Skip to main content

The Development of Hair Cells in the Inner Ear

  • Chapter
Vertebrate Hair Cells

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 27))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acampora D, Mazan S, Anataggaiato V, Barone P, Tuorto F, Lallemand Y, Brulet P, Simeone A (1996) Epilepsy and brain abnormalities in mice lacking the Otx1 gene. Nat Genet 14:218–222.

    PubMed  CAS  Google Scholar 

  • Acampora D, Merlo GR, Paleari L, Zerega B, Postiglione MP, Mantero S, Bober E, Barbieri O, Simeone A, Levi G (1999) Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5. Development 126:3795–3809.

    PubMed  CAS  Google Scholar 

  • Adam J, Myat A, Le Roux I, Eddison M, Henrique D, Ish-Horowicw, Lewis J (1998) Cell fate choices and the expression of Notch, Delta and Serrrate homologues in the chick inner ear: parallels with Drosophila sense-organ development. Development 125:4645–4654.

    PubMed  CAS  Google Scholar 

  • Ahmed ZM, Riazuddin S, Bernstein SL, Ahmed Z, Khan S, Griffith AJ, Morell RJ, Friedman TB, Riazuddin S, Wilcox ER (2001) Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. Am J Hum Genet 69:25–34.

    PubMed  CAS  Google Scholar 

  • Ahmed ZM, Riazuddin S, Ahmad J, Bernstein SL, Guo Y, Sabar MF, Sieving P, Riazuddin S, Griffith AJ, Friedman TB, Belyantseva IA, Wilcox ER (2003) PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23. Hum Mol Genet 12:3215–3223.

    PubMed  CAS  Google Scholar 

  • Alagramam KN, Zahorsky-Reeves J, Wright CG, Pawlowski KS, Erway LC, Stubbs L, Woychik RP (2000) Neuroepithelial defects of the inner ear in a new allele of the mouse mutation Ames waltzer. Hear Res 148:181–191.

    PubMed  CAS  Google Scholar 

  • Alagramam KN, Murcia CL, Kwon HY, Pawlowski KS, Wright CG, Woychik RP (2001a) The mouse Ames waltzer hearing-loss mutant is caused by a mutation of Pdch15, a novel protocadherin gene. Nat Genet 27: 99–102.

    PubMed  CAS  Google Scholar 

  • Alagramam KN, Yuan H, Kuehn MH, Murcia CL, Wayne S, Srisailpathy CR, Lowry RB, Knaus R, Van Laer L, Bernier FP, Schwartz S, Lee C, Morton CC, Mullins RF, Ramesh A, Van Camp G, Hageman GS, Woychik RP, Smith RJ, Hagemen GS (2001b) Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Hum Mol Genet 10:1709–1718.

    PubMed  CAS  Google Scholar 

  • Anderson DW, Probst FJ, Belyantseva IA, Fridell RA, Beyer L, Martin DM, Wu D, Kachar B, Friedman TB, Raphael Y, Camper SA (2000) The motor and tail regions of myosin XV are critical for normal structure and function of auditory and vestibular hair cells. Hum Mol Genet 9:1729–1738.

    PubMed  CAS  Google Scholar 

  • Angst BD, Marcozzi C, Magee AI (2001) The cadherin superfamily: diversity in form and function. J Cell Sci 114:629–641.

    PubMed  CAS  Google Scholar 

  • Anniko M (1983a) Cytodifferentiation of cochlear hair cells. Am J Otolaryngol 4:375–388.

    PubMed  CAS  Google Scholar 

  • Anniko M (1983b) Postnatal maturation of cochlear sensory hairs in the mouse. Anat Embryol 166:355–368.

    PubMed  CAS  Google Scholar 

  • Avraham KB, Hasson T, Steel KP, Kingsley DM, Russell LB, Mooseker MS, Copeland NG, Jenkins NA (1995) The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of the inner ear hair cells. Nat Genet 11:369–375.

    PubMed  CAS  Google Scholar 

  • Bang PI, Sewell WF, Malicki JJ (2001) Morphology and cell type heterogeneities of the inner ear epithelia in adult and juvenile zebrafish (Danio rerio). J Comp Neurol 438:173–190.

    PubMed  CAS  Google Scholar 

  • Barros AC, Erway LC, Krezel W, Curran T, Kastenr P, Chambon P, Forrest D (1998) Absence of thyroid hormone receptor beta-retinoid X receptor interactions in auditory function and in the pituiatry-thyroid axis. NeuroReport 9:2933–2937.

    PubMed  CAS  Google Scholar 

  • Bartles JR (2000) Parallel actin bundles and their multiple actin-bundling proteins. Curr Opin Cell Biol 12:72–78.

    PubMed  CAS  Google Scholar 

  • Bartolami S, Goodyear R, Richardson G (1991) Appearance and distribution of the 275 kD hair-cell antigen during development of the avian inner ear. J Comp Neurol 314:777–788.

    PubMed  CAS  Google Scholar 

  • Belyantseva IA, Adler HJ, Curi R, Frolenkov GI, Kachar B (2000) Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells. J Neurosci 20:RC116 (1–5).

    PubMed  CAS  Google Scholar 

  • Belyantseva IA, Boger ET, Friedman TB (2003) Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci USA 100:13958–13963.

    PubMed  CAS  Google Scholar 

  • Berg JS, Powell BC, Cheney RE (2001) A millenial myosin census. Mol Biol Cell 12:780–794.

    PubMed  CAS  Google Scholar 

  • Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen, HJ, Lysakowski A, Zoghbi HY (1999) Math1: an essential gene for the generation of inner ear hair cells. Science 284:1837–1841.

    PubMed  CAS  Google Scholar 

  • Beutner D, Moser T (2001) The presynaptic function of mouse cochlear hair cells during development of hearing. J Neurosci 21:4593–4599.

    PubMed  CAS  Google Scholar 

  • Beyer LA, Odeh H, Probst FJ, Lambert EH, Dolan DF, Camper SA, Kohrman DC, Raphael Y (2000) Hair cells in the inner ear of the pirouette and shaker 2 mutant mice. J Neurocytol 29:227–239.

    PubMed  CAS  Google Scholar 

  • Biemesderfer D, Mentone SA, Mooseker M, Hasson T (2002) Expression of myosin VI within the early endocytotic pathway in adult and developing proximal tubules. Am J Physiol Renal Physiol 282:F785–F794.

    PubMed  CAS  Google Scholar 

  • Bissonnette JP, Fekete DM (1996) Standard atlas of the gross anatomy of the developing inner ear of the chicken. J Comp Neurol 368:620–630.

    PubMed  CAS  Google Scholar 

  • Blanchet C, Erostegui C, Sugasawa M, Dulon D (1996) Acetylcholine-induced potassium current of guinea pig outer hair cells: its dependence on a calcium influx through nicotinic-like receptors. J Neurosci 16:2574–2584.

    PubMed  CAS  Google Scholar 

  • Boeda B, El-Amraoui A, Bahloul A, Goodyear R, Daviet L, Blanchard S, Perfettini I, Fath KR, Shorte S, Reiners J, Houddusse A, Legrain P, Wolfrum U, Richardson G, Petit C (2002) Myosin VIIA, harmonin, and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair bundle. EMBO J 21:6689–6699.

    PubMed  CAS  Google Scholar 

  • Bolz H, von Brederlow B, Ramirez A, Bryda EC, Kutsche K, Nothwang HG, Seeliger M, del C-Salcedo Caberera, Vila MC, Molina OP, Gal A, Kubisch C (2001) Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nat Genet 27:108–112.

    PubMed  CAS  Google Scholar 

  • Borodinsky LN, Root CM, Cronin JA, Sann SB, Gu X, Spitzer NC (2004) Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 429:523–530.

    PubMed  CAS  Google Scholar 

  • Bradley DJ, Towle HC, Young III WS (1994) α and β thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo. Proc Natl Acad Sci USA 91:439–443.

    PubMed  CAS  Google Scholar 

  • Brandt A, Striessnig J, Moser T (2003) Cav1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci 23:10832–10840.

    PubMed  CAS  Google Scholar 

  • Brown DA, Adams PR (1980) Muscarinic suppression of a novel voltage-sensitive K+-current in a vertebrate neurone. Nature 283:673–676.

    PubMed  CAS  Google Scholar 

  • Buss F, Arden SD, Lindsay M, Luzio JP, Kendrick-Jones J (2001) Myosin VI isoform localized to clathrin-coated vesicles with a role in clathrin-mediated endocytosis. EMBO J 20:3676–3684.

    PubMed  CAS  Google Scholar 

  • Chabbert C, Mechaly I, Sieso V, Giraud P, Brugeaud A, Lehouelleur J, Couraud F, Valmier J, Sans A (2003) Voltage-gated Na+ channel activation induces both action potentials in utricular hair cells and brain-derived neurotrophic factor release in the rat utricle during a restricted period of development. J Physiol 553:113–123.

