Skip to main content

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

  • 583 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernstein JJ. Successful spinal cord regeneration: Known biological strategies. In: Reier PJ, Bunge RP, Seil FJ, eds. Current Issues in Neural Regeneration Research. Vol 48. New York: Alan R Liss inc, 1988:331–341.

    Google Scholar 

  2. Stehouwer D. Behavior of larval and juvenile bullfrogs (Rana Catesbeiana) following chronic spinal transection. Behav Neural Biol 1986; 45:120–134.

    PubMed  CAS  Google Scholar 

  3. Cummings J, Bernstein DR, Stelzner DJ. Further evidence for the sparing of function after spinal cord transection in the neonatal rat is not due to axonal generation or regeneration. Exp Neurol 1981;74:615–620.

    PubMed  CAS  Google Scholar 

  4. Stelzner DJ, Ershler WB, Weber ED. Effects of spinal transection in neonatal and weanling rats: Survival of function. Exp Neurol 1975; 46:156–177.

    PubMed  CAS  Google Scholar 

  5. Weber ED, Stelzner DJ. Behavioral effects of spinal cord transection in the developing rat. Brain Res 1977; 125:241–255.

    PubMed  CAS  Google Scholar 

  6. Lieberman AR. Some factors affecting retrograde neuronal responses to axonal lesions. In: Bellairs R, Gray EG, eds. Essays on the Nervous System. Oxford University Press, 1974:71–105.

    Google Scholar 

  7. Rovainen CM. Regeneration of Müller and Mauthner axons after spinal transection in larval lampreys. J Comp Neurol 1976; 168:545–554.

    PubMed  CAS  Google Scholar 

  8. Selzer ME. Mechanisms of functional recovery and regeneration after spinal cord transection in the larval sea lamprey. J Physiol 1978; 277:395–408.

    PubMed  CAS  Google Scholar 

  9. Wood MR, Cohen MJ. Synaptic regeneration in identified neurons of the lamprey spinal cord. Science 1979; 206:344–347.

    PubMed  CAS  Google Scholar 

  10. Yin HS, Selzer ME. Axonal regeneration in lamprey spinal cord. J Neurosci 1983; 3:1135–1144.

    PubMed  CAS  Google Scholar 

  11. Davis Jr GR, McClellan AD. Long Distance axonal regeneration of identified lamprey reticulospinal neurons. Exp Neurol 1994; 127:94–105.

    PubMed  Google Scholar 

  12. Wood MR, Cohen MJ. Synaptic regeneration and glial reactions in the transected spinal cord of the lamprey. J Neurocytol 1981; 10:57–79.

    PubMed  CAS  Google Scholar 

  13. McClellan AD. Functional regeneration of descending brainstem command pathways for locomotion demonstrated in the in vitro lamprey CNS. Brain Res 1988; 448:339–345.

    PubMed  CAS  Google Scholar 

  14. McClellan AD. Brainstem command systems for locomotion in the lamprey: Localization of descending pathways in the spinal cord. Brain Res 1988; 457:338–349.

    PubMed  CAS  Google Scholar 

  15. McClellan AD. Functional regeneration and recovery of locomotor activity in spinally transacted lamprey. J Exp Zool 1992; 261:274–287.

    PubMed  CAS  Google Scholar 

  16. Zhang L, McClellan AD. Axonal regeneration of descending brain neurons in larval lamprey demonstrated by retrograde double labelling J Comp Neurol 1999; 410:612–626.

    PubMed  CAS  Google Scholar 

  17. Zhang L, Palmer R, McClellan AD. Increase in descending brain-spinal cord projections with age in larval lamprey: Implication for spinal cord injury. J Comp Neurol 2002; 447:128–137.

    PubMed  Google Scholar 

  18. Mackler SA, Selzer ME. Regeneration of functional synapses between individual recognizable neurons in the lamprey spinal cord. Science 1985; 229:774–776.

    PubMed  CAS  Google Scholar 

  19. Mackler SA, Selzer ME. Specificity of synaptic regeneration in the spinal cord of the larval sea lamprey. J Physiol 1987; 388:183–198.

    PubMed  CAS  Google Scholar 

  20. Cohen AH, Mackler SA, Selzer ME. Functional regeneration following spinal transection demonstrated in the isolated spinal cord of the larval sea lamprey. Proc Nat Acad Sci USA 1986; 83:2763–2766.

