Advertisement

Auxiliary Proliferative Zones in the Developing and Adult Central Nervous System: Lessons from Studies on the Effects of Ethanol

  • Michael W. Miller
  • Marla B. Bruns

Conclusions

The differential effects of ethanol on the proliferative zones support the thesis that both neocortical proliferative zones generate neurons. Proliferative activity in the VZ is depressed by ethanol regardless of the location along the neuraxis and regardless of the ethanol concentration. In contrast, proliferation within derived zones (at least the SZ and IHZ) is bimodally affected by ethanol in a concentration-dependent manner. Indeed, the unique responses of the VZ and SZ may reflect an interaction between the two zones. For example, the increased proliferative activity in the SZ or IHZ at low concentrations results from a recruitment of new cells into the cycling population (increased GF). This may be an compensatory response to offset the depressed proliferation of VZ cells. After all, the derived zones are seeded by the VZ.

Keywords

Prenatal Exposure Subventricular Zone Fetal Alcohol Spectrum Disorder Ventricular Zone Fetal Alcohol Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, E.L. and Hannigan, J.H. (1995). Maternal risk factors in fetal alcohol syndrome: Provocative and permissive influences. Neurotox. Teratol. 17: 445–624.CrossRefGoogle Scholar
  2. Al-Ghoul, W.M. and Miller, M.W. (1989). Transient expression of Alz-50 immunor-eactivity in developing rat neocortex: A marker for naturally occurring neuronal death? Brain Res. 481: 361–367.PubMedCrossRefGoogle Scholar
  3. Altman, J. (1962). Are new neurons formed in the brains of adult mammals? Science 135: 1127–1128.PubMedGoogle Scholar
  4. Alvarez-Buylla, A. and Garcia-Verdugo, J.M. (2002). Neurogenesis in adult subventricular zone. J. Neurosci. 22: 629–634.PubMedGoogle Scholar
  5. Anderson, W.J. and Sides, G.R. (1979). Alcohol induced defects in cerebellar development in the rat. Curr. Alcohol 5: 135–153.PubMedGoogle Scholar
  6. Anderson, S.A., Marin, O., Horn. C., Jennings, K., and Rubenstein, J.L. (2001). Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128: 353–363.PubMedGoogle Scholar
  7. Ang, E.S., Jr., Haydar, T.F., Gluncic, V., and Rakic, P. (2003). Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J. Neurosci. 23: 5805–5815.PubMedGoogle Scholar
  8. Angevine, J.B., Jr. and Sidman, R.L. (1961). Autoradiographic study of the cell migration during histogenesis in the cerebral cortex of mouse. Nature 192: 766–768.PubMedGoogle Scholar
  9. Archibald, S.L., Fennema-Notestine, C., Gamst, A., Riley, E.P., Mattson, S.N., and Jernigan, T.L. (2001). Brain dysmorphology in individuals with severe prenatal alcohol exposure. Dev. Med. Child Neurol. 43: 148–154.PubMedCrossRefGoogle Scholar
  10. Astley, S.J. and Clarren, S.K. (1995). A fetal alcohol syndrome screening tool. Alcohol Clin. Exp. Res. 19:1565–1571.PubMedCrossRefGoogle Scholar
  11. Astley, S.J. and Clarren, S.K. (2001). Measuring the facial phenotype of individuals with prenatal alcohol exposure: correlations with brain dysfunction. Alcohol Alcohol. 36: 147–159.PubMedGoogle Scholar
  12. Atlas, M. and Bond, V.P. (1965). The cell generation cycle of the eleven-day mouse embryo. J. Cell. Bio. 26: 19–24.CrossRefGoogle Scholar
  13. Bauer-Moffett, C. and Altman, J. (1977). The effect of ethanol chronically administered to preweanling rats on cerebellar development: a morphological study. Brain Res. 119: 249–268.PubMedCrossRefGoogle Scholar
  14. Bayer, S.A. and Altman, J. (1991). Neocortical Development, Raven Press, New York.Google Scholar