    PubMed  CAS  Google Scholar 

  • Chang W, Numes FD, De Jesus-Escobar JM, Harland R, Wu DK (1999) Ectopic Noggin blocks sensory and nonsensory organ morphogenesis in the chicken inner ear. Dev Biol 216:369–381.

    PubMed  CAS  Google Scholar 

  • Chen P, Segil N (1999) p27Kip1 links cell proliferation to morphogenesis in the developing organ of Corti. Development 126:1581–1590.

    PubMed  CAS  Google Scholar 

  • Chen P, Johnson JE, Zoghbi HY, Segil N (2002) The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129:2495–2505.

    PubMed  CAS  Google Scholar 

  • Cole LK, Le Roux I, Nunes, Laufer E, Lewis J, Wu DK (2000) Sensory organ generation in the chick inner ear: contributions of Bone Morphogenetic Protein 4, Serrate1, and Lunatic Fringe. J Comp Neurol 424:509–520.

    PubMed  CAS  Google Scholar 

  • Collier JR, Monk NA, Maini PK, Lewis JA (1996) Pattern formation by lateral inhibition: A mathematical model of Delta-Notch intercellular signalling. J Theor Biol 183:429–446.

    PubMed  CAS  Google Scholar 

  • Copenhagen DR (1996) Retinal development: on the crest of an exciting wave. Curr Biol 6:1368–1370.

    PubMed  CAS  Google Scholar 

  • Corwin JT (1981) Postembryonic production and aging of inner ear hair cells in sharks. J Comp Neurol 201:541–553.

    PubMed  CAS  Google Scholar 

  • Corwin JT (1983) Postembryonic growth of the macula neglecta auditory detector in the ray, Raja clavata: continual increases in hair cell number, neural convergence, and physiological sensitivity. J Comp Neurol 217:345–356.

    PubMed  CAS  Google Scholar 

  • Corwin JT (1985) Perpetual production of hair cells and maturational changes in hair cell ultrastructure accompany postembryonic growth in an amphibian ear. Proc Nat Acad Sci USA 82:3911–3915.

    PubMed  CAS  Google Scholar 

  • Corwin JT, Cotanche DA (1988) Regeneration of sensory hair cells after acoustic trauma. Science 240:1772–1774.

    PubMed  CAS  Google Scholar 

  • Corwin JT, Jones JE, Katayama A, Kelley MW, Warchol ME (1991) Hair cell regeneration: the identities of progenitor cells, potential triggers and instructive cues. Ciba Found Symp 160:103–120.

    PubMed  CAS  Google Scholar 

  • Cotanche DA, Sulik KK (1983) Early differentiation of hair cells in the embryonic chick basilar papilla. Arch Otorhinolarngol 237:191–195.

    CAS  Google Scholar 

  • Cotanche DA, Sulik KK (1984) The development of stereociliary bundles in the cochlear duct of chick embryos. Dev Brain Res 16:181–193.

    Google Scholar 

  • Cotanche DA, Corwin JT (1991) Stereociliary bundles reorient during hair cell development and regeneration in the chick cochlea. Hear Res 52:379–402.

    PubMed  CAS  Google Scholar 

  • Cramer LP (2000) Myosin VI: roles for a minus end-directed actin motor in cells. J Cell Biol 150:F121–F126.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Evans MG, Fettiplace R (1989) Activation and adaptation of transducer currents in turtle hair cells. J Physiol 419:405–434.

    PubMed  CAS  Google Scholar 

  • Curthoys IS (1979) The development of function of horizontal semicircular canal primary neurons in the rat. Brain Res 167:41–52.

    PubMed  CAS  Google Scholar 

  • Curtin JA, Quint E, Tsipouri V, Arkell RM, Cattanach B, Copp AJ, Henderson DJ, Spurr N, Stanier P, Fisher EM, Nolan PM, Steel KP, Brown SDM, Gray IC, Murdoch JN (2003) Mutation of Clesr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol 13:1129–1133.

    PubMed  CAS  Google Scholar 

  • Dabdoub A, Donohue MJ, Brennan A, Wolf V, Montcouquiol M, Sassoon DA, Hseih J-C, Rubin JS, Salinas PC, Kelley MW (2003) Wnt signalling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea. Development 130:2375–2384.

    PubMed  CAS  Google Scholar 

  • Dallos P, Evans BN (1995a) High-frequency motility of outer hair cells and the cochlear amplifier. Science 267:2006–2009.

    PubMed  CAS  Google Scholar 

  • Dallos P, Evans BN (1995b) High-frequency outer hair cell motility: corrections and addendum. Science 268:1420–1421.

    PubMed  CAS  Google Scholar 

  • Daudet N, Lebart M-C (2002) Transient expression of the T-isoform of plastins/fimbrin in the stereocilia of developing auditory hair cells. Cell Motil Cytoskel 53:326–336.

    CAS  Google Scholar 

  • Denman-Johnson K, Forge A (1999) Establishment of hair bundle polarity and orientation in the developing vestibular system of the mouse. J Neurocytol 28:821–835.

    PubMed  CAS  Google Scholar 

  • Di Palma F, Holme RH, Bryda EC, Belyantseva IA, Pellegrino R, Kachar B, Steel KP, Noben-Trauth K (2001) Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nat Genet 27:103–107.

    PubMed  Google Scholar 

  • Di Palma F, Belyantseva IA, Kim HJ, Vogt TF, Kachar B, Noben-Trauth K (2002) Mutations in Mcoln3 associtaed with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc Natl Acad Sci USA 99:14994–14999.

    PubMed  Google Scholar 

  • Dulon D, Lenoir M (1996) Cholinergic responses in developing outer hair cells of the rat cochlea. Eur J Neurosci 8:1945–1952.

    PubMed  CAS  Google Scholar 

  • Dulon D, Luo L, Zhang C, Ryan AF (1998) Expression of small-conductance calcium-activated potassium channels (SK) in outer hair cells of the rat cochlea. Eur J Neurosci 10:907–915.

    PubMed  CAS  Google Scholar 

  • Dumont R, Zhao Y, Holt JR, Bähler M, Gillespie PG (2002) Myosin-I isozymes in neonatal rodent audiorty epithelia. JARO 3:375–389.

    PubMed  Google Scholar 

  • Eddison M, Le Roux I, Lewis J (2000) Notch signalling in the development of the inner ear: lessons from Drosophila. Proc Natl Acad Sci USA 97:11692–11699.

    PubMed  CAS  Google Scholar 

  • Ekker M, Akimenko MA, Bremiller R, Westerfield M (1992) Regional expression of three homeobox transcripts in the inner ear of zebrafish embryos. Neuron 9:27–35.

    PubMed  CAS  Google Scholar 

  • Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J (2001) α10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci USA 98:3501–3506.

    PubMed  CAS  Google Scholar 

  • Erkman L, McEvilly RJ, Luo L, Ryan AK, Hooshmand F, O’Connell, Keithley EM, Rapaport DH, Ryan AF, Rosenfeld MG (1996) Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 381:603–606.

    PubMed  CAS  Google Scholar 

  • Ernest S, Rauch GJ, Haffter P, Geisler R, Petit C, Nicolson T (2000) Mariner is defective in myosin VIIA: a zebrafish model for human hereditary deafness. Hum Mol Genet 9:2189–2196.

    PubMed  CAS  Google Scholar 

  • Erven A, Skynner MJ, Okumura K, Takebayashi, Brown SDM, Stell KP, Allen ND (2002) A novel stereocilia defect in sensory hair cells of the deaf mutant Tasmanian devil. Eur J Neurosci 16:1433–1441.

    PubMed  Google Scholar 

  • Evans MG (1996) Acetylcholine activates two currents in guinea-pig outer hair cells. J Physiol 491:563–578.

    PubMed  CAS  Google Scholar 

  • Fekete DM (1996) Cell fate specification in the inner ear. Curr Opin Neurobiol 6:533–541.

    PubMed  CAS  Google Scholar 

  • Fekete DM, Muthukumar S, Karagogeos D (1998) Hair and supporting cells share a common progenitor in the avian inner ear. J Neurosci 18:7811–7821.

    PubMed  CAS  Google Scholar 

  • Fettiplace R, Fuchs PA (1999) Mechanisms of hair cell tuning. Annu Rev Physiol 61:809–834.

    PubMed  CAS  Google Scholar 

  • Forge A, Souter M, Denman-Johnson K (1997) Structural development of sensory hair cells in the ear. Semin Cell Dev Biol 8:225–237.

