Skip to main content

Abstract

Digital Holographic Microscopy (DHM) is an imaging technique offering both sub-wavelength resolution and real time observation capabilities. The reconstruction of the wavefront from the hologram provides the amplitude and the absolute phase of the wave diffracted by the microscopic objects. Absolute phase contrast yields longitudinal accuracies as low as one nanometer in air or even less in dielectric media. The lateral accuracy and the corresponding resolution can be kept at a sub-micron level by the use of a high Numerical Aperture (N.A.) microscope Objective (M.O.). In the present state of the art, it can be kept commonly below 600nm. The principles of hologram formation, acquisition and wavefront reconstruction from digital holograms, acquired in a non-scanned modality, arc described in details. The role of the M.O. in the capture of high spatial frequencies components of diffracted light and their restitution for high fidelity imaging is developed. A variety of applications of this new type of optical microscopy are described: material research, surface and interface sciences, microtechnologies, micro-optics and MOEMS, Applications to cell dynamics studies: nano-movements and cyto-architectures deformations, are demonstrated. Tomographic images of tissues can be also obtained by DHM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Born, M. and Wolf, E., Principle of optics (Cambridge univ. press, 1999).

    Google Scholar 

  • Boyer, K., Solem, J. C, Longworth, J. W., Borisov, A. B., and Rhodes, C. K., 1996, Biomcdical three-dimensional holographic microimaging at visible, ultraviolet and X-ray wavelengths, Nature Medicine 2(8), p. 939–941.

    Article  Google Scholar 

  • Carl, D., Kemper, B., Wernicke, G., and von Bally, G., 2004, Parameter-optimized digital holographic microscope for high-resolution living-cell analysis, Applied Optics 43(36), p. 6536–6544.

    Article  ADS  Google Scholar 

  • Charrière, F., Cliche, E., Marquet, P., and Depeursinge, C, 2005, Cell refractive index tomography by digital holographic microscopy, Optics Letters (in press)

    Google Scholar 

  • Charrière, F., Colomb, T., Montfort, F., Cuche, E., Emery, Y., Marquet, P., and Depeursinge, C, 2006, Characterization of microlcnses by digital holographic microscopy, accepted for publication in Applied Optics

    Google Scholar 

  • Colomb, T, 2005, Numerical aberrations compensation and polarization imaging in Digital Holographic Microscopy, Thesis No EPFL, Lausanne.

    Google Scholar 

  • Colomb, T., Cuche, E., Montfort, F., Marquet, P., and Depeursinge, C, 2004, Jones vector imaging by use of digital holography: simulation and experimentation, Optics Communications 231(1–6), p. 137–147.

    Article  ADS  Google Scholar 

  • Colomb, T., Dahlgrcn, P., Beghuin, D., Cuche, E., Marquet, P., and Depeursinge, C., 2002, Polarization imaging by use of digital holography, Applied Optics 41(1), p. 27–37.

    Article  ADS  Google Scholar 

  • Colomb, T., Dürr, F., Cuche, E., Marquet, P., Limberger, H. G., Salathe, R. P., and Depeursinge, C, 2005, Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements, Applied Optics 44(21)

    Google Scholar 

  • Colomb, T., Cuche, E., Charrière, F., Kühn, J., Aspert, N., Montfort, F., Marquet, P., and Depeursinge, C, 2006, Automatic procedure for aberrations compensation in digital holographic microscopy and applications to specimen shape compensation, accepted in Applied Optics

    Google Scholar 

  • Coppola, G., Ferraro, P., Iodice, M., De Nicola, S., Finizio, A., and Grilli, S., 2004, A digital holographic microscope for complete characterization of microeiectromechanical systems, Measurement Science & Technology 15(3), p. 529–539.

    Article  ADS  Google Scholar 

  • Coquoz, O., 1994, Endoscopic Holography with a Multicore Optical Fiber Applied to Biomedical Imaging, Thesis No no 1277 EPFL, Lausanne.

    Google Scholar 

  • Coquoz, O., Conde, R., Taleblou, F., and Depeursinge, C, 1995, Performances of Endoscopic Holography with a Multicore Optical-Fiber, Applied Optics 34(31), p. 7186–7193.