  15. Berry, M. (1974). Development of the cerebral neocortex of the rat. In: Gottlieb, G. (ed.) Aspects of Neurogenesis, Academic Press, New York, pp. 7–67.Google Scholar
  16. Blaschke, A.J., Staley, K., and Chun, J. (1996). Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development 122: 1165–1174.PubMedGoogle Scholar
  17. Borges, S. and Lewis, P.D. (1983). The effect of ethanol on the cellular composition of the cerebellum. Neuropathol. Appl. Neurobiol. 9: 53–60.PubMedCrossRefGoogle Scholar
  18. Brückner, G., Mareš, V., and Biesold, D. (1976). Neurogenesis in the visual system of the rat. An autoradiographic investigation. J. Comp. Neurol. 166: 245–255.PubMedCrossRefGoogle Scholar
  19. Clark, C.M., Li, D., Conry, J., Conry, R., and Loock, C. (2000). Structural and functional brain integrity of fetal alcohol syndrome in nonretarded cases. Pediatrics 105: 1096–1099.PubMedCrossRefGoogle Scholar
  20. Clarren, S.K., Astley, S.J., Bowden, D.M., Lai, H., Milam, A.H., Rudeen, P.K., Shoemaker, W.J. (1990). Neuroanatomic and neurochemical abnormalities in nonhuman primate infants exposed to weekly doses of ethanol during gestation. Alcohol Clin. Exp. Res. 14: 674–683.PubMedCrossRefGoogle Scholar
  21. Cobas, A. and Fairén, A. (1988). GABAergic neurons of different morphological classes are cogenerated in the mouse barrel cortex. J. Neurocytol. 17: 511–519.PubMedCrossRefGoogle Scholar
  22. Coles, C.D. (2001). Fetal alcohol exposure and attention: moving beyond ADHD. Alcohol Res. Health 25: 199–203.PubMedGoogle Scholar
  23. Conover, J.C. and Allen, R.L. (2002). The subventricular zone: new molecular and cellular developments. Cell Mol. Life Sci. 59: 2128–2135.PubMedCrossRefGoogle Scholar
  24. de Lima, A.D., Merten, M.D., and Voigt, T. (1997). Neuritic differentiation and synaptogenesis in serum-free neuronal cultures of the rat cerebral cortex. J. Comp. Neurol. 382: 230–246.PubMedCrossRefGoogle Scholar
  25. Doetsch, F., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17: 5046–5061.PubMedGoogle Scholar
  26. Doetsch, F., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (1999). Regeneration of a germinal layer in the adult mammalian brain. Proc. Natl. Acad. Sci. U. S. A. 96: 11619–11624.PubMedCrossRefGoogle Scholar
  27. Donoghue, J.P. and Wise, S.P. (1982). The motor cortex of the rat: cytoarchitecture and microstimulation mapping. J. Comp. Neurol. 212: 76–88.PubMedCrossRefGoogle Scholar
  28. Fairén, A., Cobas, A., and Fonseca, M. (1986). Times of generation of glutamic acid decarboxylase immunoreactive neurons in mouse somatosensory cortex. J. Comp. Neurol. 251: 67–83.PubMedCrossRefGoogle Scholar
  29. Fletcher, T.L. and Shain, W. (1993). Ethanol-induced changes in astrocyte gene expression during rat central nervous system development. Alcohol Clin. Exp. Res. 17: 993–1001.PubMedGoogle Scholar
  30. Frumkina, L.E. (1985). [Effect of chronic alcoholic intoxication in the rat on the structural organization of the caudate nucleus in their progeny]. Arkh. Anat. Gistol. Embriol. 88: 26–34.PubMedGoogle Scholar
  31. Gage, F.H. (1994). Neuronal stem cells: their characterization and utilization. Neurobiol. Aging 15(Suppl. 2): S191.PubMedCrossRefGoogle Scholar
  32. Gage, F.H., Coates, P.W., Palmer, T.D., Kuhn, H.G., Fisher, L.J., Suhonen, J.O., Peterson, D.A., Suhr, S.T., and Ray, J. (1995). Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl. Acad. Sci. U. S. A. 92: 11879–11883.PubMedGoogle Scholar
  33. Goodlett, C.R., Leo, J.T., O’Callaghan, J.P., Mahoney, J.C., and West, J.R. (1993). Transient cortical astrogliosis induced by alcohol exposure during the neonatal brain growth spurt in rats. Dev. Brain Res. 72: 85–97.CrossRefGoogle Scholar