    PubMed  Google Scholar 

  • Forrest D, Erway LC, Ng L, Altschuler R, Curran T (1996) Thyroid hormone receptor β is essential for development of auditory function. Nat Genet 13:354–357.

    PubMed  CAS  Google Scholar 

  • Frank G, Hemmert W, Gummer AW (1999) Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. Proc Natl Acad Sci USA 96:4420–4425.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Evans MG (1988) Voltage oscillations and ionic conductances in hair cells isolated from the alligator cochlea. J Comp Physiol A 164:151–163.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Evans MG (1990) Potassium currents in hair cells isolated from the cochlea of the chick. J Physiol 429:529–551.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Murrow BW (1992) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J Neurosci 12:800–809.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Sokolowski BHA (1990) The acquisition during development of Ca-activated potassium currents by cochlear hair cells of the chick. Proc R Soc Lond B 241:122–126.

    CAS  Google Scholar 

  • Furness DN, Richardson GP, Russell IJ (1989) Stereociliary bundle morphology in organotypic cultures of the mouse cochlea. Hear Res 38:95–109.

    PubMed  CAS  Google Scholar 

  • Gale JE, Marcotti W, Kennedy HJ, Kros CJ, Richardson GP (2001) FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci 21:7013–7025.

    PubMed  CAS  Google Scholar 

  • GĂ©lĂ©oc GW, Holt JR (2003) Developmental acquisition of sensory transduction in hair cells of the mouse inner ear. Nat Neurosci 6:1019–1020.

    PubMed  Google Scholar 

  • GĂ©lĂ©oc GSG, Lennan GWT, Richardson GP, Kros CJ (1997) A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice. Proc R Soc Lond B 264:611–621.

    Google Scholar 

  • GĂ©lĂ©oc GSG, Casalotti SO, Forge A, Ashmore JF (1999) A sugar transporter as a candidate for the outer hair cell motor. Nat Neurosci 2:713–719.

    PubMed  Google Scholar 

  • Gerlach LM, Hutson MR, Germiller JA, Nguyen-Luu D, Victor JC, Barald KF (2000) Addition of the BMP4 antagonist, noggin, disrupts avian inner ear development. Development 127:45–54.

    PubMed  CAS  Google Scholar 

  • Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032.

    PubMed  CAS  Google Scholar 

  • Gibson F, Walsh J, Mburu P, Varela A, Brown KA, Antonio M, Beisel KW, Steel KP, Brown SD (1995) A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374:62–64.

    PubMed  CAS  Google Scholar 

  • Glowatzki E, Fuchs PA (2000) Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science 288:2366–2368.

    PubMed  CAS  Google Scholar 

  • Glueckert R, Wietzorrek G, Kammen-Jolly K, Scholtz A, Stephan K, Striessnig J, Schrott-Fischer A (2003) Role of class D L-type Ca2+ channels for cochlear morphology. Hear Res 178:95–105.

    PubMed  CAS  Google Scholar 

  • Goodyear R, Richardson G (1992) Distribution of the 275 kD hair cell antigen and cell surface specialisations on auditory and vestibular hair bundles in the chick inner ear. J Comp Neurol 3256:243–256.

    Google Scholar 

  • Goodyear R, Richardson G (1997) Pattern formation in the basilar papilla: evidence for cell rearrangement. J Neurosci 17:6289–6301.

    PubMed  CAS  Google Scholar 

  • Goodyear R, Richardson G (1999) The ankle-link antigen: an epitope sensitive to calcium chelation associated with the hair-cell surface and the calycal processes of photoreceptors. J Neurosci 19:3761–3772.

    PubMed  CAS  Google Scholar 

  • Goodyear R, Richardson G (2003) A novel antigen that is associated with the tip links and kinocilial links of sensory hair bundles. J Neurosci 23:4878–4887.

    PubMed  CAS  Google Scholar 

  • Goodyear RJ, Gates R, Lukashkin AN, Richardson GP (1999) Hair-cell numbers continue to increase in the utricular macula of the early posthatch chick. J Neurocytol 28:851–861.

    PubMed  CAS  Google Scholar 

  • Goodyear RJ, Kwan T, Oh S-H, Raphael Y, Richardson GP (2001) The cell adhesion molecule BEN defines a prosensory patch in the developing avian otocyst. J Comp Neurol 434:275–288.

    PubMed  CAS  Google Scholar 

  • Goodyear RJ, Legan PK, Wright MB, Marcotti W, Oganesian A, Coats SA, Booth CJ, Kros CJ, Seifert RA, Bowen-Pope DF, Richardson GP (2003) A receptor-like inositol lipid phosphatase is required for the maturation of developing cochlear hair bundles. J Neurosci 23:9208–9219.

    PubMed  CAS  Google Scholar 

  • Griguer C, Fuchs PA (1996) Voltage-dependent potassium currents in cochlear hair cells of the embryonic chick. J Neurophysiol 75:508–513.

    PubMed  CAS  Google Scholar 

  • Groves AK, Bronner-Faser M (2000) Competence, specification and commitment in otic placode induction. Development 127:3489–3499.

    PubMed  CAS  Google Scholar 

  • Haddon C, Lewis J (1996) Early ear development in the embryo of the zebrafish, Danio rerio. J Comp Neurol 365:113–128.

    PubMed  CAS  Google Scholar 

  • Haddon C, Jiang Y-J, Smithers L, Lewis J (1998) Delta-Notch signalling and the patterning of sensory cell differentiation in the zebrafish ear: evidence from the mind bomb mutant. Development 125:4637–4644.

    PubMed  CAS  Google Scholar 

  • Haddon C, Mowbray C, Whitfield T, Jones D, Gschmeissner S, Lewis J (1999) Hair cells without supporting cells: further studies in the ear of the zebrafish mind bomb mutant. J Neurocytol 28:837–850.

    PubMed  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514.

    PubMed  CAS  Google Scholar 

  • Hampton LL, Wright CG, Alagramam KN, Battey JF, Noben-Trauth K (2003) A new spontaneous mutation in the Ames waltzer gene, Pcdh15. Hear Res 180:65–75.

    Google Scholar 

  • Hasson T, Gillespie PG, Garcia JA, MacDonald RB, Zhao Y, Yee AG, Mooseker MS, Corey DP (1997) Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 137:1287–1307.

    PubMed  CAS  Google Scholar 

  • He DZZ (1997) Relationship between the development of outer hair cell electromotility and efferent innervation: a study in cultured organ of Corti of neonatal gerbils. J. Neurosci 17:3634–3643.

    PubMed  CAS  Google Scholar 

  • He DZZ, Dallos P (1999) Development of acetylcholine-induced responses in neonatal gerbil outer hair cells. J Neurophysiol 81:1162–1170.

    PubMed  CAS  Google Scholar 

  • He DZZ, Evans BN, Dallos P (1994) First appearance and development of electromotility in neonatal gerbil outer hair cells. Hear Res 78:77–90.

    PubMed  CAS  Google Scholar 

  • He DZZ, Zheng J, Dallos P (2001) Development of acetylcholine receptors in cultured outer hair cells. Hear Res 162:113–125.

    PubMed  CAS  Google Scholar 

  • He DZZ, Jia S, Dallos P (2004) Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea. Nature 429:766–770.

    PubMed  CAS  Google Scholar 

  • Helyer RJ, Kennedy HJ, Davies D, Holley MC, Kros CJ (2005) Development of outward potassium currents in inner and outer hair cells from the embryonic mouse cochlea. Audiol Neuro-Otol 10:22–34.

    CAS  Google Scholar 

  • Holley MC, Nishida Y (1995) Monoclonal antibody markers for early development of the stereociliary bundles of mammalian hair cells. J Neurocytol 24:853–864.

    PubMed  CAS  Google Scholar 

  • Holme RH, Kiernan BW, Brown SDM, Steel KP (2002) Elongation of hair cell stereocilia is defective in the mouse mutant whirler. J Comp Neurol 450:94–102.

    PubMed  Google Scholar 

  • Holt JR, Corey DP (2000) Two mechanisms for transducer adaptation in vertebrate hair cells. Proc Natl Acad Sci USA 97:11730–11735.

    PubMed  CAS  Google Scholar 

  • Holt JR, Corey DP, Eatock RA (1997) Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low-frequency vestibular organ. J Neurosci 17:8739–8748.

    PubMed  CAS  Google Scholar 

  • Housley GD, Ashmore JF (1991) Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea-pig cochlea. Proc R Soc Lond B 244:161–167.

    CAS  Google Scholar 

  • Housley GD, Ashmore JF (1992) Ionic currents of outer hair cells isolated from the guinea-pig cochlea. J Physiol 448:73–98.

    PubMed  CAS  Google Scholar 

  • Hutson MR, Lewis JE, Nguyen-Luu D, Lindberg KH, Barald KF (1999) Expression of Pax2 and patterning of the chick inner ear. J Neurocytol 28:795–807.