    PubMed  CAS  Google Scholar 

  21. Cohen AH, Wallen P. The neuronal correlate of locomotion in fish “fictive swimming” induced in an in vitro preparation of the lamprey spinal cord. Exp Brain Res 1980; 41:11–18.

    PubMed  CAS  Google Scholar 

  22. Cohen AH, Madder SA, Selzer ME. Behavioral recovery following spinal transection: Functional regeneration in the lamprey CNS. Trends Neurosci 1988; 11:227–231.

    PubMed  CAS  Google Scholar 

  23. Davis Jr GR, McClellan AD. Time course of anatomical regeneration of descending brainstem neurons and behavioral recovery in spinal-transected lamprey. Brain Res 1993; 602:131–137.

    PubMed  Google Scholar 

  24. Lurie DI, Selzer ME. Axonal regeneration in the adult lamprey spinal cord. J Comp Neurol 1991; 306:409–416.

    PubMed  CAS  Google Scholar 

  25. Bernstein JJ. Relation of spinal cord regeneration to age in adult goldfish. Brain Res 1964; 9:161–164.

    CAS  Google Scholar 

  26. Bernstein JJ, Bernstein ME. Effects of glial-ependymal scar and teflon arrest on the regenerative capacity of goldfish spinal cord. Exp Neurol 1967; 19:25–32.

    PubMed  CAS  Google Scholar 

  27. Reier PJ, Stensaas LJ, Guth L. The astrocytic scar as an impediment to regeneration in the central nervous system. In: Kao CC, Bunge RP, Reier PJ, eds. Spinal Cord Reconstruction. New York: Raven Press, 1983:163–168.

    Google Scholar 

  28. Bernstein JJ, Geldered JB. Regeneration of long spinal tracts in the goldfish. Brain Res 1970; 20:33–38.

    PubMed  CAS  Google Scholar 

  29. Bernstein JJ, Geldered JB. Synaptic reorganisation following regeneration of goldfish spinal cord. Exp Neurol 1973; 41:402–410.

    PubMed  CAS  Google Scholar 

  30. Coggeshall RE, Youngblood CS. Recovery from spinal transection in fish: Regrowth of axons past the transection. Neurosci Letts 1983; 227–231.

    Google Scholar 

  31. Sharma SC, Jadhao PD, Rao PD. Regeneration of supraspinal projections neurons in the adult goldfish. Brain Res 1993; 620:221–228.

    PubMed  CAS  Google Scholar 

  32. Hanna GF, Nawar NN, Sharma SC. Regeneration of ascending spinal axons in goldfish. Brain Res 1998; 791:235–245.

    PubMed  CAS  Google Scholar 

  33. Becker T, Becker CG. Regenerating descending axons preferentially reroute to the gray matter in the presence of a general macrophage/microglia reaction caudal to a spinal transection in adult zebrafish. J Comp Neurol 2001; 433:131–147.

    PubMed  CAS  Google Scholar 

  34. Becker T, Wullimann MF, Becker CG et al. Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 1997; 377:577–595.

    PubMed  CAS  Google Scholar 

  35. Becker T, Bernhardt RR, Reinhard E et al. Readiness of zebrafish brain neurons to regenerate a spinal axon correlates with differential expression of specific cell recognition molecules. J Neurosci 1998; 18:5789–5803.

    PubMed  CAS  Google Scholar 

  36. McClellan AD. Spinal cord injury: Lessons from locomotor recovery and axonal regeneration in lower vertebrates. Neuroscientist 1998; 4:250–263.

    Google Scholar 

  37. Bernhardt RR. Cellular and molecular bases of axonal regeneration in the fish central nervous system. Exp Neurol 1999; 157:223–240.

    PubMed  CAS  Google Scholar 

  38. Davis BM, Duffy MT, Simpson Jr SB. Bulbospinal and intraspinal connections in normal and regenerated salamander spinal cord. Exp Neurol 1989; 103:41–51.

    PubMed  CAS  Google Scholar 

  39. Benraiss A, Arsanto JP, Coulon J et al. Neurogenesis during caudal spinal cord regeneration in adult newts. Dev Genes Evol 1999; 209:363–369.

    PubMed  CAS  Google Scholar 

  40. Forehand CJ, Farel PB. Anatomical and behavioral recovery from the effects of spinal cord transection: Dependence on metamorphosis in anuran larvae. J Neurosci 1982; 2:654–662.