  34. Gould, E., Reeves, A.J., Graziano, M.S., and Gross, C.G. (1999). Neurogenesis in the neocortex of adult primates. Science 286: 548–552.PubMedCrossRefGoogle Scholar
  35. Gould, E., Vail, N., Wagers, M., and Gross, C.G. (2001). Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc. Natl. Acad. Sci. U. S. A. 98: 10910–10917.PubMedCrossRefGoogle Scholar
  36. Gressens, P., Lammens, M., Picard, J.J., and Evrard, P. (1992). Ethanol-induced disturbances of gliogenesis and neuronogenesis in the developing murine brain: an in vitro and in vivo immunohistochemical and ultrastructural study. Alcohol Alcohol 27: 219–226.PubMedGoogle Scholar
  37. Gray, G.E. and Sanes, J. (1992). Lineage of radial glia in chicken optic tectum. Development 114: 271–283.PubMedGoogle Scholar
  38. Hartfuss, E., Galli, R., Heins, N., and Gotz, M. (2001). Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229: 15–30.PubMedCrossRefGoogle Scholar
  39. Hicks, S.P. and D’Amato, C.J. (1977). Locating corticospinal neurons by retrograde axonal transport of horseradish peroxidase. Exp. Neurol. 56: 410–420.PubMedCrossRefGoogle Scholar
  40. Hinds, J.W. (1968). Autoradiographic study of histogenesis in the mouse olfactory bulb. II. Cell proliferation and migration. J. Comp. Neurol. 134: 305–322.PubMedCrossRefGoogle Scholar
  41. His, W. (1887). Zur Geschichte des menschlichen Rueckenmarks und der Nervenwurzeln. Abh. Kgl. Saechs. Ges Wissensch. Math. Phys. Kl 13: 479–513.Google Scholar
  42. Hockfield, S. and McKay, R.D. (1985). Identification of major cell classes in the developing mammalian nervous system. J. Neurosci. 5: 3310–3328.PubMedGoogle Scholar
  43. Inouye, M. and Murakami, U. (1980). Temporal and spatial patterns of Purkinje cell formation in the mouse cerebellum. J. Comp. Neurol. 194: 499–503.PubMedCrossRefGoogle Scholar
  44. Jackson, C.A., Peduzzi, J.D., and Hickey, T.L. (1989). Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons. J. Neurosci. 9: 1242–1253.PubMedGoogle Scholar
  45. Jacobs, J.S. and Miller, M.W. (2000). Cell cycle kinetics and immunohistochemical characterization of dissociated fetal cortical cultures: evidence that differentiated neurons have mitotic capacity. Dev. Brain Res. 122: 67–80.CrossRefGoogle Scholar
  46. Jacobs, J.S. and Miller, M.W. (2001). Proliferation and death of cultured fetal neocortical neurons: effects of ethanol on the dynamics of cell growth. J. Neurocytol. 30: 391–401.PubMedCrossRefGoogle Scholar
  47. Jacobson, M. (1991). Developmental Neurobiology, 3rd ed. Plenum Press, New York.Google Scholar
  48. Jimenez, D., Lopez-Mascaraque, L.M., Valverde, F., and de Carlos, J.A. (2002). Tangential migration in neocortical development. Dev. Biol. 244: 155–169.PubMedCrossRefGoogle Scholar
  49. Kaplan, M.S. and Hinds, J.W. (1977). Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197: 1092–1094.PubMedGoogle Scholar
  50. Kaplan, M.S. and Hinds, J.W. (1980). Gliogenesis of astrocytes and oligodendrocytes in the neocortical grey and white matter of the adult rat: electron microscopic analysis of light radioautographs. J. Comp. Neurol. 193: 711–727.PubMedCrossRefGoogle Scholar
  51. Kaplan, M.S. (1981). Neurogenesis in the 3-month-old rat visual cortex. J. Comp. Neurol. 195: 323–338.PubMedCrossRefGoogle Scholar
  52. Kennedy, L.A., Elliot, M.J., and Laverty, W.H. (1984). Reductions in the plating efficiency of the fetal neural precursor cells following maternal alcohol consumption. Intl. J. Dev. Neurosci. 2: 437–446.CrossRefGoogle Scholar
  53. Kennedy, L.A. and Elliot, M.J. (1985). Cell proliferation in the embryonic mouse neocortex following acute maternal alcohol intoxication. Intl. J. Dev. Neurosci. 3: 311–315.CrossRefGoogle Scholar