    PubMed  CAS  Google Scholar 

  • Itoh M, Kim CH, Parlardy G, Oda T, Jiang YJ, Maust D, Yeo SY, Lorick K, Wright GJ, Ariza-McNaughton L, Weissman AM, Lewis J, Chandrasekharappa SC, Chitnis AB (2003) Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev Cell 4:67–82.

    PubMed  CAS  Google Scholar 

  • Jacobs RA, Hudspeth AJ (1990) Ultrastructural correlates of mechanoelectrical transduction in hair cells of the bullfrog’s internal ear. Cold Spring Harbor Symp Quant Biol 55:547–561.

    PubMed  CAS  Google Scholar 

  • Jagger DJ, Griesinger CB, Rivolta MN, Holley MC, Ashmore JF (2000) Calcium signalling mediated by the α9 acetylcholine receptor in a cochlear cell line from the Immortomouse. J Physiol 527:49–54.

    CAS  Google Scholar 

  • Johnson KR, Gagnon LH, Webb LS, Peters LL, Hawes NL, Chang B, Zheng QY (2003) Mouse models of USH1C and DFNB18: phenotypic and molecular analyses of two new spontaneous mutations of the Ush1c gene. Hum Mol Genet 12:3075–3086.

    PubMed  CAS  Google Scholar 

  • Jones JE, Corwin JT (1996) Regeneration of sensory cells after laser ablation in the lateral line system: hair cell lineage and macrophage behaviour revealed by time-lapse video microscopy. J Neurosci 16:649–662.

    PubMed  CAS  Google Scholar 

  • Jones TA, Jones SM, Paggett KC (2001) Primordial rhythmic bursting in embryonic cochlear ganglion cells. J Neurosci 21:8129–8135.

    PubMed  CAS  Google Scholar 

  • Jørgensen JM, Mathiesen C (1988) The avian inner ear: continuous production of hair cells in the vestibular organs but not in the auditory papilla. Naturewissenschaften 75:319–320.

    Google Scholar 

  • Kalatzis V, Sahly I, El-Amraoui A, Petit C (1998) Eya1 expression in the developing ear and kidney: towards the understanding of the pathogenesis of branchio-oto-renal (BOR) syndrome. Dev Dyn 213:486–499.

    PubMed  CAS  Google Scholar 

  • Kaltenbach JA, Falzarano PR, Simpson TH (1994) Postnatal development of the hamster cochlea. II. Growth and differentiation of stereocilia bundles. J Comp Neurol 350:187–198.

    PubMed  CAS  Google Scholar 

  • Katayama A, Corwin JT (1989) Cell production in the chicken cochlea. J Comp Neurol 281:129–135.

    PubMed  CAS  Google Scholar 

  • Kelley MW, Xu XM, Wagner MA, Warchol ME, Corwin JT (1993) The developing organ of Corti contains retinoic acid and forms supernumerary hair cells in response to exogenous retinoic acid in culture. Development 119:1041–1053.

    PubMed  CAS  Google Scholar 

  • Kennedy HJ, Evans MG, Crawford AC, Fettiplace R (2003) Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nat Neurosci 6:832–836.

    PubMed  CAS  Google Scholar 

  • Kiernan AE, Zalzman M, Fuchs H, Harabe de Angelis M, Balling R, Steel KP, Avraham KB (1999) Tailchaser (Tlc): a new mouse mutation affecting hair bundle differentiation and hair cell survival. J Neurocytol 28:969–985.

    PubMed  CAS  Google Scholar 

  • Kiernan AE, Ahituv N, Fuchs H, Balling R, Avraham KB, Steel KP, HrabĂ© de Angelis M (2001) The Notch ligand Jagged1 is required for inner ear sensory development Proc Natl Acad Sci USA 98:3873–3878.

    PubMed  CAS  Google Scholar 

  • Kikkawa Y, Shitara H, Wakan S, Kohara Y, Takada T, Okamoto M, Taya C, Kamiya K, Yoshikawa Y, Tokano H, Kitamura K, Shimizu K, Wakabayashi Y, Shiroishi T, Kominami R, Yonekawa H (2003) Mutations in a new scaffold protein Sans cause deafness in Jackson shaker mice. Hum Mol Genet 12:453–461.

    PubMed  CAS  Google Scholar 

  • Knowlton VY (1967) Correlation of the development of membranous and bony labyrinths, acoustic ganglia, nerves, and brain centers of chick embryos. J Morphol 121:179–208.

    Google Scholar 

  • Kollmar R (1999) Who does the hair cell’s do? Rho GTPase and hair-bundle morphogenesis. Curr Opin Neurobiol 9:394–398.

    PubMed  CAS  Google Scholar 

  • Kolston PJ (1995) A faster transduction mechanism for the cochlear amplifier? Trends Neurosci 18:427–429.

    PubMed  CAS  Google Scholar 

  • Kros CJ (1996) Physiology of mammalian cochlear hair cells. In: Dallos P, Popper AN, Fay RR (eds), The Cochlea. New York: Springer-Verlag, pp. 318–385.

    Google Scholar 

  • Kros CJ, Crawford AC (1990) Potassium currents in inner hair cells isolated from the guinea-pig cochlea. J Physiol 421:263–291.

    PubMed  CAS  Google Scholar 

  • Kros CJ, RĂ¼sch A, Richardson GP (1992) Mechano-electrical transducer currents in hair cells of the cultured mouse cochlea. Proc R Soc Lond B 249:185–193.

    CAS  Google Scholar 

  • Kros CJ, Lennan GWT, Richardson GP (1995) Transducer currents and bundle movements in outer hair cells of neonatal mice. In: Flock Ă…, Ottoson D, Ulfendahl M (eds), Active Hearing. Amsterdam: Elsevier, pp. 113–125.

    Google Scholar 

  • Kros CJ, Ruppersberg P, RĂ¼sch A (1998) Expression of a potassium current in inner hair cells during development of hearing in mice. Nature 394:281–284.

    PubMed  CAS  Google Scholar 

  • Kros CJ, Marcotti W, van Netten SM, Self TJ, Libby RT, Brown SDM, Richardson GP, Steel KP (2002) Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat Neurosci 5:41–47.

    PubMed  CAS  Google Scholar 

  • Kubisch C, Schroeder BC, Friedrich T, LĂ¼tjohann B, El-Amoraoui A, Marlin S, Petit C, Jentsch TJ (1999) KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:437–446.

    PubMed  CAS  Google Scholar 

  • Kussel-Andermann P, El-Amraoui, Safieddine S, Nouaille S, Perfettini I, Lecuit M, Cossart P, Wolfrum U, Petit C (2000) Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex. EMBO J 19:6020–6029.

    PubMed  CAS  Google Scholar 

  • Lanford PJ, Presson JC, Popper AN (1996) Cell proliferation and hair cell addition in the ear of the goldfish, Carssius auratus. Hear Res 100:1–9.

    PubMed  CAS  Google Scholar 

  • Lanford PJ, Lan Y, Jiang R, Lindsell C, Weinmaster G, Gridley T, Kelley MW (1999) Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat Genet 21:289–292.

    PubMed  CAS  Google Scholar 

  • Lanford PJ, Shailam R, Norton CR, Gridley T, Kelley MW (2000) Expression of Math1 and Hes5 in the cochlea of wild type and Jag2 mutant mice. JARO 1:161–171.

    PubMed  CAS  Google Scholar 

  • Lang H, Fekete DM (2001) Lineage analysis in the chicken inner ear shows differences in clonal dispersion for epithelial, neuronal, and mesenchymal cells. Dev Biol 234:120–137.

    PubMed  CAS  Google Scholar 

  • Lawoko-Kerali G, Rivolta MN, Holley M (2002) Expression of the transcription factors GATA3 and Pax2 during development of the mammalian inner ear. J Comp Neurol 442:378–391.

    PubMed  CAS  Google Scholar 

  • Lavigne-Rebillard M, Pujol R (1986) Development of the auditory hair cell surface in human fetuses. A scanning electron microscope study. Anat Embryol 174:369–377.

    PubMed  CAS  Google Scholar 

  • Lenoir M, Shnerson A, Pujol R (1980) Cochlear receptor development in the rat with emphasis on synaptogenesis. Anat Embryol 160:253–262.

    PubMed  CAS  Google Scholar 

  • Lenoir M, Puel J-L, Pujol R (1987) Stereocilia and tectorial membrane development in the rat cochlea. A SEM study. Anat Embryol 175:477–487.

    PubMed  CAS  Google Scholar 

  • Lennan GWT, GĂ©lĂ©oc GSG, Kros CJ (1996) Displacement sensitivity of mammalian vestibular transducers. Ann NY Acad Sci 781:650–652.