    PubMed  CAS  Google Scholar 

  41. Beattie MS, Bresnahan JC, Copate G. Metamorphosis alters the response to spinal cord transaction in Xenopus laevis frogs. J Neurobiol 1990; 21:1108–1122.

    PubMed  CAS  Google Scholar 

  42. Lee MT. Regeneration and functional reconnection of an identified vertebrate central neuron. J Neurosci 1982; 2:1793–1811.

    PubMed  CAS  Google Scholar 

  43. Brenner PR, Stehouwer DJ. Sparing and recovery of function in spinal larval frogs (Rana Catesbeiana): Effect of level of transection. Behav Neurol Biol 1991; 56:292–306.

    CAS  Google Scholar 

  44. Ramon y Cajal S. (translated by RM May) Degeneration and regeneration of the nervous system. Oxford: Oxford University press, 1928.

    Google Scholar 

  45. Fry EJ, Saunders NR. Spinal repair in immature animals: A novel approach using the South American opossum Monodelphis domestica. Clin Exp Pharmacol Physiol 2000; 27:542–547.

    PubMed  CAS  Google Scholar 

  46. Fawcett JW. Intrinsic neuronal determinants of regeneration. Trends Neurosci 1992; 15:5–8.

    PubMed  CAS  Google Scholar 

  47. Terman JR, Wang XM, Martin GF. Repair of the transected spinal cord at different stages of development in the North American opossum, Didelphis virginiana. Brain Res Bull 2000; 53:845–855.

    PubMed  CAS  Google Scholar 

  48. Varga ZM, Bandtlow CE, Erulkar SD et al. The critical period for repair of CNS of neonatal opossum (Monodelphis domestica) in culture: Correlation with development of glial cells, myelin and growth-inhibitory molecules. Eur J Neurosci 1995; 7:2119–2129.

    PubMed  CAS  Google Scholar 

  49. Saunders NR, Kitchener P, Knott GW et al. Development of walking, swimming and neural connections after completed spinal cord transection in the neonatal opossum, Monodelphis domestica. J Neurosci 1998; 18:339–355.

    PubMed  CAS  Google Scholar 

  50. Saunders NR, Adams E, Reader M et al. Monodelphis domestica (grey short-tailed opossum): An accessible model for studies of early neocortical development. Anat Embryol (Berl) 1989; 180:227–236.

    PubMed  CAS  Google Scholar 

  51. Treherne JM, Woodward SK, Varga ZM et al. Restoration of conduction and growth of axons through injured spinal cord of neonatal opossum in culture. Proc Natl Acad Sci USA 1992; 89:431–434.

    PubMed  CAS  Google Scholar 

  52. Nicholls J, Saunders N. Regeneration of immature mammalian spinal cord after injury. Trends Neurosci 1996; 19:229–234.

    PubMed  CAS  Google Scholar 

  53. Woodward SK, Treherne JM, Knott GW et al. Development of connections by axons growing through injured spinal cord of neonatal opossum in culture. J Exp Biol 1993; 176:77–88.

    PubMed  CAS  Google Scholar 

  54. Varga ZM, Schwab ME, Nicholls JG. Myelin-associated neurite growth-inhibitory proteins and suppression of regeneration of immature mammalian spinal cord in culture. Proc Natl Acad Sci USA 1995; 92:10959–10963.

    PubMed  CAS  Google Scholar 

  55. Saunders NR, Deal A, Knott GW et al. Repair and recovery following spinal cord injury in a neonatal marsupial (Monodelphis domestica). Clin Exp Pharmacol Physiol 1995; 22:518–526.

    PubMed  CAS  Google Scholar 

  56. Varga ZM, Fernandez J, Blackshaw S et al. Neurite outgrowth through lesions of neonatal opossum spinal cord in culture. J Comp Neurol 1996; 366:600–612.

    PubMed  CAS  Google Scholar 

  57. Wang XM, Xu XM, Qin YQ et al. The origins of supraspinal projections to the cervical and lumbar spinal cord at different stages of development in the gray short-tailed Brazilian opossum, Monodelphis domestica. Dev Brain Res 1992; 68:203–216.

    CAS  Google Scholar 

  58. Holst M, Ho RH, Martin GF. The origins of supraspinal projections to lumbosacral and cervical levels of the spinal cord in the gray short-tailed Brazilian opossum, Monodelphis domestica. Brain Behav Evol 1991; 38:273–289.