    Article  ADS  Google Scholar 

  • Cuche, E., 2000, Numerical Reconstruction of Digital Holograms: Application to Phase contrast Imaging and Microscopy, Thesis No no 2182 EPFL, Lausanne.

    Google Scholar 

  • Cuche, E., Poscio, P., and Depeursinge, C, 1997, Optical tomography by means of a numerical low-coherence holographic technique, Journal of Oplics-Nouvelle Revue D Optique 28(6), p. 260–264.

    ADS  Google Scholar 

  • Cuche, E., Bevilacqua, F., and Depeursinge, C., 1999, Digital holography for quantitative phase-contrast imaging, Optics Letters 24(5), p. 291–293.

    Article  ADS  Google Scholar 

  • Cuche, E., Marquet, P., and Depeursinge, C, 1999, Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms, Applied Optics 38(34), p. 6994–7001.

    Article  ADS  Google Scholar 

  • Cuche, E., Marquet, P., and Depeursinge, C, 2000, Aperture apodization using cubic spline interpolation: application in digital holographic microscopy, Optics Communications 182(1–3), p. 59–69.

    Article  ADS  Google Scholar 

  • Dakoff, A., Gass, J., and Kim, M. K., 2003, Microscopic three-dimensional imaging by digital interference holography, Journal of Electronic Imaging 12(4), p. 643–647.

    Article  ADS  Google Scholar 

  • De Haller, E. B., von Bally, G., and Depeursinge, C, 1995, High-resolution holography and biopsy: preliminary results, Bioimaging 3, p. 76–87.

    Article  Google Scholar 

  • De Nicola, S., Ferraro, P., Finizio, A., and Pierattini, G., 2002, Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography, Optics and Lasers in Engineering 37(4), p. 331–340.

    Article  ADS  Google Scholar 

  • De Nicola, S., Ferraro, P., Finizio, A., Grilli, S., and Pierattini, G., 2003, Experimental demonstration of the longitudinal image shift in digital holography, Optical Engineering 42(6), p. 1625–1630.

    Article  ADS  Google Scholar 

  • Dubois, F., Joannes, L., and Legros, J. C, 1999, Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence, Applied Optics 38(34), p. 7085–7094.

    Article  ADS  Google Scholar 

  • Dubois, F., Joannes, L., Dupont, O., Dcwandel, J. L., and Legros, J. C, 1999, An integrated optical set-up for fluid-physics experiments under microgravity conditions, Measurement Science & Technology 10(10), p. 934–945.

    Article  ADS  Google Scholar 

  • Dubois, F., Rcqucna, M. L. N., Minetti, C, Monnom, O., and Istasse, E., 2004, Partial spatial coherence effects in digital holographic microscopy with a laser source, Applied Optics 43(5), p. 1131–1139.

    Article  ADS  Google Scholar 

  • Ferraro, P., Grilli, S., and Alfieri, D., 2005, Extended focused image in microscopy by digital holography, Optics Express 13(18), p. 6738–6749.

    Article  ADS  Google Scholar 

  • Ferraro, P., Coppola, G., De Nicola, S., Finizio, A., and Pierattini, G., 2003, Digital holographic microscope with automatic focus tracking by detection sample displacement in real time, Optics Letters 28(14), p. 1257–1259.

    Article  ADS  Google Scholar 

  • Ferraro, P., De Nicola, S., Finizio, A., Pierallini, G., and Coppola, G., 2004, Recovering image resolution in reconstructing digital off-axis holograms by Fresnel-transform method, Applied Physics Letters 85(14), p. 2709–2711.

    Article  ADS  Google Scholar 

  • Ferraro, P., Coppola, G., Alfieri, D., De Nicola, S., Finizio, A., and Picrattini, G., 2004, Controlling images parameters in the reconstruction process of digital holograms, Ieee Journal of Selected Topics in Quantum Electronics 10(4), p. 829–839.

    Article  Google Scholar 

  • Ferraro, P., De Nicola, S., Coppola, G., Finizio, A., Alfieri, D., and Pierattini, G., 2004, Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms, Optics Letters 29(8), p. 854–856.