  54. Kuhn, H.G., Dickinson-Anson, H., and Gage, F.H. (1996). Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16: 2027–2033.PubMedGoogle Scholar
  55. Leblond, C.P. and Walker, B.E. (1956). Renewal of cell populations. Physiol. Rev. 36: 255–276.PubMedGoogle Scholar
  56. Lendahl, U., Zimmerman, L.B., and McKay, R.D. (1990). CNS stem cells express a new class of intermediate filament protein. Cell 60: 585–595.PubMedCrossRefGoogle Scholar
  57. Letinic, K., Zoncu, R., and Rakic, P. (2002). Origin of GABAergic neurons in the human neocortex. Nature 417: 645–649.PubMedCrossRefGoogle Scholar
  58. Levers, T.E., Edgar, J.M., and Price, D.J. (2001). The fates of cells generated at the end of neurogenesis in developing mouse cortex. J. Neurobiol. 48: 265–277.PubMedCrossRefGoogle Scholar
  59. Liesi, P. (1997). Ethanol-exposed central neurons fail to migrate and undergo apoptosis. J. Neurosci. Res. 48: 439–448.PubMedCrossRefGoogle Scholar
  60. Lu, E.J., Brown, W.J., Cole, R., and deVellis, J. (1980). Ultrastructural differentiation and synaptogenesis in aggregating rotation cultures of rat cerebral cells. J. Neurosci. Res. 5: 447–463.PubMedCrossRefGoogle Scholar
  61. Lund, R.D. and Mustari, M.J. (1977). Development of the geniculocortical pathway in rats. J. Comp. Neurol. 173: 289–306.PubMedCrossRefGoogle Scholar
  62. Luo, J. and Miller, M.W. (1998). Growth factor-mediated neural proliferation: Target of ethanol toxicity. Brain Res. Dev. 27: 157–167.CrossRefGoogle Scholar
  63. Luo, J. and Miller, M.W. (1999a). Platelet-derived growth factor-mediated signal transduction underlying astrocyte proliferation: site of ethanol action. J. Neurosci. 19: 10014–10025.PubMedGoogle Scholar
  64. Luo, J. and Miller, M.W. (1999b). Transforming growth factor β1-regulated cell proliferation and expression of neural cell adhesion molecule in B104 neuroblastoma cells: Differential effects of ethanol. J. Neurochem. 72: 2286–2293.PubMedCrossRefGoogle Scholar
  65. Malatesta, P., Hartfuss, E., and Gotz, M. (2000). Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127: 5253–5263.PubMedGoogle Scholar
  66. Marin, O., Anderson, S.A., and Rubenstein, J.L. (2000). Origin and molecular specification of striatal interneurons. J. Neurosci. 20: 6063–6076.PubMedGoogle Scholar
  67. Martens, D.J., Tropepe, V., and van der Kooy D. (2000). Separate proliferation kinetics of fibroblast growth factor-responsive and epidermal growth factorresponsive neural stem cells within the embryonic forebrain germinal zone. J. Neurosci. 20: 1085–1095.PubMedGoogle Scholar
  68. Martin, A.H. and Langman, J. (1965). The development of the spinal cord examined by autoradiography. J. Embryol. Exp. Morphol. 14: 23–35.Google Scholar
  69. Mattson, S.N., Riley, E.P., Jernigan, T.L., Garcia, A., Kaneko, W.M., Ehlers, C.L., and Jones, K.L. (1994). A decrease in the size of the basal ganglia following prenatal alcohol exposure: a preliminary report. Neurotoxicol. Teratol. 16: 283–289.PubMedCrossRefGoogle Scholar
  70. Mattson, S.N., Riley, E.P., Sowell, E.R., Jernigan, T.L., Sobel, D.F., and Jones, K.L. (1996). A decrease in the size of the basal ganglia in children with fetal alcohol syndrome. Alcohol Clin. Exp. Res. 20: 1088–1093.PubMedCrossRefGoogle Scholar
  71. McConnell, S.K. (1988). Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation. J. Neurosci. 8: 945–974.PubMedGoogle Scholar
  72. Miale, I.L. and Sidman, R.L. (1961). An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp. Neurol. 4: 277–296.PubMedCrossRefGoogle Scholar
  73. Miles, J.H., Takahashi, T.N., Haber, A., and Hadden, L. (2003). Autism families with a high incidence of alcoholism. J. Aut. Dev. Disorders 33: 403–415.CrossRefGoogle Scholar