    PubMed  CAS  Google Scholar 

  59. Weber ED, Stelzner DJ. Synaptogenesis in the intermediate gray region in the lumbar spinal cord in the postnatal rat. Brain Res 1980; 185:17–37.

    PubMed  CAS  Google Scholar 

  60. Navarrete R, Vrbová G. Activity-dependent interactions between motoneurons and muscles: Their role in the development of the motor unit. Prog Neurobiol 1993; 41:93–124.

    CAS  Google Scholar 

  61. Donatelle JM. Growth of the corticospinal tract and the development of placing reactions in the postnatal rat. J Comp Neurol 1977; 175:207–231.

    PubMed  CAS  Google Scholar 

  62. Gribnau AA, de Kort EJ, Dederen PJ et al. On the development of the pyramidal tract in the rat II. An anterograde tracer study of the outgrowth of the corticospinal fibres. Anat Embryol 1986; 175:101–110.

    PubMed  CAS  Google Scholar 

  63. Bregman BS. Development of serotonin immunoreactivity in the rat spinal cord and its plasticity after neonatal spinal cord lesions. Dev Brain Res 1987; 34:245–263.

    Google Scholar 

  64. Chen KS, Stanfield BB. Evidence that selective collateral elimination during postnatal development results in a restriction in the distribution of locus coeruleus neurons which project to the spinal cord in rats. Brain Res 1987; 410:154–158.

    PubMed  CAS  Google Scholar 

  65. Gilbert M, Stelzner DJ. The development of descending and dorsal root connections in the lumbosacral spinal cord of the postnatal rat. J Comp Neurol 1979; 184:821–838.

    PubMed  CAS  Google Scholar 

  66. Hulsebosch CE, Coggeshall RE. A comparison of axonal numbers in dorsal root following spinal cord hemisection. Brain Res 1983; 265:187–197.

    PubMed  CAS  Google Scholar 

  67. Robinson GA, Goldberger ME. The development and recovery of motor function in spinal cats. I. The infant lesion effect. Exp Brain Res 1986; 62:373–386.

    PubMed  CAS  Google Scholar 

  68. Bradley NS, Smith KL. Neuromuscular patterns of stereotypic hindlimb behaviors in the first two post-natal months. II Stepping in spinal kittens. Dev Brain Res 1988; 38:53–67.

    Google Scholar 

  69. Goldberger ME. The use of behavioral methods to predict spinal cord plasticity. Restor Neurol Neurosci 1991; 2:339–350.

    Google Scholar 

  70. Smith JL, Smith LA, Zernicke RF et al. Locomotion in exercised and nonexercised cats cordotomised at 2 and 12 weeks. Exp Neurol 1982; 76:393–413.

    PubMed  CAS  Google Scholar 

  71. Goldberger ME, Murray M. Recovery of function and anatomical plasticity after damage to adult and neonatal spinal cord. In: Cotman CW, ed. Synaptic Plasticity. New York: Guilford, 1985:77–110.

    Google Scholar 

  72. Robinson GA, Goldberger ME. The development and recovery of motor function in spinal cats. II. Pharmacological enhancement of recovery. Exp Brain Res 1986; 62:387–400.

    PubMed  CAS  Google Scholar 

  73. Bernard JW, Carpenter W. Lack of regeneration in spinal cord of rat. J Neurophysiol 1950; 13:223–228.

    Google Scholar 

  74. Björklund A, Katzman R, Stenevi U et al. Development and growth of axonal sprouts from noradrenaline and 5-hydroxytryptamine neurons in the rat spinal cord. Brain Res 1971; 31:21–33.

    PubMed  Google Scholar 

  75. Prendergast J, Shusterman R. Normal development of motor behavior in the rat and the effect of midthoracic spinal hemisection at birth on that development. Exp Neurol 1982; 78:176–189.

    PubMed  CAS  Google Scholar 

  76. Skagerberg G, Björklund A. Topographic principles in the spinal projections of serotonergic and nonserotonergic brainstem neurons in the rat. Neuroscience 1985; 15:445–480.

    PubMed  CAS  Google Scholar 

  77. Martin GF, Xu XM. Evidence for the developmental plasticity of the rubrospinal tract. Studies using the North American opossum. Dev Brain Res 1988; 39:303–308.

    Google Scholar 

  78. Kalil K, Reh T. Regrowth of severed axons in the neonatal central nervous system: Establishment of normal connections. Science 1979; 205:1158–1161.