    PubMed  CAS  Google Scholar 

  • Lennan GWT, Steinacker A, Lehouelleur J, Sans A (1999) Ionic currents and currentclamp depolarisations of type I and type II hair cells from the developing rat utricle. PflĂ¼gers Arch 438:40–46.

    PubMed  CAS  Google Scholar 

  • Leon Y, Sanchez JA, Miner C, Ariza-McNaughton L, Repress JJ, Giraldez F (1995) Developmental regulation of Fos-protein during proliferative growth of the otic vesicle and its relation to differentaition induced by retinoic acid. Dev Biol 167:75–86.

    PubMed  CAS  Google Scholar 

  • Lewis AK, Frantz GD, Carpenter DA, de Sauvage FJ, Gao W-Q (1998) Distinct expression patterns of notch family receptors and ligands during development of the mammalian inner ear. Mech Dev 78:159–163.

    PubMed  CAS  Google Scholar 

  • Lewis J (1991) Rules for the production of sensory hair cells. Ciba Found Symp 160:25–39.

    PubMed  CAS  Google Scholar 

  • Lewis J (1996) Neurogenic genes and vertebrate neurogenesis. Curr Opin Neurobiol 1:3–10.

    Google Scholar 

  • Lewis J, Davies A (2002) Planar cell polarity in the inner ear: how do hair cells acquire their oriented structure? J Neurobiol 53:190–201.

    PubMed  CAS  Google Scholar 

  • Li CW, Ruben RJ (1979) Further study of the surface morphology of the embryonic mouse cochlear sensory epithelia. Otolaryngol Head Neck Surg 87:479–485.

    PubMed  CAS  Google Scholar 

  • Li H, Liu H, Balt S, Mann S, Corrales CE, Heller S (2004) Correlation of expression of the actin filament-bundling protein espin with stereociliary bundle formation in the developing inner ear. J Comp Neurol 468:125–134.

    PubMed  CAS  Google Scholar 

  • Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK, Nigam SK, Aggarwal AK, Maas R, Rose DW, Rosenfeld MG (2003) Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426:247–254.

    PubMed  CAS  Google Scholar 

  • Lim DJ, Anniko M (1985) Developmental morphology of the mouse inner ear. A scanning electron microscope observation. Acta Otolaryngol 422:1–69.

    CAS  Google Scholar 

  • Lim DJ, Rueda J (1992) Structural development of the cochlea. In Development of Auditory and Vestibular Systems, Vol. 2. Amsterdam: Elsevier, pp. 33–58.

    Google Scholar 

  • Lin X, Chen S (2000) Endogenously generated spontaneous spiking activities recorded from postnatal spiral ganglion neurons in vitro. Dev Brain Res 119:297–305.

    CAS  Google Scholar 

  • Lippe WR (1994) Rhythmic spontaneous activity in the developing avian auditory system. J Neurosci 14:1486–1495.

    PubMed  CAS  Google Scholar 

  • Littlewood-Evans A, MĂ¼ller U (2000) Stereocilia defects in the sensory hair cells of the inner ear in mice deficient in integrin α8β1. Nat Genet 24:424–428.

    PubMed  CAS  Google Scholar 

  • Loomis PA, Zheng L, Sekerkova G, Chnagyaleket B, Mugnaini E, Bartles JR (2003) Espin cross-links cause the elongation of microvillus-type parallel actin bundles in vivo. J Cell Biol 163:1045–1055.

    PubMed  CAS  Google Scholar 

  • Lowenheim H, Furness DN, Kil J, Zinn C, Gultig K, Fero ML, Frost D, Gummer AW, Roberts AW, Roberts JM, Rubel EW, Hackney CM, Zenner H-P (1999) Gene disruption of p27Kip1 allows cell proliferation in the postnatal and adult organ of Corti. Proc Natl Acad Sci USA 96:4084–4088.

    PubMed  CAS  Google Scholar 

  • Lustig LR, Peng H, Hiel H, Yamamoto T, Fuchs PA (2001) Molecular cloning and mapping of the human nicotinic acetylcholine receptor alpha10 (CHRNA10). Genomics 73:272–283.

    PubMed  CAS  Google Scholar 

  • Lynch ED, Lee MK, Morrow JE, Welsch PL, Leon PE, King MC (1997) Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278:1223–1224.

    Google Scholar 

  • Maffei L, Galli-Resta L (1990) Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. Proc Natl Acad Sci USA 87:2861–2864.

    PubMed  CAS  Google Scholar 

  • Mammano F, Ashmore JF (1996) Differential expression of outer hair cell potassium currents in the isolated cochlea of the guinea-pig. J Physiol 496:639–646.

    PubMed  CAS  Google Scholar 

  • Marcotti W, Kros, CJ (1999) Developmental expression of the potassium current IK,n contributes to maturation of mouse outer hair cells. J Physiol 520:653–660.

    PubMed  CAS  Google Scholar 

  • Marcotti W, GĂ©lĂ©oc GSG, Lennan GWT, Kros, CJ (1999) Transient expression of an inwardly rectifying potassium conductance in developing inner and outer hair cells along the mouse cochlea. PflĂ¼gers Arch 439:113–122.

    PubMed  CAS  Google Scholar 

  • Marcotti W, Johnson SL, Holley MC, Kros CJ (2003a) Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells. J Physiol 548:383–400.

    PubMed  CAS  Google Scholar 

  • Marcotti W, Johnson SL, RĂ¼sch A, Kros CJ (2003b) Sodium and calcium currents shape action potentials in immature mouse inner hair cells. J Physiol 552:743–761.

    PubMed  CAS  Google Scholar 

  • Marcotti W, Johnson SL, Kros CJ (2004) Effects of intracellular stores and extracellular Ca2+ on Ca2+-activated K+ currents in mature mouse inner hair cells. J Physiol 557:613–633.

    PubMed  CAS  Google Scholar 

  • Masetto S, Perin P, Malusa A, Zucca G, Valli P (2000) Membrane properties of chick semicircular canal hair cells in situ during embryonic development. J Neurophysiol 83:2740–2756.

    PubMed  CAS  Google Scholar 

  • Mbiene J-P, Sans A (1986) Differentiation and maturation of the sensory hair bundles in the fetal and postnatal vestibular receptors of the mouse: a scanning electron microscope study. J Comp Neurol 254:271–278.

    PubMed  CAS  Google Scholar 

  • Mburu P, Mustapha M, Varela A, Weil D, El-Amraoui A, Holme RH, Rump A, Hardisty RE, Blanchard S, Coimbra RS, Perfettini I, Parkinson N, Mallon A-M, Glenister P, Rogers MJ, Paige AJ, Moir L, Rosental A, Liu XZ, Blanco G, steel KP, Petit C, Brown SDM (2003) Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nat Genet 34:421–428.

    PubMed  CAS  Google Scholar 

  • Meister M, Wong ROL, Baylor D.A., Shatz CJ (1991) Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252:939–943.

    PubMed  CAS  Google Scholar 

  • Michna M, Knirsch M, Hoda J-C, Muenkner S, Langer P, Platzer J, Striessnig J, Engel J (2003) Cav1.3 (α1D) Ca2+ currents in neonatal outer hair cells of mice. J Physiol 553:747–758.

    PubMed  CAS  Google Scholar 

  • Mikaelian D, Ruben RJ (1965) Development of hearing in the normal CBA-J mouse. Acta Otolaryngol 59:451–461.

    Google Scholar 

  • Mitchem K, Hibbard E, Beyer LA, Bosom K, Dootz GA, Dolan DF, Johnson KR, Raphael Y, Kohrman DC (2002) Mutation of the novel gene Tmie results in sensory cell defects in the inner ear of spinner, a mouse model of human hearing loss DFNB6. Hum Mol Genet 11:1887–1898.

    PubMed  CAS  Google Scholar 

  • Montcouquiol M, Rachel RA, Landford PJ, Copeland NG, Jenkins NA, Kelley MW (2003) Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423:173–177.

    PubMed  CAS  Google Scholar 

  • Moody WJ (1998) The development of voltage-gated ion channels and its relation to activity-dependent development events. Curr Top Dev Biol 39:159–185.

    PubMed  CAS  Google Scholar 

  • Morrison A, Hodgetts C, Gossler A, HrabĂ© de Angelis M, Lewis J (1999) Expression of Delta1 and Serrate1 (Jagged1) in the mouse inner ear. Mech Dev 84:169–172.

    PubMed  CAS  Google Scholar 

  • Morsli H, Choo D, Ryan A, Johnson R, Wu DK (1998) Development of the mouse inner ear and origin of its sensory organs. J Neurosci 18:3327–3335.