  74. Miller, M.W. (1985). Co-generation of projection and local circuit neurons in neocortex. Dev. Brain Res. 23: 187–192.CrossRefGoogle Scholar
  75. Miller, M.W. (1986a). The migration and neurochemical differentiation of γ-aminobutyric acid (GABA) immunoreactive neurons in rat visual cortex as demonstrated by a combined immunocytochemical-autoradiographic technique. Dev. Brain Res. 28: 41–46.CrossRefGoogle Scholar
  76. Miller, M.W. (1986b). Effects of alcohol on the generation and migration of cerebral cortical neurons. Science 233: 1308–1311.PubMedGoogle Scholar
  77. Miller, M.W. (1987a). Effect of prenatal exposure to alcohol on the distribution and time of origin of corticospinal neurons in the rat. J. Comp. Neurol. 257: 372–382.PubMedCrossRefGoogle Scholar
  78. Miller, M.W. (1987b). The origin of corticospinal projection neurons in rat. Exp. Brain Res. 67: 339–351.PubMedCrossRefGoogle Scholar
  79. Miller, M.W. (1988a). Maturation of rat visual cortex. IV. Generation, migration, morphogenesis and connectivity of a typically oriented pyramidal neurons. J. Comp. Neurol. 274: 387–405.PubMedCrossRefGoogle Scholar
  80. Miller, M.W. (1988b). Effect of prenatal exposure to ethanol on the development of cerebral cortex: I. Neuronal generation. Alcohol Clin. Exp. Res. 12: 440–449.PubMedCrossRefGoogle Scholar
  81. Miller, M.W. (1989). Effects of prenatal exposure to ethanol on neocortical development: II. Cell proliferation in the ventricular and subventricular zones of the rat. J. Comp. Neurol. 287: 326–338.PubMedCrossRefGoogle Scholar
  82. Miller, M.W. (1992a). Effects of prenatal exposure to ethanol on cell proliferation and neuronal migration. In: Miller, M.W. (ed.), Development of the Central Nervous System: Effects of Alcohol and Opiates. Wiley-Liss, New York. pp. 47–69.Google Scholar
  83. Miller, M.W. (1992b). Migration of peptide-containing neurons to rat cingulated cortex. Cereb. Cortex 2: 444–455.PubMedGoogle Scholar
  84. Miller, M.W. (1992c). Circadian rhythm of cell proliferation in the telencephalic ventricular zone: Effect of in utero exposure to ethanol. Brain Res. 595: 17–24.PubMedCrossRefGoogle Scholar
  85. Miller, M.W. (1993). Migration of cortical neurons is altered by gestational exposure to ethanol. Alcohol Clin. Exp. Res. 17: 304–314.PubMedCrossRefGoogle Scholar
  86. Miller, M.W. (1995a). Effect of pre-or postnatal exposure to ethanol on the total number of neurons in the principal sensory nucleus of the trigeminal nerve: Cell proliferation and neuronal death. Alcohol Clin. Exp. Res. 19: 1359–1363.PubMedCrossRefGoogle Scholar
  87. Miller, M.W. (1995b). Generation of neurons in the rat dentate gyrus and hippocampus: effects of prenatal and postnatal treatment with ethanol. Alcohol Clin. Exp. Res. 19: 1500–1509.PubMedCrossRefGoogle Scholar
  88. Miller, M.W. (1995c). Relationship of the time of origin and death of neurons in rat somatosensory cortex: barrel versus septal cortex and projection versus local circuit neurons. J. Comp. Neurol. 355: 6–14.PubMedCrossRefGoogle Scholar
  89. Miller, M.W. (1996). Limited ethanol exposure selectively alters the proliferation of precursor cells in the cerebral cortex. Alcohol Clin. Exp. Res. 20: 139–143.PubMedCrossRefGoogle Scholar
  90. Miller, M.W. (1997). Effects of prenatal exposure to ethanol on callosal projection neurons in rat somatosensory cortex. Brain Res. 766: 121–128.PubMedCrossRefGoogle Scholar
  91. Miller, M.W. (1999). A longitudinal study of the effects of prenatal ethanol exposure on neuronal acquisition and death in the principal sensory nucleus of the trigeminal nerve: interaction with changes induced by transection of the infraorbital nerve. J. Neurocytol. 28: 999–1015.PubMedCrossRefGoogle Scholar