    PubMed  CAS  Google Scholar 

  79. Kuang RZ, Kalil K. Branching patterns of corticospinal axon arbors in the rodent. J Comp Neurol 1990; 292:585–598.

    PubMed  CAS  Google Scholar 

  80. Liu CN, Chambers W. Intraspinal sprouting of dorsal root axons. Arch Neurol Psychiat 1958; 79:46–61.

    CAS  Google Scholar 

  81. Bullitt E, Stofer WD, Vierek CJ et al. Reorganization of primary afferent nerve terminals in the spinal dorsal horn of the primate caudal to anterolateral chordotomy. J Comp Neurol 1988; 270:549–558.

    PubMed  CAS  Google Scholar 

  82. Polistina DC, Murray M, Goldberger ME. Plasticity of dorsal root and descending serotonergic projections after partial deafferentation of the rat spinal cord. J Comp Neurol 1990; 299:349–363.

    PubMed  CAS  Google Scholar 

  83. Rodin BE, Sampogna SL, Kruger L. An examination of intraspinal sprouting in dorsal root axons with tracer HRP. J Comp Neurol 1983; 215:187–198.

    PubMed  CAS  Google Scholar 

  84. Pubols LM, Bowen DC. Lack of central sprouting of primary afferent fibres after ricin deafferentation. J Comp Neurol 1988; 275:282–287.

    PubMed  CAS  Google Scholar 

  85. McMahon SB, Kett-White R. Sprouting of peripherally regenerating primary sensory neurons in the adult central nervous system. J Comp Neurol 1991; 304:307–315.

    PubMed  CAS  Google Scholar 

  86. Fitzgerald M. The sprouting of saphenous nerve terminals in the spinal cord following early postnatal sciatic nerve section in the rat. J Comp Neurol 1985; 240:407–413.

    PubMed  CAS  Google Scholar 

  87. Fitzgerald M, Vrbová G. Plasticity of acid phosphatase (FRAP) afferent terminal fields and of dorsal horn cell growth in the neonatal rat. J Comp Neurol 1985; 240:414–420.

    PubMed  CAS  Google Scholar 

  88. Réthelyi M, Salim MZ, Jancso G. Altered distribution of dorsal root fibres in the rat following neonatal capsaicin treatment. Neuroscience 1988; 18:749–761.

    Google Scholar 

  89. Fitzgerald M, Woolf CJ, Shortland P. Collateral sprouting of the central terminals of cutaneous primary afferent neurons in the rat spinal cord: Pattern, morphology, and influence of targets. J Comp Neurol 1990; 300:370–385.

    PubMed  CAS  Google Scholar 

  90. Smith CL. The development and postnatal organization of primary afferent projections to the rat thoracic spinal cord. J Comp Neurol 1983; 220:29–43.

    PubMed  CAS  Google Scholar 

  91. Fitzgerald M, Swett J. The termination pattern of sciatic nerve afferents in the substantia gelatinosa of neonatal rats. Neurosci Lett 1983; 43:149–154.

    PubMed  CAS  Google Scholar 

  92. Fitzgerald M. The post-natal development of cutaneous afferent fibre input and receptive field organization in the rat dorsal horn. J Physiol 1985; 364:1–18.

    PubMed  CAS  Google Scholar 

  93. Richardson PM, Issa VM. Peripheral nerve injury enhances central regeneration of primary sensory neurons. Nature 1984; 309:791–793.

    PubMed  CAS  Google Scholar 

  94. Woolf CJ, Shortland P, Coggeshall RE. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 1992; 355:75–78.

    PubMed  CAS  Google Scholar 

  95. Florence SL, Garraghty PE, Carlson M et al. Sprouting of peripheral nerve axons in the spinal cord of monkeys. Brain Res 1993; 601:343–348.

    PubMed  CAS  Google Scholar 

  96. Skene JHP. Axonal growth-associated proteins. Annu Rev Neurosci 1989; 12:127–156.

    PubMed  CAS  Google Scholar 

  97. Woolf CJ, Reynolds ML, Molander C et al. The growth-associated protein GAP43 appears in dorsal root ganglion cells and in the dorsal horn of the rat spinal cord following peripheral nerve injury. Neuroscience 1990;34:465–478.

    PubMed  CAS  Google Scholar 

  98. Helgren ME, Goldberger ME. The recovery of postural reflexes and locomotion following low thoracic hemisection in adult cats involves compensation by undamaged primary afferent pathways. Exp Neurol 1993;123:17–34.