    PubMed  CAS  Google Scholar 

  • Mowbray C, Hammerschmidt M, Whitfield TT (2001) Expression of BMP signalling pathway members in the developing zebrafish inner ear and lateral line. Mech Dev 108:179–184.

    PubMed  CAS  Google Scholar 

  • Muller U, Littlewood-Evans A (2001) Mechanisms that regulate mechanosensory hair cell differentiation. Trends Cell Biol 11:334–342.

    PubMed  CAS  Google Scholar 

  • Nenov AP, Norris C, Bobbin RP (1996) Acetylcholine response in guinea pig outer hair cells. II. Activation of a small conductance Ca2+-activated K+ channel. Hear Res 101:149–172.

    PubMed  CAS  Google Scholar 

  • Neugebauer DC (1986) Interconnections between the stereovilli of the fish inner ear. III. Indications for developmental changes. Cell Tissue Res 246:447–453.

    Google Scholar 

  • Neugebauer D-Ch, Thurm U (1985) Interconnections between the stereovilli of the fish inner ear. Cell Tissue Res 20:449–453.

    Google Scholar 

  • Nicolson T, RĂ¼sch A, Friedrich RW, Granato M, Ruppersberg JP, Nusslein-Volhard C (1998) Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants. Neuron 20:271–283.

    PubMed  CAS  Google Scholar 

  • Nishida Y, Rivolta MN, Holley MC (1998) Timed markers for the differentiation of the cuticular plate and stereocilia in hair cells from the mouse inner ear. J Comp Neurol 395:18–28.

    PubMed  CAS  Google Scholar 

  • Nolo R, Abbot LA, Bellen HJ (2000) Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102:349–362.

    PubMed  CAS  Google Scholar 

  • Oganesian A, Poot M, Daum G, Coats SA, Wright MB, Seifert RA, Bowen-Pope DF (2003) Protein tyrosine phsophatse RG is a phosphatidylinositol phosphate that can regulate cell survival and proliferation. Proc Natl Acad Sci USA 100:7563–7568.

    PubMed  CAS  Google Scholar 

  • Oh S-H, Johnson R, Wu DK (1996) Differential expression of bone morphogenetic proteins in the developing vestibular and auditory sensory organs. J Neurosci 16:6463–6475.

    PubMed  CAS  Google Scholar 

  • Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R (1999) Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation. EMBO J 18:2196–2207.

    PubMed  CAS  Google Scholar 

  • Oliver D, Fakler B (1999) Expression density and functional characteristics of the outer hair cell motor protein are regulated during postnatal development in rat. J Physiol 519:791–800.

    PubMed  CAS  Google Scholar 

  • Oliver D, Plinkert P, Zenner HP, Ruppersberg JP (1997) Sodium current expression during postnatal development of rat outer hair cells. PflĂ¼gers Arch 434:772–778.

    PubMed  CAS  Google Scholar 

  • Oliver D, Klöcker N, Schuck J, Baukrowitz T, Ruppersberg JP, Fakler B (2000) Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron 26:595–601.

    PubMed  CAS  Google Scholar 

  • Oliver D, He DZZ, Klöcker N, Ludwig J, Schulte U, Waldegger S, Ruppersberg JP, Dallos P, Fakler B (2001) Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science 292:2340–2343.

    PubMed  CAS  Google Scholar 

  • Oliver D, Knipper M, Derst C, Fakler B (2003) Resting potential and submembrane calcium concentration of inner hair cells in the isolated mouse cochlea are set by KCNQ-type potassium channels. J Neurosci 23:2141–2149.

    PubMed  CAS  Google Scholar 

  • Ozaki H, Nakamura K, Funahashi J, Ikeda K, Yamada G, Tokano H, Okamura H, Kitamura K, Muto S, Kotaki H, Sudo K, Horai R, Iwakura Y, Kawakami K (2004) Six1 controls patterning of the mouse otic vesicle. Development 131:551–562.

    PubMed  CAS  Google Scholar 

  • Palmer AR, Russell IJ (1986) Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair cells. Hear Res 24:1–15.

    PubMed  CAS  Google Scholar 

  • Pickles JO, van Heumen WRA (2000) Lateral interactions account for the pattern of the hair cell array in the chick basilar papilla. Hear Res 145:65–74.

    PubMed  CAS  Google Scholar 

  • Pickles JO, von Perger M, Rouse GW, Brix J (1991) The development of links between stereocilia in hair cells of the chick basilar papilla. Hear Res 54:153–163.

    PubMed  CAS  Google Scholar 

  • Pickles JO, Billieux-Hawkins DA, Rouse GW (1996) The incorporation and turnover of radiolabelled amino acids in developing stereocilia of the chick cochlea. Hear Res 101:45–54.

    PubMed  CAS  Google Scholar 

  • Pirvola U, Ylikoski J, Palgi J, Lehtonen E, Arumae U, Saarma M (1992) Brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the peripheral fields of developing inner ear ganglia. Proc Natl Acad Sci USA 89:9915–9919.

    PubMed  CAS  Google Scholar 

  • Pirvola U, Arumae U, Moshnyakov M, Palgi J, Saarma M, Ylikoski J (1994) Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation. Hear Res 75:131–144.

    PubMed  CAS  Google Scholar 

  • Pirvola U, Spencer-Dene B, Xing-Qun L, Kettunen P, Thesleff I, Fritzsch B, Dickson C, Ylikoski J (2000) FGF/FGFR-2(IIIb) signalling is essential for inner ear morphogenesis. J Neurosci 20:6125–6134.

    PubMed  CAS  Google Scholar 

  • Pirvola U, Ylikoski Y, Trokovic R, HĂ©bert JM, McConnell SK, Partanen J (2002) FGFR1 is required for the development of the auditory sensory epithelium. Neuron 35:670–680.

    Google Scholar 

  • Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97.

    PubMed  CAS  Google Scholar 

  • Popper AN, Hoxter B (1984) Growth of a fish ear: I. Quantitative analysis of hair and ganglion cell proliferation. Hear Res 15:133–142.

    PubMed  CAS  Google Scholar 

  • Popper AN, Hoxter B (1990) Growth of a fish ear II. Locations of newly proliferated sensory hair cells in the saccular epithelium of Astronotus ocellatus. Hear Res 45:35–40.

    Google Scholar 

  • Probst FJ, Fridell RA, Raphael Y, Saunders TL, Wang A, Liang Y, Morell RJ, Touchman JW, Lyons RH, Noben-Trauth K, Friedman TB, Camper SA (1998) Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280:1444–1447.

    PubMed  CAS  Google Scholar 

  • Pujol R, Zajic G, Dulon D, Raphael Y, Altschuler RA, Schacht J (1991) First appearance and development of motile properties in outer hair cells isolated from guinea-pig cochlea. Hear Res 57:129–141.

    PubMed  CAS  Google Scholar 

  • Raphael Y, Kobayashi KN, Dootz GA, Beyer LA, Dolan DF, Burmeister M (2001) Severe vestibular and auditory impairment of three alleles of Ames waltzer (av) mice. Hear Res 151:237–249.

    PubMed  CAS  Google Scholar 

  • Ratto GM, Robinson DW, Yan B, McNaughton PA (1991) Development of the light response in neonatal mammalian rods. Nature 351, 654–657.

    PubMed  CAS  Google Scholar 

  • Rau A, Legan KP, Richardson GP (1999) Tectorin mRNA expression is spatially and temporally restricted during mouse inner ear development. J Comp Neurol 405:271–280.

    PubMed  CAS  Google Scholar 

  • Raz Y, Kelley MW (1997) Effects of retinoic and thyroid hormone receptors during development of the inner ear. Semin Cell Dev Biol 8:257–264.

    PubMed  CAS  Google Scholar 

  • Raz Y, Kelley MW (1999) Retinoic acid signaling is necessary for the development of the organ of Corti. Dev Biol 213:180–193.

    PubMed  CAS  Google Scholar 

  • Rennie KJ, Correia MJ (1994) Potassium currents in mammalian and avian isolated type I semicircular canal hair cells. J Neurophysiol 71:317–329.

    PubMed  CAS  Google Scholar 

  • Rennie KJ, Weng T, Correia MJ (2001) Effects of KCNQ channel blockers on K+ currents in vestibular hair cells. Am J Physiol Cell Physiol 280:C473–C480.

    PubMed  CAS  Google Scholar 

  • Represa J, Sanchez A, Milner C, Lewis J, Giraldez F (1990) Retinoic acid modulation of the early development of the inner ear is associated with the control of c-fos expression. Development 110:1081–1090.

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Crawford AC, Fettiplace R (2003) Tonotopic variation in the conductance of the hair cell mechanotransducer channel. Neuron 40:983–990.

    PubMed  CAS  Google Scholar 

  • Riccomagno MM, Martinu L, Mulheisen M, Wu DK, Epstein DJ (2002) Specification of the mammalian cochlea is dependent on Sonic hedgehog. Genes Dev 16:2365–2378.