  92. Miller, M.W. (2003a). Balance of cell proliferation and death among dynamic populations: A mathematical model. J. Neurobiol. 57: 172–182.PubMedCrossRefGoogle Scholar
  93. Miller, M.W. (2003b). Expression of transforming growth factor b in developing rat cerebral cortex: effects of prenatal exposure to ethanol. J. Comp. Neurol. 460: 410–424.PubMedCrossRefGoogle Scholar
  94. Miller, M.W. (submitted). Effect of prenatal exposure to ethanol on glutamate and GABA immunoreactivity in macaque somatosensory and motor cortices: Critical timing of exposure. Exp. Neurol.Google Scholar
  95. Miller, M.W. and Al-Ghoul, W.M. (1993). Numbers of neurons in the developing principal sensory nucleus of the trigeminal nerve: Evidence of naturally occurring neuronal death. J. Comp. Neurol. 330: 491–501.PubMedCrossRefGoogle Scholar
  96. Miller, M.W., Chiaia, N.L., and Rhoades, R.W. (1990). Intracellular recording and injection study of corticospinal neurons in the rat somatosensory cortex: Effect of prenatal exposure to ethanol. J. Comp. Neurol. 297: 91–105.PubMedCrossRefGoogle Scholar
  97. Miller, M.W. and Kuhn, P.E. (1995). Cell cycle kinetics in fetal rat cerebral cortex: Effects of prenatal treatment with ethanol assessed by a cumulative labeling technique with flow cytometry. Alcohol Clin. Exp. Res. 19: 233–237.PubMedCrossRefGoogle Scholar
  98. Miller, M.W. and Muller, S.J. (1989). Structure and histogenesis of the principal sensory nucleus of the trigeminal nerve: effects of prenatal exposure to ethanol. J. Comp. Neurol. 282: 570–580.PubMedCrossRefGoogle Scholar
  99. Miller, M.W. and Nowakowski, R.S. (1991). Effect of prenatal exposure to ethanol on the cell cycle kinetics and growth fraction in the proliferative zones of fetal rat cerebral cortex. Alcohol Clin. Exp. Res. 15: 229–232.PubMedCrossRefGoogle Scholar
  100. Miller, M.W. and Robertson, R.T. (1993a). Development of cingulate cortex: Proteins, neurons, and afferents. In: Vogt, B.A. and Gabriel, M. (eds.), Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Handbook, Birkhauser, Boston, pp. 151–180.Google Scholar
  101. Miller, M.W. and Robertson, S. (1993b). Prenatal exposure to ethanol alters the postnatal development and transformation of radial glia to astrocytes in the cortex. J. Comp. Neurol. 337: 253–266.PubMedCrossRefGoogle Scholar
  102. Nagahara, A.H. and Handa, R.J. (1995). Fetal alcohol exposure alters the induction of immediate early gene mRNA in the rat prefrontal cortex after an alternation task. Alcohol Clin. Exp. Res. 19: 1389–1397.PubMedCrossRefGoogle Scholar
  103. Nanson, J.L. (1992). Autism in fetal alcohol syndrome: a report of six cases. Alcohol Clin. Exp. Res. 16: 558–565.PubMedCrossRefGoogle Scholar
  104. Nixon, K. and Crews, F.T. (2002). Binge ethanol exposure decreases neurogenesis in adult rat hippocampus. J. Neurochem. 83: 1087–1093.PubMedCrossRefGoogle Scholar
  105. Noctor, S.C., Flint, A.C., Weissman, T.A., Dammerman, R.S., and Kriegstein, A.R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature 409: 714–720.PubMedCrossRefGoogle Scholar
  106. Nowakowski, R.S., Lewin, S.B., and Miller, M.W. (1989). Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J. Neurocytol. 18: 311–318.PubMedCrossRefGoogle Scholar
  107. O’Malley, K.D., and Nanson, J. (2002). Clinical implications of a link between fetal alcohol spectrum disorder and attention-deficit hyperactivity disorder. Can. J. Psych. 47: 349–354.Google Scholar
  108. Palay, S.L. and Chan-Palay, V. (1974). Cerebellar Cortex. Cytology and Organization. Springer, Berlin.Google Scholar