    PubMed  CAS  Google Scholar 

  99. Goldberger ME. Locomotor recovery after unilateral hindlimb deafferentation in cats. Brain Res 1977;123:59–74.

    PubMed  CAS  Google Scholar 

  100. Goldberger ME. Spared root deafferentation of a cat’s hindlimb: Hierarchical regulation of pathways mediating recovery of motor behavior. Exp Brain Res 1988;73:329–342.

    PubMed  CAS  Google Scholar 

  101. Murray M, Goldberger ME. Replacement of synaptic terminals in lamina II and Clarke’s nucleus after unilateral lumbosacral rhizotomy in adult cats. J Neurosci 1986;6:3205–3217.

    PubMed  CAS  Google Scholar 

  102. Zhang B, Goldberger ME, Murray M. Proliferation of SP and 5HT-containing terminals in lamina II of rat spinal cord following dorsal rhizotomy: Quantitative EM-immunocytochemical studies. Exp Neurol 1993;123:51–63.

    PubMed  CAS  Google Scholar 

  103. Tessler A, Glazer E, Artymyshyn R et al. Recovery of substance P in the cat spinal cord after unilateral lumbosacral deafferentation. Brain Res 1980;191:459–470.

    PubMed  CAS  Google Scholar 

  104. Tessler A, Himes BT, Artymyshyn R et al. Spinal neurons mediate return of substance P following deafferentation of cat spinal cord. Brain Res 1981;230:263–281.

    PubMed  CAS  Google Scholar 

  105. Beattie MS, Leedy MG, Bresnahan JC. Evidence for alterations of synaptic inputs to sacral spinal reflex circuits after spinal cord transection in the cat. Exp Neurol 1993;123:35–50.

    PubMed  CAS  Google Scholar 

  106. Lahr SP, Stelzner DJ. Anatomical studies of dorsal column axons and dorsal root ganglion cells after spinal cord injury in newborn rat. J Comp Neurol 1990;293:377–398.

    PubMed  CAS  Google Scholar 

  107. Bates CA, Killackey HP. The emergence of a discretely distributed pattern of corticospinal projection neurons. Dev Brain Res 1984;13:265–273.

    Google Scholar 

  108. Himes BT, Tessler A. Death of some dorsal root ganglion neurons and plasticity of others following sciatic nerve section in adult and neonatal rats. J Comp Neurol 1989;284:215–230.

    PubMed  CAS  Google Scholar 

  109. Bregman BS, Bernstein-Goral H, Kunkel-Bagden E. CNS transplants promote anatomical plasticity and recovery of function after spinal cord injury. Restor Neurol Neurosci 1991;2:327–338.

    Google Scholar 

  110. Yip HK, Johnson Jr EM. Developing dorsal root ganglion neurons require trophic support from their central processes: Evidence for a role of retrogradely transported nerve growth factor from the central nervous system to the periphery. Proc Natl Acad Sci USA 1984;81:6245–6249.

    PubMed  CAS  Google Scholar 

  111. Perkins S, Carlstedt T, Mizuro K et al. Failure of regenerating dorsal root axons to regrow into the spinal cord. Can J Neurol Sci 1980;7:323–332.

    Google Scholar 

  112. Anderson PN, Chong MS, Woolf CM et al. GAP43 and lumbar dorsal root regeneration into long peripheral nerve grafts in rat. Neurosci Lett Suppl 1992;42:S12.

    Google Scholar 

  113. Carlstedt T. Reinnervation of the mammalian spinal cord after neonatal dorsal root crush. J Neurocytol 1988;17:335–350.

    PubMed  CAS  Google Scholar 

  114. Sah DW, Frank E. Regeneration of sensory-motor synapses in the spinal cord of the bullfrog. J Neurosci 1984;4:2784–2791.

    PubMed  CAS  Google Scholar 

  115. Frank E, Sah DW. Reformation of specific synaptic connections by regenerating sensory axons in the spinal cord of the bullfrog. Neurochem Pathol 1986;5:165–185.

    PubMed  CAS  Google Scholar 

  116. Kliot M, Smith GM, Siegal JD et al. Astrocyte-polymer implants promote regeneration of dorsal root fibers into adult mammalian spinal cord. Exp Neurol 1990;109:57–69.

    PubMed  CAS  Google Scholar 

  117. Prendergast J, Stelzner DJ. Changes in the magnocellular portion of the red nucleus following thoracic hemisection in the neonatal and adult rat. J Comp Neurol 1976;166:163–172.