    PubMed  CAS  Google Scholar 

  • Richardson GP, Bartolami S, Russell IJ (1990) Identification of a 275 kDa protein associated with the apical surfaces of sensory hair cells in the avian inner ear. J Cell Biol 110:1055–1066.

    PubMed  CAS  Google Scholar 

  • Richardson GP, Forge A, Kros CJ, Fleming J, Brown SDM, Steel KP (1997) Myosin VIIA is required for aminoglycoside accumulation in cochlear hair cells J Neurosci 17:9506–9519.

    PubMed  CAS  Google Scholar 

  • Riley B, Chiang M-Y, Farmer L, Heck R (1999) The deltaA gene of zebrafish mediates lateral inhibition of hair cells in the inner ear and is regulated by pax2.1. Development 126:5669–5678.

    PubMed  CAS  Google Scholar 

  • Rivolta MN, Holley MC (1998) GATA3 is downregulated during hair cell differentiation in the mouse cochlea. J Neurocytol 27:637–647.

    PubMed  CAS  Google Scholar 

  • Rivolta MN, Grix N, Lawlor P, Ashmore JF, Jagger DJ, Holley MC (1998) Auditory hair cell precursors immortalized from the mammalian inner ear. Proc R Soc Lond B 265:1595–1603.

    CAS  Google Scholar 

  • Roberson DF, Weisleder P, Bohrer PS, Rubel EW (1992) Ongoing production of sensory cells in the vestibular epithelium of the chick. Hear Res 57:166–174.

    PubMed  CAS  Google Scholar 

  • Romand R (1983) Development of the cochlea. In: Romand R (ed), Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 47–88.

    Google Scholar 

  • Romand R, Sapin V, Ghyselinck NB, Avan P, Le Calvez S, Dolle P, Chambon P, Mark M (2000) Spatio-temporal distribution of cellular retinoid binding protein gene transcripts in the developing and the adult cochlea. Morphological and functional consequences in CRABP-and CRBPI-null mutant mice. Eur J Neurosci 12:2793–2804.

    PubMed  CAS  Google Scholar 

  • Romand R, Hashino E, Dolle P, Vonesch J-L, Chambon P, Ghyselinck NB (2002) The retinoic acid receptors RARα and RARγ are required for inner ear development. Mech Dev 119:213–223.

    PubMed  CAS  Google Scholar 

  • Roth B, Bruns V (1992) Postnatal development of the rat organ of Corti. II. Hair cells receptors and their supporting elements. Anat Embryol 185:571–581.

    PubMed  CAS  Google Scholar 

  • Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101.

    PubMed  CAS  Google Scholar 

  • Ruben RJ (1967) Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol Suppl 220:1–44.

    Google Scholar 

  • RĂ¼bsamen R, Lippe WR (1998) The development of cochlear function. In: Rubel EW, Popper AN, Fay RR (eds), Development of the Auditory System. NewYork: Springer-Verlag, pp. 193–270.

    Google Scholar 

  • RĂ¼sch A, Eatock RA (1996) A delayed rectifier conductance in type I hair cells of the mouse utricle. J Neurophysiol 76:995–1004.

    PubMed  Google Scholar 

  • RĂ¼sch A, Eatock RA (1997) Sodium currents in hair cells of the mouse utricle. In: Lewis ER, Long GR, Lyon RF, Steele CR, Narins PM, Hecht-Poinar E (eds), Diversity in Auditory Mechanics. Singapore: World Scientific, pp. 549–555.

    Google Scholar 

  • RĂ¼sch A, Erway LC, Oliver D, Vennstrom B, Forrest D (1998a) Thyroid hormone receptor β-dependent expression of a potassium conductance in inner hair cells at the onset of hearing. Proc Natl Acad Sci USA 95:15758–15762.

    PubMed  Google Scholar 

  • RĂ¼sch A, Lysakowski A, Eatock RA (1998b) Postnatal development of type I and type II hair cells in the mouse utricle: acquisition of voltage-gated conductances and differentiated morphology. J Neurosci 18:7487–7501.

    PubMed  Google Scholar 

  • RĂ¼sch A, Ng L, Goodyear R, Oliver D, Lisoukov I, Vennstrom B, Richardson G, Kelley MW, Forrest D (2001) Retardation of cochlear maturation and impaired hair cell function caused by deletion of all known thyroid hormone receptors. J Neurosci 21:9792–9800.

    PubMed  Google Scholar 

  • Ryals BM, Rubel EW (1988) Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science 240:1774–1776.

    PubMed  CAS  Google Scholar 

  • Rzadzinska AK, Schneider ME, Davies C, Riordan GP, Kachar B (2004) An actin treadmill and myosins maintain stereocilia functional architecture and self-renewal. J Cell Biol 164:887–897.

    PubMed  CAS  Google Scholar 

  • Sans A, Chat M (1982) Analysis of temporal and spatial patterns of rat vestibular hair cell differentiation by tritiated thymidine radioautography. J Comp Neurol 206:1–8.

    PubMed  CAS  Google Scholar 

  • Saunders JC, Coles RB, Gates GR (1973) The development of auditory evoked responses in the cochlea and cochlear nuclei of the chick. Brain Res 63:59–74.

    PubMed  CAS  Google Scholar 

  • Schneider ME, Belyantseva IA, Azevedo RB, Kachar B (2002) Rapid renewal of auditory hair bundles. Nature 418:837–838.

    PubMed  CAS  Google Scholar 

  • Self T, Mahony M, Fleming J, Walsh J, Brown SDM, Steel KP (1998) Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 125:557–566.

    PubMed  CAS  Google Scholar 

  • Self T, Sobe T, Copeland NG, Jenkins NA, Avraham KB, Steel KP (1999) Role of myosin VI in the differentiation of cochlear hair cells. Dev Biol 214:331–341.

    PubMed  CAS  Google Scholar 

  • Selyanko AA, Hadley JK, Wood IC, Abogadie FC, Jentsch TJ, Brown DA (2000) Inhibition of KCNQ1-4 potassium channels expressed in mammalian cells via M1 muscarinic acetylcholine receptors. J Physiol 522:349–355.

    PubMed  CAS  Google Scholar 

  • Sgard F, Charpantier E, Bertrand S, Walker N, Caput D, Graham D, Bertrand D, Besnard F (2002) A novel human nicotinic receptor subunit, α 10, that confers functionality to the α9-subunit. Mol Pharmacol 61:150–159.

    PubMed  CAS  Google Scholar 

  • Shailam R, Lanford PJ, Dolinsky CM, Norton C, Gridley T, Kelley MW (1999) Expression of proneural and neurogenic genes in the embryonic mammalian vestibular system. J Neurocytol 28:809–819.

    PubMed  CAS  Google Scholar 

  • Shnerson A, Devigne C, Pujol R (1982) Age-related changes in the C57BL/6J mouse cochlea. II. Ultrastructural findings. Dev Brain Res 9:305–315.

    Google Scholar 

  • Si F, Brodie H, Gillespie PG, Vazquez AE, Yamoah EN (2003) Developmental assembly of transduction apparatus in chick basilar papilla. J Neurosci 23:10815–10826.

    PubMed  CAS  Google Scholar 

  • Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, Muller U (2004) cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428:955–959.

    PubMed  Google Scholar 

  • Slepecky NB (1996) Structure of the mammalian cochlea. In: Dallos P, Popper AN, Fay RR (eds), The Cochlea. New York: Springer-Verlag, pp. 44–129.

    Google Scholar 

  • Söllner C, Rauch G-J, Siemens J, Geisler R, Schuster SC, the Tubingen 2000 Screen Consortium, MĂ¼ller U, Nicolson T (2004) Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 428:955–959.

    PubMed  Google Scholar 

  • Souter M, Nevill G, Forge A (1995) Postnatal development of membrane specialisations of gerbil outer hair cells. Hear Res 91:43–62.

    PubMed  CAS  Google Scholar 

  • Spitzer NC, Kingston PA, Manning TJ Jr, Conklin MW (2002) Outside and in: development of neuronal excitability. Curr Opin Neurobiol 12:315–323.

    PubMed  CAS  Google Scholar 

  • Stevens CB, Davies AL, Battista S, Lewis JH, Fekete DM (2003) Forced activation of Wnt signaling alters morphogenesis and sensory organ identity in the chicken inner ear. Dev Biol 261:149–164.

    PubMed  CAS  Google Scholar 

  • Stone JS, Rubel EW (1999) Delta1 expression during avian hair cell regeneration. Development 126:961–973.

    PubMed  CAS  Google Scholar 

  • Tilney LG, DeRosier DJ (1986) Actin filaments, stereocilia, and hair cells of the bird cochlea. IV. How the actin filaments become organized in developing stereocilia and in the cuticular plate. Dev Biol 116:119–129.