    Article  ADS  Google Scholar 

  • Gabor, D., 1948, A new microscopic principle, Nature 161, p. 777–778.

    Article  ADS  Google Scholar 

  • Goodman, J., Introduction to Fourier Optics (McGraw-Hill, 2005).

    Google Scholar 

  • Goodman, J. and Lawrence, R. W., 1967, Digital image formation from electronically detected holograms, Appl.Phys.Lett. 11, p. 77–79.

    Article  ADS  Google Scholar 

  • Gross, M., Goy, R., Forget, B. C., Atlan, M., Ramaz, E., Boccara, A. C, and Dunn, A. K.., 2005, Heterodyne detection of multiply scattered monochromatic light with a multipixel detector, Optics Letters 30(11), p. 1357–1359.

    Article  ADS  Google Scholar 

  • Haddad, W. S., Cullen, D., Solem, J. C, Longworth, J. W., McPherson, A., Boycr, K., and Rhodes, C. K., 1992, Fourier-Transform Holographic Microscope, Applied Optics 31(24), p. 4973–4978.

    Article  ADS  Google Scholar 

  • Ikeda, T., Popescu, G., Dasari, R. R., and Feld, M. S., 2005, Hilbert phase microscopy for investigating fast dynamics in transparent systems, Optics Letters 30(10), p. 1165–1167.

    Article  ADS  Google Scholar 

  • Indebetouw, G. and Klysubun, P., 1999, Space-time holography: A three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence, Appl.Phys.Lett. 75, p. 2017–2019.

    Article  ADS  Google Scholar 

  • Indebetouw, G. and Klysubun, P., 1999, Space-time digital holography: A three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence, Applied Physics Letters 75(14), p. 2017–2019.

    Article  ADS  Google Scholar 

  • Indebetouw, G. and Klysubun, P., 2000, Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography, Optics Utters 25(4), p. 212–214.

    ADS  Google Scholar 

  • Indebetouw, G. and Klysubun, P., 2001, Spatiotemporal digital microholography, Journal of the Optical Society of America a-Optics Image Science and Vision 18(2), p. 319–325.

    Article  ADS  Google Scholar 

  • Indebetouw, G., El Maghnouji, A., and Foster, R., 2005, Scanning holographic microscopy with transverse resolution exceeding the Rayleigh limit and extended depth of focus, Journal of the Optical Society of America a-Optics Image Science and Vision 22(5), p. 892–898.

    Article  ADS  Google Scholar 

  • Indebetouw, G., Kim, T., Poon, T.-C, and Schilling, B. W., 1998, Three-dimensional location of fluorescent inhomogeneities in turbid media by scanning heterodyne holography, Optics Letters 23(2), p. 135–137.

    Article  ADS  Google Scholar 

  • Joannes, L., Dubois, F., and Legros, J, C., 2003, Phase-shifting; schlieren high-resolution quantitative schlieren that uses the phase-shifting technique principle, Applied Optics 42(25), p. 5046–5053.

    Article  ADS  Google Scholar 

  • Kebbel, V., Hartmann, H. J., and Juptner, W., 2001, Application of digital holographic microscopyfor inspection of micro-optical components, Proc.SPIE 4398, p. 189–198.

    Article  ADS  Google Scholar 

  • Kim, M. K., 1999, Wavelength-scanning digital interference holography for optical section imaging, Optics Letters 24(23), p. 1693–1695.

    Article  ADS  Google Scholar 

  • Kim, M. K., 2000, Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography, Optics Express 7(9), p. 305–310.

    Article  ADS  Google Scholar 

  • Kim, T. and Poon, T.-C, 2000, Three-dimensional matching by use of phase-only holographic information and the Wigner distribution, Journal of the Optical Society of America a-Optics Image Science and Vision 17(12), p. 2520–2528.

    Article  MathSciNet  ADS  Google Scholar 

  • Kronrod, M. A., Merzlyakov, N. S., and Yaroslavskii, L. P., 1972, Reconstruction of an hologram with a computer, Sov.Phys.Tech.Phys. 17, p. 333–334.

    ADS  Google Scholar 

  • Le Clerc, F., Collot, L., and Gross, M., 2000, Numerical heterodyne holography with two-dimensional photodetector arrays, Optics Letters 25(10), p. 716–718.