    PubMed  CAS  Google Scholar 

  118. Bregman BS, Reier PJ. Neural tissue transplants rescue axotomised rubrospinal cells from retrograde death. J Comp Neurol 1986;244:86–95.

    PubMed  CAS  Google Scholar 

  119. McBride RL, Feringa ER, Garver MK et al. Relabelled red nucleus and sensorimotor cortex neurons of the rat survive 10 and 20 weeks after spinal cord transection. J Neuropathol Exp Neurol 1989;48:568–576.

    PubMed  CAS  Google Scholar 

  120. McBride RL, Feringa ER, Garver MK et al. Retrograde transport of fluoro-gold in corticospinal and rubrospinal neurons 10 and 20 weeks after T9 spinal cord transection. Exp Neurol 1990;108:83–85.

    PubMed  CAS  Google Scholar 

  121. Lowrie MB, Vrbová G. Dependence of post-natal motoneurons on their targets: Review and hypothesis. Trends Neurosci 1992;15:80–84.

    PubMed  CAS  Google Scholar 

  122. Merline M, Kalil K. Cell death of corticospinal neurons is induced by axotomy before but not after innervation of spinal targets. J Comp Neurol 1990;296:506–516.

    PubMed  CAS  Google Scholar 

  123. Bregman BS, Bernstein-Goral H. Both regenerating and late developing pathways contribute to transplant-induced anatomical plasticity after spinal cord lesions at birth. Exp Neurol 1991;112:49–63.

    PubMed  CAS  Google Scholar 

  124. Schreyer DT, Jones EG. Growth and target finding by axons of the corticospinal tract in pre natal and postnatal rats. Neuroscience 1982;7:1837–1853.

    PubMed  CAS  Google Scholar 

  125. Tolbert DL, Der T. Redirected growth of pyramidal tract axons following neonatal pyramidotomy in cats. J Comp Neurol 1987;260:299–311.

    PubMed  CAS  Google Scholar 

  126. Bregman BS, Goldberger ME. Infant lesion effect: III Anatomical correlates of sparing and recovery of function after spinal cord damage in newborn and adult cats. Dev Brain Res 1983;9:137–154.

    Google Scholar 

  127. Bates CA, Stelzner DJ. Extension and regeneration of corticospinal axons after early spinal injury and the maintenance of corticospinal topography. Exp Neurol 1993;123:106–117.

    PubMed  CAS  Google Scholar 

  128. Bregman BS, Kunkel-Bagden E, McAtee M et al. Extension of the critical period for developmental plasticity of the corticospinal pathway. J Comp Neurol 1989;282:355–370.

    PubMed  CAS  Google Scholar 

  129. Joosten EA, Gribnau AA, Dederen PJ. An anterograde study of the developing corticospinal tract in the rat: Three components. Dev Brain Res 1987;36:121–130.

    Google Scholar 

  130. Kunkel-Bagden E, Bregman BS. Spinal cord transplants enhance the recovery of locomotor function after spinal cord injury at birth. Exp Brain Res 1990;81:25–34.

    PubMed  CAS  Google Scholar 

  131. Diener PS, Bregman BS. Fetal spinal cord transplants support the development of target reaching and coordinated postural adjustment after neonatal cervical cord injury. J Neurosci 1998;18:763–778.

    PubMed  CAS  Google Scholar 

  132. Diener PS, Bregman BS. Fetal spinal cord transplants support growth of supraspinal and segmental projections after cervical spinal cord hemisaction in the neonatal rat. J Neurosci 1998;18:779–793.

    PubMed  CAS  Google Scholar 

  133. Hase T, Kawaguchi S, Hayashi H et al. Spinal cord repair in neonatal rats: A correlation between axonal regeneration and functional recovery. Eur J Neurosci 2002;15:969–974.

    PubMed  Google Scholar 

  134. Rosenthal BM, Alley KE. Trigeminal motoneurons in frogs develop a new dendritic field during metamorphosis. Neurosci Lett 1988;95:53–58.

    PubMed  CAS  Google Scholar 

  135. Bray GM, Villegas-Perez MP, Vidal-Sanz M et al. The use of peripheral nerve grafts to enhance neuronal survival, promote growth and permit terminal connections in the central nervous system of adult rats. J Exp Biol 1987;132:5–19.

