (2002). 4-1BB-like molecule is expressed in islet-infiltrating mononuclear cells and in the gray matter of the brain. Cell. Biol. Int., 26, 271–278.PubMedCrossRefGoogle Scholar
  32. Lindstedt, M., Johansson-Lindbom, B., and Borrebaeck, C.A. (2003). Expression of CD137 (4-1BB) on human follicular dendritic cells. Scand. J. Immunol., 5, 305–310.CrossRefGoogle Scholar
  33. Maerten, T., Geboes, K., De Hertogh, G., Shen, C., Cadot, P., Bullens, D.M., Van Assche, G., Penninckx, F., Rutgeerts, P., and Cueppens, J.L. (2004). Functional expression of 4-1BB (CD137) in the inflammatory tissue in Crohn’s disease. Clin. Immunol., 112, 239–246.PubMedCrossRefGoogle Scholar
  34. McHugh, R.S., Matthew, J.W., Piccirillo, C.A., Young, D.A., Shevach, E.M., Collins, M., and Byrne, M.C. (2002). CD4+CD25+ immunoregulatory T cells: Gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity, 16, 311–323.PubMedCrossRefGoogle Scholar
  35. Melero, I., Shuford, W.W., Newby, S.A., Aruffo, A., Ledbetter, J.A., Hellstrom, K.E., Mittler, R.S., and Chen, L. (1997). Monoclonal antibodies against 4-1BB T cell activation molecule eradicate established tumors. Nat. Med., 3, 682–685.PubMedCrossRefGoogle Scholar
  36. Melero, I., Johnston, J.V., Shuford, W.W., Mittler, R.S., and Chen, L. (1998). NK1.1 cells express 4-1BB (CDw137) costimulatory molecule and are required for tumor immunity elicited by anti-4-1BB monoclonal antibodies. Cell. Immunol., 190, 167–172.PubMedCrossRefGoogle Scholar
  37. Mittler, R.S., Bailey, T.S., Klussman, K., Trailsmith, M.D., and Hoffmann, M.K. (1999). Anti-4-1BB monoclonal antibodies abrogate T cell-dependent humoral immune responses in vivo through the induction of helper T cell anergy. J Exp Med., 190, 1535–1540.PubMedCrossRefGoogle Scholar
  38. Pollok, K.E., Kim, Y.J., Zhou, Z., Hurtado, J., Kim, K.K., Pickard, R.T., and Kwon, B.S. (1993). Inducible T cell antigen 4-1BB. Analysis of expression and function. J Immunol., 150, 771–781.PubMedGoogle Scholar
  39. Pollok, K.E., Kim, Y.J., Hurtado, J.C., Zhou, Z., Kim, K.K., and Kwon, B.S. (1994). 4-1BB T cell antigen binds to mature B cells and macrophages and co-stimulates anti-μ-primed splenic B cells. Eur. J. Immunol., 24, 367–374.PubMedCrossRefGoogle Scholar
  40. Pollok, K.E., Kim, S.H., and Kwon, B.S. (1995). Regulation of 4-1BB expression by cell-cell interactions and the cytokines, interleukin-2 and interleukin-4. Eur. J. Immunol., 25, 488–494.PubMedCrossRefGoogle Scholar
  41. Salih, H.R., Schmetzer, H.M., Burke, C., Straling, G.C., Dunn, R., Pelka-Fleiscischer, R., Nuessler, V., and Kiener, P.A. (2001). Soluble CD137 (4-1BB) ligand is released following leukocyte activation and is found in sera of patients with hematological malignancies. J. Immunol., 167, 4059–4066.PubMedGoogle Scholar
  42. Saoulli, K., Lee, S.Y., Cannons, J.L., Yeh, W.C., Santana, A., Goldstein, M.D., Bangia, DeBenedette, M.A., Mak, T.W., Choi, Y., and Watts, T.H. (1998). J. Exp. Med., 187, 1849–1862.PubMedCrossRefGoogle Scholar
  43. Schwartz, R.R. (1990). A cell culture model for T lymphocyte clonal anergy. Science, 248, 1349–1356.PubMedCrossRefGoogle Scholar
  44. Schwarz, H., Tuckwell, J., and Lotz, M. (1993). A receptor induced by lymphocyte activation (ILA); a new member of the human nerve growth factor/tumor necrosis factor receptor family. Gene, 134, 295–298.PubMedCrossRefGoogle Scholar
  45. Schwarz, H., Valbracht, J., Tuckwell, J., von Kempis, J., and Lotz, M. (1995). ILA, the human 4-1BB homologue, is inducible in lymphoid and other cell lineages. Blood, 85, 1043–1052.PubMedGoogle Scholar
  46. Seko, Y., Takahashi, N., Oshima, H., Shimozato, O., Akiba, H., Takeda, K., Kobata, T., Yagita, H., Okumura, K., Azuma, M., and Nagai, R. (2001). Expression of tumor necrosis factor (TNF) ligand superfamily costimulatory molecules CD30L, CD27L, OX40L, and 4-1BBL in murine hearts with acute myocarditis caused by coxsackievirus B3. J. Pathol., 195, 593–603.PubMedCrossRefGoogle Scholar
  47. Seko, H., Ishiyama, S., Nishikawa, T., Kasajima, T., Hiroe, M., Suzuki, S., Ishiwata, S., Kawai, S., Tanaka, Y., Azuma, M., Kobata, T., Yagita, H., Okumura, K., and Nagai, R. (2002). Expression of tumor necrosis factor ligand superfamily costimulatory molecules CD27L, CD30L, OX40L, and 4-1BBL in the heart of patients with acute myocarditis and dilated cardiomyopathy. Cardiovasc. Pathol., 11, 166–170.PubMedCrossRefGoogle Scholar