    Article  ADS  Google Scholar 

  • Liebling, M., 2004, On Fresnelets, Interference, fringes and digital holography, Thesis No 2977 EPFL, Lausanne.

    Google Scholar 

  • Liebling, M. and Unser, M, 2004, Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion, Journal of the Optical Society of America a-Optics Image Science and Vision 21(12), p. 2424–2430.

    Article  MathSciNet  ADS  Google Scholar 

  • Liebling, M., Blu, T., and Unser, M., 2003, Fresnelets: New multiresolution wavelet bases for digital holography, Ieee Transactions on Image Processing 12(1), p. 29–43.

    Article  MathSciNet  ADS  Google Scholar 

  • Liebling, M., Blu, T., and Unser, M., 2004, Complex-wave retrieval from a single off-axis hologram, Journal of the Optical Society of America a-Optics Image Science and Vision 21(3), p. 367–377.

    Article  ADS  Google Scholar 

  • Marian, A., 2005, Measurement and Interpretation of the 3D Amplitude Point Spread Function of Lenses and Microscope objective, Thesis No 3288 EPFL, Lausanne.

    Google Scholar 

  • Marquel, P., 2003, Développement d’une nouvelle technique dc microscopie holographique digitale. Perspectives pour l’étude de la plasticilé neuronale., Thesis UNIL Lausanne

    Google Scholar 

  • Marquet, P., Rappaz, B., Magistretti, P. J., Cuche, E., Emery, Y., Colomb, T., and Depeursinge, C, 2005, Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy, Optics Letters 30(5), p. 468–470.

    Article  ADS  Google Scholar 

  • Massalsch, P., 2003, Low coherence Digital Holographic Microscopy: Application to vision in turbid media and Biomedical Imaging, Thesis No No 2797 EPFL, Lausanne.

    Google Scholar 

  • Massatsch, P., Charriére, F., Cuche, E., Marquet, P., and Depeursinge, C. D., 2005, Time-domain optical coherence tomography with digital holographic microscopy, Applied Optics 44(10), p. 1806–1812.

    Article  ADS  Google Scholar 

  • Mills, G. A. and Yamaguchi, I., 2005, Effects of quantization in phase-shifting digital holography, Applied Optics 44(7), p. 1216–1225.

    Article  ADS  Google Scholar 

  • Montfort, F., 2005, Tomography using Multiple Wavelengths in Digital Holographic Microscopy, Thesis No 3345 EPFL, Lausanne.

    Google Scholar 

  • Palacios, F., Ricardo, J., Palacios, D., Goncalves, E., Valin, J. L., and De Souza, R., 2005, 3D image reconstruction of transparent microscopic objects using digital holography. Optics Communications 248(1–3), p. 41–50.

    Article  ADS  Google Scholar 

  • Pedrini, G. and Schedin, S., 2001, Short coherence digital holography for 3D microscopy, Optik 112(9), p. 427–432.

    ADS  Google Scholar 

  • Pedrini, G. and Tiziani, H. J., 2002, Short-coherence digital microscopy by use of a lensless holographic imaging system, Applied Optics 41(22), p. 4489–4496.

    Article  ADS  Google Scholar 

  • Pluta, M., Advanced Light Microscopy (Elsevier, New York, 1988), Vol. II.

    Google Scholar 

  • Poon, T.-C, Three-dimensional image processing and optical scanning holography, in Advances in Imaging and Electron Physics, Vol 126 (2003), pp. 329–350.

    Article  Google Scholar 

  • Poon, T.-C. and Indebetouw, G., 2003, Three-dimensional point spread functions of an optical heterodyne scanning image processor, Applied Optics 42(8), p. 1485–1492.

    Article  ADS  Google Scholar 

  • Poon, T.-C., Wu, M. H., Shinoda, K., and Suzuki, Y., 1996, Optical scanning holography, Proceedings of the Ieee 84(5), p. 753–764.

    Article  Google Scholar 

  • Poon, T.-C, Akin, T., Indebetouw, G., and Kim, T., 2005, Horizontal-parallax-only electronic holography, Optics Express 13(7), p. 2427–2432.