    PubMed  CAS  Google Scholar 

  136. Lurie DI, Selzer ME. Preferential regeneration of spinal axons through the scar in hemisected lamprey spinal cord. J Comp Neurol 1991;313:669–679.

    PubMed  CAS  Google Scholar 

  137. Mansour H, Asher R, Dahl D et al. Permissive and nonpermissive reactive astrocytes: Immunofluorescence study with antibodies to the glial hyaluronate-binding protein. J Neurosci Res 1990;25:300–311.

    PubMed  CAS  Google Scholar 

  138. Bovolenta P, Wandosell F, Nieto-Sampedro M. Neurite outgrowth over resting and reactive astrocytes. Restor Neurol Neurosci 1991;2:221–228.

    Google Scholar 

  139. Pixley SK, Nieto-Sampedro M, Cotman CW. Preferential adhesion of brain astrocytes to laminin and central neurites to astrocytes. J Neurosci Res 1987;18:402–406.

    PubMed  CAS  Google Scholar 

  140. Michel ME, Reier PJ. Axonal-ependymal associations during early regeneration of the transected spinal cord in xenopus laevis tadpoles. J Neurocytol 1979;8:529–548.

    PubMed  CAS  Google Scholar 

  141. Stensaas LJ. Regeneration in the spinal cord of the newt Noptopthalmus. In: Kao CC, Bunge RP, Reier PJ, eds. Spinal Cord Reconstruction. New York: Raven Press, 1983:121–150.

    Google Scholar 

  142. Bandtlow C, Zachleder T, Schwab ME. Oligodendrocytes arrest neurite growth by contact inhibition. J Neurosci 1990;10:3837–3848.

    PubMed  CAS  Google Scholar 

  143. Caroni P, Schwab ME. Two membrane protein functions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Biol 1988;106:1281–1288.

    PubMed  CAS  Google Scholar 

  144. Keirstead HS, Hasan SJ, Muir GD et al. Suppression of the onset of myelination extends the permissive period for the functional repair of embryonic spinal cord. Proc Natl Acad Sci USA 1992;89:11664–11668.

    PubMed  CAS  Google Scholar 

  145. Prendergast J, Misantone LJ. Sprouting of tracts descending from midbrain to spinal cord: The result of thoracic funicolotomy in newborn, 21d and adult rat. Exp Neurol 1980;69:458–480.

    PubMed  CAS  Google Scholar 

  146. Ang LC, Bhaumick B, Munoz DG et al. Effects of astrocytes, insulin and insulin-like growth factor 1 on the survival of motoneurons in vitro. J Neurol Sci 1992;109:168–172.

    PubMed  CAS  Google Scholar 

  147. Skaper SD, Varon S. Age-dependent control of dorsal root ganglion neuron survival by macromo-lecular and low-molecular weight trophic agents and sub-stratum bound laminins. Dev Brain Res 1986;24:39–46.

    CAS  Google Scholar 

  148. Heumann R, Korsching S, Bandtlow C et al. Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J Cell Biol 1987;104:1623–1631.

    PubMed  CAS  Google Scholar 

  149. Meyer M, Matsuoka L, Wetmore C et al. Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: Different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol 1992;119:45–54.

    PubMed  CAS  Google Scholar 

  150. Taniuchi M, Clark HB, Schweitzer JB et al. Expression of nerve growth factor receptors by Schwann cells of axotomised peripheral nerves: Ultrastructural location, suppression by axon contact, and binding properties. J Neurosci 1988;8:664–681.

    PubMed  CAS  Google Scholar 

  151. Snider WD, Elliot JL, Yan Q. Axotomy-induced neuronal death during development. J Neurobiol 1992;23:1231–1246.

    PubMed  CAS  Google Scholar 

  152. Joosten EA, Van der Ven PF, Hooiveld MH et al. Induction of corticospinal target finding by release of a diffusable, chemotropic factor in cervical spinal grey matter. Neurosci Letts 1991;128:25–28.

    CAS  Google Scholar 

  153. Greensmith L, Vrbová G. Alterations of nerve-muscle interaction during postnatal development influence motoneurone survival in rats. Dev Brain Res 1992;69:125–131.

    CAS  Google Scholar 

  154. Barbeau H, Rossignol S. Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugs. Brain Res 1991;546:250–260.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Clowry, G., Slawinska, U. (2006). Recovery of Function After Spinal Cord Injury. In: Transplantation of Neural Tissue into the Spinal Cord. Neuroscience Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-32633-2_2

Download citation

Publish with us

Policies and ethics