    PubMed  CAS  Google Scholar 

  • Tilney LG, Tilney MS, Saunders JS, DeRosier DJ (1986) Actin filaments, stereocilia, and hair cells of the bird cochlea. III. The development and differentiation of hair cells and stereocilia. Dev Biol 116:100–118.

    PubMed  CAS  Google Scholar 

  • Tilney LG, Tilney MS, Cotanche DA (1988a) Actin filaments, stereocilia, and hair cells of the bird cochlea. V. How the staircase pattern of stereociliary lengths is generated. J Cell Biol 106:355–365.

    PubMed  CAS  Google Scholar 

  • Tilney LG, Tilney MS, Cotanche DA (1988b) New observations on the stereocilia of hair cells of the chick cochlea. Hear Res 37:71–82.

    PubMed  CAS  Google Scholar 

  • Tilney LG, Cotanche DA, Tilney MS (1992) Actin filaments, stereocilia, and hair cells of the bird cochlea. VI. How the number and arrangement of stereocilia are determined. Development 116:213–226.

    PubMed  CAS  Google Scholar 

  • Torres M, Gomez-Pardo E, Gruss P (1996) Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122:3381–3391.

    PubMed  CAS  Google Scholar 

  • Troutt LL, van Heumen WRA, Pickles JO (1994) The changing microtubule arrangements in developing hair cells of the chick cochlea. Hear Res 81:100–108.

    PubMed  CAS  Google Scholar 

  • Tsai H, Hardisty RE, Rhodes C, Kiernan A, Roby P, Tymowska-Lalanne Z, Mburu P, Rastan S, Hunter AJ, Brown SDM, Steel KP (2001) The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum Mol Genet 10:507–512.

    PubMed  CAS  Google Scholar 

  • Uziel A, Gabrion J, Ohresser M, Legrand C (1981) Effects of hypothyroidism on the structural development of the organ of Corti in the rat. Acta Otolaryngol 92:469–480.

    PubMed  CAS  Google Scholar 

  • Verpy E, Leibovici M, Zwaenpoel I, Liu X-Z, Gal A, Salem N, Mansour A, Blanchard S, Kobayashi I, Keats BJB, Slim R, Petit C (2000) A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1c. Nat Genet 26:51–55.

    PubMed  CAS  Google Scholar 

  • Vollrath MA, Eatock RA (2003) Time course and extent of mechanotransducer adaptation in mouse utricular hair cells: comparison with frog saccular hair cells. J Neurophysiol 90:2676–2689.

    PubMed  Google Scholar 

  • von Bartheld CS, Patterson SL, Heuer JG, Wheeler EF, Bothwell M, Rubel EW (1991) Expression of nerve growth factor (NGF) receptors in the developing inner ear of chick and rat. Development 113:455–470.

    Google Scholar 

  • Wallis D, Hamblen M, Zhou Y, Venken KJT, Schumacher A, Grimes HL, Zogghbi HY, Orkin SH, Bellen HJ (2003) The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development 130:221–232.

    PubMed  CAS  Google Scholar 

  • Walsh T, Walsh V, Vreugde S, Hertzano R, Shahin H, haika S, Lee MK, Kanaan M, King M-C, Avraham KB (2002) From flies’ eyes to our ears: mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30. Proc Natl Acad Sci USA 99:7518–7523.

    PubMed  CAS  Google Scholar 

  • Weber T, Zimmerman U, Winter H, Mack A, Kopschall I, Rohbock K, Zenner H-P, Knipper M (2002) Thyroid hormone is a critical determinant for the regulation of the cochlear motor protein prestin. Proc Natl Acad Sci USA 99:2901–2906.

    PubMed  CAS  Google Scholar 

  • Weil D, El-Amraoui A, Masmoudi S, Mustapha M, Kikkawa Y, Laine S, Delmaghani S, Adata A, Nadifi S, Zina ZB, Hamel C, Gal A, Ayadi H, Yonekawa H, Petit C (2003) Usher syndrome type 1 G (USH1G) is caused by mutations in the gene encoding SANS, a protein that associates with the USH1C protein, harmonin. Hum Mol Genet 12:463–471.

    PubMed  CAS  Google Scholar 

  • Wells AL, Lin AW, Chen LQ, Safer D, Cain SM, Hasson T, Carragher BO, Milligan RA, Sweeney HL (1999) Myosin VI is an actin-based motor that moves backwards. Nature 401:505–508.

    PubMed  CAS  Google Scholar 

  • Wilson SM, Householder DB, Coppola V, Tessarollo L, Fritzsch B, Lee EC, Goss D, Carlson GA, Copeland NG, Jenkins NA (2001) Mutations in Cdh23 cause nonsyndromic hearing loss in waltzer mice. Genomics 74:228–233.

    PubMed  CAS  Google Scholar 

  • Wu DK, Oh S-H (1996) Sensory organ generation in the chick inner ear. J Neurosci 16:6454–6462.

    PubMed  CAS  Google Scholar 

  • Wu YC, Ricci AJ, Fettiplace R (1999) Two components of transducer adaptation in auditory hair cells. J Neurophysiol 82:2171–2181.

    PubMed  CAS  Google Scholar 

  • Xiang M, Gan L, Li D, Chen XY, Zhou L, O’Malley Jnr BW, Klein W, Nathans J (1997) Essential role of POU-domain transcription factor Brn-3c in auditory and vestibular hair cell development. Proc Natl Acad Sci USA 94:9445–9450.

    PubMed  CAS  Google Scholar 

  • Xiang M, Gao W-Q, Hasson T, Shin JJ (1998) Requirement for Brn-3c in maturation and survival, but not in fate determination of inner ear hair cells. Development 125:3935–3946.

    PubMed  CAS  Google Scholar 

  • Xu P-X, Adams J, Peters H, Brown MC, Heaney S, Maas R (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23:113–117.

    PubMed  CAS  Google Scholar 

  • Yin H, Pruyne D, Huffaker TC, Bretscher A (2000) Myosin V orientates the mitotic spindle in yeast. Nature 406:1013–1015.

    PubMed  CAS  Google Scholar 

  • Ylikoski J, Pirvola U, Eriksson U (1994) Cellular retinol-binding protein type I is prominently and differentially expressed in the sensory epithelium of the rat cochlea and vestibular organs. J Comp Neurol 349:596–602.

    PubMed  CAS  Google Scholar 

  • Zhang N, Martin GV, Kelley MW, Gridley T (2000) A mutation in the Lunatic fringe gene suppresses the effects of a Jagged2 mutation on inner hair cell development in the cochlea. Current Biology 10:659–662.

    PubMed  CAS  Google Scholar 

  • Zheng J, Shen W, He DZZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155.

    PubMed  CAS  Google Scholar 

  • Zheng JL, Gao W-Q (2000) Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci 3:580–586.

    PubMed  CAS  Google Scholar 

  • Zheng JL, Shou J, Guillemot F, Kageyama F, Gao W-Q (2000) Hes1 is a negative regulator of inner ear hair cell differentiation. Development 127:4551–4560.

    PubMed  CAS  Google Scholar 

  • Zheng L, Sekerkova G, Vranich K, Tilney LG, Mugnaini E, Bartles JR (2000) The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 102:377–385.

    PubMed  CAS  Google Scholar 

  • Zheng W, Huang L, Wei Z-B, Silvius D, Tang B, Xu P-X (2003) The role of Six1 in mammalian auditory system development. Development 130:3989–4000.

    PubMed  CAS  Google Scholar 

  • Zine A, Romand R (1996) Development of the auditory receptors of the rat: a SEM study. Brain Res 721:49–58.

    PubMed  CAS  Google Scholar 

  • Zine A, Hafidi A, Romand R (1995) Fimbrin expression in the developing rat cochlea. Hear Res 87:165–169.

    PubMed  CAS  Google Scholar 

  • Zine A, Van de Water TR, de Ribaupierre F (2000) Notch signalling regulates the pattern of auditory hair cell differentiation in mammals. Development 127:3373–3383.

    PubMed  CAS  Google Scholar 

  • Zine A, Aubert A, Qiu J, Therianos S, Guillemot F, Kageyama R, de Ribaupierre F (2001) Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. J Neurosci 21:4712–4720.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Goodyear, R.J., Kros, C.J., Richardson, G.P. (2006). The Development of Hair Cells in the Inner Ear. In: Eatock, R.A., Fay, R.R., Popper, A.N. (eds) Vertebrate Hair Cells. Springer Handbook of Auditory Research, vol 27. Springer, New York, NY. https://doi.org/10.1007/0-387-31706-6_2

Download citation

Publish with us

Policies and ethics