  109. Pawlak, R., Skrzypiec, A., Sulkowski, S., and Buczko, W. (2002). Ethanol-induced neurotoxicity is counterbalanced by increased cell proliferation in mouse dentate gyrus. Neurosci. Lett. 327: 83–86.PubMedCrossRefGoogle Scholar
  110. Powell, E.M., Mars, W.M., and Levitt, P. (2001). Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon. Neuron 30: 79–89.PubMedCrossRefGoogle Scholar
  111. Quastler, H. (1959). Cell population kinetics in the intestinal epithelium of the mouse. Exp. Cell Res. 17: 420–438.PubMedCrossRefGoogle Scholar
  112. Rakic, P. (1971). Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electron microscopic study in Macaca rhesus. J. Comp. Neurol. 141: 283–312.PubMedCrossRefGoogle Scholar
  113. Rakic, P. (2002). Neurogenesis in adult primates. Prog. Brain Res. 138: 3–14.PubMedCrossRefGoogle Scholar
  114. Rakic, P., Stensas, L.J., Sayre, E., and Sidman, R.L. (1974). Computer-aided threedimensional reconstruction and quantitative analysis of cells from serial electron microscopic montages of foetal monkey brain. Nature 250: 31–34.PubMedCrossRefGoogle Scholar
  115. Ramon y Cajal, S. (1894). Les Nouvelles Idées sur la Structure du Système Nerveux Chez L’homme et Chez les Vertébrés. Reinwald, Paris.Google Scholar
  116. Ramon y Cajal, S. (1909–1911). In: Swanson, N., Swanson, L.W. (trans.), Histology of the Nervous System, Oxford University Press, New York.Google Scholar
  117. Sampson, P.D., Streissguth, A.P., Bookstein, F.L., Little, R.E., Clarren, S.K., Dehaene, P., Hanson, J.W., and Graham, J.M. Jr. (1997). Incidence of fetal alcohol syndrome and prevalence of alcohol-related neurodevelopmental disorder. Teratology 56: 317–326.PubMedCrossRefGoogle Scholar
  118. Sauer, F.C. (1935). Mitosis in the neural tube. J. Comp. Neurol. 62: 377–405.CrossRefGoogle Scholar
  119. Sauer, F.C. (1936). The interkinetic migration of embryonic epithelial nuclei. J. Morphol. 60: 1–11.CrossRefGoogle Scholar
  120. Sauer, M.E. and Chittenden, A.C. (1959). Deoxyribonucleic acid content of cell nuclei in the neural tube of the chick embryo: evidence for intermitotic migration of nuclei. Exp. Cell Res. 16: 1–6.PubMedCrossRefGoogle Scholar
  121. Sauer, M.E. and Walker, B.E. (1959). Radiographic study of interkinetic nuclear migration in the neural tube. Proc. Soc. Exp. Biol. 101: 557–560.Google Scholar
  122. Schaper, A. (1897). The earliest differentiation in the central nervous system of vertebrates. Science 5: 430–431.Google Scholar
  123. Schmechel, D.E. and Rakic, P. (1979). A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat. Embryol. 156: 115–152.PubMedCrossRefGoogle Scholar
  124. Seymour, R.M. and Berry, M. (1975). Scanning and transmission electron microscope studies of interkinetic nuclear migration in the cerebral vesicles of the rat. J. Comp. Neurol. 160: 105–126.PubMedCrossRefGoogle Scholar
  125. Shors, T.J., Miesegaes, G., Beylin, A., Zhao, M., Rydel, T., and Gould, E. (2001). Neurogenesis in the adult is involved in the formation of trace memories. Nature 410: 372–376.PubMedCrossRefGoogle Scholar
  126. Shoukimas, G.M. and Hinds, J.W. (1978). The development of the cerebral cortex in the embryonic mouse: an electron microscopic serial section analysis. J. Comp. Neurol. 179: 795–830.PubMedCrossRefGoogle Scholar
  127. Sidman, R.L., Miale, I.L., and Feder, N. (1959). Cell proliferation and migration in the primitive ependymal zone: an autoradiographic study of histogenesis in the nervous system. Exp. Neurol. 1: 322–333.PubMedCrossRefGoogle Scholar
  128. Smart, I.H.M. and McSherry, G.M. (1982). Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production. J. Anat. 134: 415–442.PubMedGoogle Scholar
