Skip to main content

Hypoxia, Fetal Growth and Developmental Origins of Health and Disease

  • Chapter
Early Life Origins of Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 573))

Abstract

The compelling evidence linking small size at birth with later cardiovascular disease, obtained from epidemiological studies of human populations of more than a dozen countries, has clearly renewed and amplified a clinical and scientific interest into the determinants of fetal growth, birth weight and the development of cardiovascular function and dysfunction before and after birth. As early as the 1950s Penrose highlighted that an important determinant of birth weight was the quality of the intrauterine environment, being twice as great a determinant of the rate of fetal growth than the maternal or fetal genotype. Studies of birth weights of relatives together with strong evidence from animal cross-breeding experiments have clearly supported this contention. One of the great qualifiers of the fetal environment is the maternal nutritional status during pregnancy. As such, the reciprocal association between low birth weight and increased risk of high blood pressure in adulthood, as first described by Barker, has literally exploded a new field of research investigating the effects of maternofetal nutrition on fetal growth, birth weight and subsequent cardiovascular disease. However, the fetus nourishes itself also with oxygen, and in contrast to the international effort which is assessing the effects of maternofetal under-nutrition on early development, the effects of maternofetal under-oxygenation on fetal growth, birth weight and subsequent increased risk of disease have been little addressed. Here, evidence is presented, which supports the concept that fetal hypoxia alone may provide a candidate prenatal stimulus contributing to fetal growth restriction and the developmental origins of cardiovascular health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker DJP. Mothers, babies, and disease in later life. Edinburgh: Churchill Livingstone, 1998.

    Google Scholar 

  2. Penrose LS. Some recent trends in human genetics. Cardiologia 1954; 6(Suppl):521–529.

    Google Scholar 

  3. Walton A, Hammond J. Proc R Soc Lond B Biol Sci 1938; 125:311–335.

    Google Scholar 

  4. Giussani DA, Forhead AJ, Gardner DS et al. Postnatal cardiovascular function after manipulation of fetal growth by embryo transfer in the horse. J Physiol 2003; 547(1):67–76.

    Article  PubMed  CAS  Google Scholar 

  5. Cohn HE, Sacks EJ, Heymann MA et al. Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol 1974; 120:817–824.

    PubMed  CAS  Google Scholar 

  6. Giussani DA, Spencer JAD, Moore PJ et al. Afferent and efferent components of the cardiovascular reflex responses to acute hypoxia in term fetal sheep. J Physiol 1993; 461:431–449.

    PubMed  CAS  Google Scholar 

  7. Giussani DA, Riquelme RA, Moraga FA et al. Chemoreflex and endocrine components of the cardiovascular response to acute hypoxaemia in the llama fetus. Am J Physiol 1996; 271:R73–R83.

    PubMed  CAS  Google Scholar 

  8. Mulder AL, van Golde JC, Prinzen FW et al. Cardiac output distribution in response to hypoxia in the chick embryo in the second half of the incubation time. J Physiol 1998; 508:281–287.

    Article  PubMed  CAS  Google Scholar 

  9. Gardner DS, Fletcher AJW, Swann M et al. A novel method for controlled, long term compression of the umbilical cord in fetal sheep. J Physiol 2001; 535(1):217–29.

    Article  PubMed  CAS  Google Scholar 

  10. Monge CC, Arregui A, León-Velarde F. Pathophysiology and epidemiology of chronic mountain sickness. Int J Sports Med 1992; 13(Suppl 1):S79–81.

    Google Scholar 

  11. Maggiorini M, León-Velarde F. High-altitude pulmonary hypertension: A pathophysiological entity to different diseases. Eur Respir J 2003; 22(6):1019–25.

    PubMed  CAS  Google Scholar 

  12. Chang JHT, Rutledge JC, Stoops D et al. Hypobaric hypoxia-induced intrauterine growth retardation. Biol Neonate 1984; 46:10–13.

    Article  PubMed  CAS  Google Scholar 

  13. De Grauw TJ, Myers R, Scott WJ. Fetal growth in rats from different levels of hypoxia. Biol Neonate 1986; 49:85–89.

    PubMed  Google Scholar 

  14. Gonzales GF, Guerra-Gracia R. Características hormonales y antropométricas del embarazo y del recien nacido en la altura. In: Gonzales GF, ed. Reproducción humana en la Altura. Lima Peru: Consejo Nacional de Ciencia y Tecnología, 1993:125–141.