  48. Seko, Y., Sugishita, K., Sato, O., Takagi, A., Tada, Y., Matsuo, H., Yagita, H., Okumura, K., and Nagai, R. (2004). Expression of costimulatory molecules (4-1BBL and Fas) and major histocompatibility class I chain-related A (MICA) in aortic tissue with Takayasu’s arteritis. J. Vasc. Res., 41, 84–90.PubMedCrossRefGoogle Scholar
  49. Seo, S.K., Choi, J.H., Kim, Y.H., Kang, W.J., Park, H.Y., Suh, J.H., Choi, B.K., Vinay, D.S., and Kwon, B.S. (2004). 4-1BB-mediated immunotherapy of rheumatoid arthritis. Nat. Med., 10, 1088–1094.PubMedCrossRefGoogle Scholar
  50. Shuford, W.W., Klussman, K., Tritchler, D.D., Loo, D.T., Chalupny, J., Siadak, A.W., Brown, T.J., Emswiler, J., Raecho, H., Larsen, C.P., Pearson, T.C., Ledbetter, J.A., Aruffo, A., and Mittler, R.S. (1997). 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell response. J Exp Med., 186, 47–55.PubMedCrossRefGoogle Scholar
  51. Smith, C.A., Farrah, T., and Goodwin, R.G. (1994). The TNF receptor superfamily of cellular and viral proteins; activation, co-stimulation, and death. Cell, 76, 959–962.PubMedCrossRefGoogle Scholar
  52. Summers, K.L., Hock, B.D., McKenzie, J.L., and Hart, D.N. (2001). Phenotypic characterization of five dendritic cell subsets in human tonsils. Am. J. Pathol., 159, 285–295.PubMedGoogle Scholar
  53. Sun, Y., Lin, X., Chen, H.M., Wu, Q., Subudhi, S.K., Chen, L., and Fu, Y.X. (2002). Administration of agonistic anti-4-1BB monoclonal antibody leads to the amelioration of experimental autoimmune encephalomyelitis. J. Immunol., 168, 1457–1465.PubMedGoogle Scholar
  54. Takahashi, T., Mittler, R.S., and Vella, A.T. (1999). 4-1BB is a bona fide CD8 T cell survival signal. J Immunol., 162, 5037–5040.PubMedGoogle Scholar
  55. Vinay, D.S., and Kwon, B.S. (1998). Role of 4-1BB in immune responses. Sem. Immunol., 10, 481–489.CrossRefGoogle Scholar
  56. Vinay, D.S., Choi, B.K., Bae, J.S., Kim, W.Y., Gebhardt, B.M., and Kwon, B.S. (2004). CD137-deficient mice have reduced NK/NKT cell numbers and function, are resistant to lipopolysaccharide-induced shock syndromes, and have lower IL-4 responses. J. Immunol., 173, 4218–4229.PubMedGoogle Scholar
  57. Von Heijne, G. (1983). Patterns of amino acids near signal-sequence cleavage sites. Eur. J. Biochem., 133, 17–21.CrossRefGoogle Scholar
  58. Wan, Y.L., Zheng, S.S., Zhao, Z.C., Li, M.W., Jia, C.K., and Zhang, H. (2004). Expression of co-stimulator 4-1BB molecule in hepatocellular carcinoma and adjacent non-tumor liver tissue, and its possible role in tumor immunity. World J. Gastroenterol., 10, 195–199.Google Scholar
  59. Wilcox, R.A., Chapoval, A.I., Gorski, K.S., Otsuji, M., Shin, T., Flies, D.B., Tamada, K., Mittler, R.S., Tsuchiya, H., Pardoll, D.M., and Chen, L. (2002). Expression of functional CD137 receptor by dendritic cells. J. Immunol., 168, 4262–4267.PubMedGoogle Scholar
  60. Yamada-Okabe, T., Satoh, and Yamade-Okabe, H. (2003). Thyroid hormone induces the expression of 4-1BB and activation of caspases in thyroid hormone receptor-dependent manner. Eur. J. Biochem., 270, 3064–3073.PubMedCrossRefGoogle Scholar
  61. Yndestad, A., Damas, J.K., Geir Eiken, H., Holm, T., Hauh, T., Simonsen, S., Froland, S.S., Gullestad, L., and Aukrust, P. (2002). Increased gene expression of tumor necrosis factor superfamily ligands in peripheral blood mononuclear cells during chronic heart failure. Cardiovasc. Res., 54, 175–182.PubMedCrossRefGoogle Scholar
  62. Zhang, H., Merchant, M.S., Chua, K.S., Khanna, C., Helman, L.J., Telford, B., Ward, Y., Summers, J., Toretsky, J., Thomas, E.K., June, C.H., and Mackall, C.L. (2003). Tumor expression of 4-1BB ligand sustains tumor lytic T cells. Cancer Biol. Ther., 2, 579–586.PubMedGoogle Scholar
  63. Zhou, Z., Kim, S.H., Hurtado, J.C., Lee, Z., Kim, K.K., Pollok, K.E., and Kwon, B.S. (1995). Characterization of human homologue of 4-1BB and its ligand. Immunol. Lett., 45, 67–73.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Dass S. Vinay
    • 1
  • Byoung S. Kwon
    • 2
    • 3
  1. 1.Department of Ophthalmology, LSU Eye CenterLouisiana State University Health Sciences CenterNew OrleansUSA
  2. 2.Department of Ophthalmology, LSU Eye CenterLouisiana State University Health Sciences CenterNew OrleansUSA
  3. 3.Immunomodulation Research Center and Department of Biological SciencesUniversity of UlsanUlsanKorea

Personalised recommendations