    Article  ADS  Google Scholar 

  • Poon, T.-C., Doh, K. B., Schilling, B. W., Wu, M. H., Shinoda, K., and Suzuki, Y., 1995, 3-Dimensional Microscopy by Optical Scanning Holography, Optical Engineering 34(5), p. 1338–1344.

    Article  ADS  Google Scholar 

  • Popescu, G., Deflores, L. P., Vaughan, J. C, Badizadegan, K., Iwai, H., Dasari, R. R., and Feld, M. S., 2004, Fourier phase microscopy for investigation of biological structures and dynamics, Optics Letters 29(21), p. 2503–2505.

    Article  ADS  Google Scholar 

  • Rappaz, B., Marquet, P., Cuche, E., Emery, Y., Depeursinge, C, and Magislretli, P. J., 2005, Dynamic measurement of the intracellular refractive index and cell morphometry of living cells with digital holographic microscopy, Optics Express (in press).

    Google Scholar 

  • Schilling, B. W. and Poon, T.-C, 1995, Real-Time Preprocessing of Holographic Information, Optical Engineering 34(11), p. 3174–3180.

    Article  ADS  Google Scholar 

  • Schilling, B. W., Poon, T.-C, Indebetouw, G., Storrie, B., Shinoda, K., Suzuki, Y., and Wu, M. H., 1997, Three-dimensional holographic fluorescence microscopy, Optics Letters 22(19), p. 1506–1508.

    Article  ADS  Google Scholar 

  • Schnars, U., 1994, Direct Phase Determination in Hologram Interferometry with Use of Digitally Recorded Holograms, Journal of the Optical Society of America a-Optics Image Science and Vision 11(7), p. 2011–2015.

    Article  ADS  Google Scholar 

  • Schnars, U. and Juptner, W., 1994, Direct Recording of Holograms by a Ccd Target and Numerical Reconstruction, Applied Optics 33(2), p. 179–181.

    Article  ADS  Google Scholar 

  • Takaki, Y. and Ohzu, H., 1999, Fast numerical reconstruction technique for high-resolution hybrid holographic microscopy, Applied Optics 38(11), p. 2204–2211.

    Article  ADS  Google Scholar 

  • Xu, W., Jericho, M. H., Meinertzhagen, I. A., and Kreuzer, H. J., 2002, Digital in-line holography of microspheres, Applied Optics 41(25), p. 5367–5375.

    Article  ADS  Google Scholar 

  • Xu, W., Jericho, M. H., Kreuzer, H. J., and Meinertzhagen, I. A., 2003, Tracking particles in four dimensions with in-line holographic microscopy, Optics Letters 28(3), p. 164–166.

    Article  ADS  Google Scholar 

  • Xu, W. B., Jericho, M. H., Mcinertzhagcn, I. A., and Kreuzer, H. J., 2001, Digital in-line holography for biological applications, Proceedings of the National Academy of Sciences of the United States of America 98(20), p. 11301–11305.

    Article  ADS  Google Scholar 

  • Yamaguchi, I. and Zhang, T., 1997, Phase-shifting digital holography, Optics Letters 22(16), p. 1268–1270.

    Article  ADS  Google Scholar 

  • Yamaguchi, I., Matsumura, T., and Kato, J., 2002, Phase-shifting color digital holography, Optics Letters 27(13), p. 1108–1110.

    Article  ADS  Google Scholar 

  • Yaroslavskii, L. P. and Merzlyakov, N. S., Methods of digital holography (Consultants Bureau, New York, 1980).

    Google Scholar 

  • Yu, L. F. and Kim, M. K., 2005, Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method, Optics Letters 30(16), p. 2092–2094.

    Article  ADS  Google Scholar 

  • Yu, L. F. and Kim, M. K., 2005, Wavelength scanning digital interference holography for variable tomographic scanning, Optics Express 13(15), p. 5621–5627.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Depeursinge, C. (2006). Digital Holography Applied to Microscopy. In: Poon, TC. (eds) Digital Holography and Three-Dimensional Display. Springer, Boston, MA . https://doi.org/10.1007/0-387-31397-4_4

Download citation

Publish with us

Policies and ethics