    Google Scholar 

  15. Zamudio S, Droma T, Norkyel KY et al. Protection from intrauterine growth retardation in Tibetans at high altitude. Am J Phys Anthropol 1993; 91:215–224.

    Article  PubMed  CAS  Google Scholar 

  16. Giussani DA, Phillips PS, Anstee S et al. Effects of altitude vs. economic status on birth weight and body shape at birth. Ped Res 2001; 49(4):490–494.

    CAS  Google Scholar 

  17. Mapa de Pobreza. Una guía para la acción social. Ministerio de Desarrollo Humano, República de Bolivia. 2nd ed. 1995.

    Google Scholar 

  18. Post GB, Lujan C, San-Miguel JL et al. The nutritional intake of Bolivian boys. The relation between altitude and socioeconomic status. Int J Sports Med 1994; 15(Suppl 2):S100–S105.

    Article  PubMed  Google Scholar 

  19. Haas JD, Frongillo EF, Stepcik C et al. Altitude, ethnic and sex differences in birthweight and length in Bolivia. Hum Biol 1980; 52:459–477.

    Google Scholar 

  20. Moore LG. Maternal O2 transport and fetal growth in Colorado, Peru and Tibet high-altitude residents. Am J Hum Biol 1990; 2:627–637.

    Article  Google Scholar 

  21. Salinas CE, Villena M, Blanco CE et al. The role of oxygen in fetal growth. J Soc Gynecol Investig 2003a; 10(2 Suppl):305A.

    Google Scholar 

  22. Gluckman PD, Hanson MA. Living with the past: Evolution, development, and patterns of disease. Science 2004; 305:1733–1736.

    Article  PubMed  CAS  Google Scholar 

  23. Lee TM, Zucker I. Vole infant development influenced perinatally by maternal photoperiodic history. Am J Physiol 1988; 255:R831–R838.

    PubMed  CAS  Google Scholar 

  24. Bae S, Xiao Y, Li G et al. Effect of maternal chronic hypoxic exposure during gestation on apoptosis in fetal rat heart. Am J Physiol 2003; 285(3):H983–90.

    CAS  Google Scholar 

  25. Salinas CE, Villena M, Blanco CE et al. Protection against hypoxia-induced cardiomegaly in chick embryos from hens native to high altitude. J Soc Gynecol Investig 2003b; 10(2 Suppl):108A.

    Google Scholar 

  26. Li G, Xiao Y, Estrella JL et al. Effect of fetal hypoxia on heart susceptibility to ischemia and reperfusion injury in the adult rat. J Soc Gynecol Investig 2003; 10(5):265–74.

    Article  PubMed  CAS  Google Scholar 

  27. Williams SJ, Hemmings DG, McMillen IC et al. Maternal hypoxia during late gestation in rats impairs endothelium-dependent relaxation in mesenteric arteries from four month old male offspring. J Soc Gynecol Investig 2004; 10(2 Suppl):184A.

    Google Scholar 

  28. Ruijtenbeek K, Kessels CG, Janssen BJ et al. Chronic moderate hypoxia during in ovo development alters arterial reactivity in chickens. Pflugers Archives 2003; 447(2):158–67.

    Article  CAS  Google Scholar 

  29. Giussani DA. High altitude and infant mortality: A study of 99 provinces in Bolivia. J Soc Gynecol Investig 2003; 10(2 Suppl):308A.

    Google Scholar 

  30. Khalid ME, Ali ME, Ahmed EK et al. Pattern of blood pressures among high and low altitude residents of southern Saudi Arabia. J Hum Hypertens 1994; 8(10):765–9.

    PubMed  CAS  Google Scholar 

  31. Ruiz L, Peñaloza D. Altitude and hypertension. Mayo Clin Proc 1977; 52(7):442–5.

    PubMed  CAS  Google Scholar 

  32. Jha SK, Anand AC, Sharma V et al. Stroke at high altitude: Indian experience. High Alt Med Biol 2002; 3(1):21–27.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Giussani, D.A. (2006). Hypoxia, Fetal Growth and Developmental Origins of Health and Disease. In: Wintour, E.M., Owens, J.A. (eds) Early Life Origins of Health and Disease. Advances in Experimental Medicine and Biology, vol 573. Springer, Boston, MA. https://doi.org/10.1007/0-387-32632-4_18

Download citation

Publish with us

Policies and ethics