  129. Stenman, J., Toresson, H., and Campbell, K. (2003). Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis. J. Neurosci. 23: 167–174.PubMedGoogle Scholar
  130. Takahashi, T., Nowakowski, R.S., and Caviness, V.S., Jr. (1993). Cell cycle parameters and patterns of nuclear movement in the neocortical proliferative zone of the fetal mouse. J. Neurosci. 13: 820–833.PubMedGoogle Scholar
  131. Tamamaki, N., Fujimori, K.E., and Takauji, R. (1997). Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J. Neurosci. 17: 8313–8323.PubMedGoogle Scholar
  132. Thomaidou, D., Mione, M.C., Cavanagh, J.F., and Parnavelas, J.G. (1997). Apoptosis and its relation to the cell cycle in the developing cerebral cortex. J. Neurosci. 17: 1075–1085.PubMedGoogle Scholar
  133. Tohyama, T., Lee, V.M., Rorke, L.B., Marvin, M., McKay, R.D., and Trojanowski, J.Q. (1992). Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab. Invest. 66: 303–313.PubMedGoogle Scholar
  134. Uzman, L.L. (1960). The histogenesis of the mouse cerebellum as studied by its tritiated thymidine uptake. J. Comp. Neurol. 114: 137–160.PubMedCrossRefGoogle Scholar
  135. Voigt, T. (1989). Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J. Comp. Neurol. 289: 74–88.PubMedCrossRefGoogle Scholar
  136. Waechter, R. and Jaensch, B. (1972). Generation times of the matrix cells during embryonic brain development: an autoradiographic study in rats. Brain Res. 46: 235–250.CrossRefGoogle Scholar
  137. Walker, D.W. and Freund, G. (1971). Impairment of shuttlebox avoidance learning following prolonged alcohol consumption in rats. Physiol. Behav. 7: 773–778.PubMedCrossRefGoogle Scholar
  138. Walker, D.W. and Hunter, B.E. (1978). Short-term memory impairment following chronic alcohol consumption in rats. Neuropsychologia 16: 545–553.PubMedCrossRefGoogle Scholar
  139. Walker, D.W., Barnes, D.E., Zornetzer, S.F., Hunter, B.E., and Kubanis, P. (1980). Neuronal loss in hippocampus induced by prolonged ethanol consumption in rats. Science 209: 711–713.PubMedGoogle Scholar
  140. Watterson, R.L., Veneziano, P., and Bartha, A. (1956). Absence of a true germinal zone in neural tubes of young chick embryos as demonstrated by the colchicines technique. Anat. Rec. 124: 379.Google Scholar
  141. Weinberg, N.Z. (1997). Cognitive and behavioral deficits associated with parental alcohol use. J. Am. Acad. Child Adol. Psych. 36: 1177–1186.CrossRefGoogle Scholar
  142. West, J.R., Perrotta, D.M., and Erickson, C.K. (1998). Fetal alcohol syndrome: a review for Texas physicians. Texas. Med. 94: 61–67.Google Scholar
  143. Wichterle, H., Turnbull, D.H., Nery, S., Fishell, G., and Alvarez-Buylla, A. (2001). In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128: 3759–3771.PubMedGoogle Scholar
  144. Wise, S.P., Murray, E.A., and Coulter, J.D. (1979). Somatotopic organization of corticospinal and corticotrigeminal neurons in the rat. Neuroscience 4: 65–78.PubMedCrossRefGoogle Scholar
  145. Xu, Q., Cobos, I., De La Cruz, E., Rubenstein, J.L., and Anderson, S.A. (2004). Origins of cortical interneuron subtypes. J. Neurosci. 24: 2612–22.PubMedCrossRefGoogle Scholar
  146. Zhu, Y., Li, H., Zhou, L., Wu, J.Y., and Rao, Y. (1999). Cellular and molecular guidance of GABAergic neuronal migration from an extracortical origin to the neocortex. Neuron 23: 473–485.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Michael W. Miller
    • 1
    • 3
  • Marla B. Bruns
    • 2
  1. 1.Department of Neuroscience and PhysiologySUNY-Upstate Medical UniversitySyracuse
  2. 2.Department of Neuroscience and PhysiologySUNY Upstate Medical UniversitySyracuse
  3. 3.Research ServiceVeterans Affairs Medical CenterSyracuse

Personalised recommendations