Advertisement

Cellular Heterogeneity of the Neonatal SVZ and its Contributions to Forebrain Neurogenesis and Gliogenesis

  • Steven W. Levison
  • James E. Goldman

Keywords

Olfactory Bulb Neural Stem Cell Subventricular Zone Ventricular Zone Radial Glia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acklin, S.E. and Van der Kooy, D. (1993). Clonal heterogeneity in the germinal zone of the developing rat telencephalon. Development. 118: 175–192.PubMedGoogle Scholar
  2. Aguirre, A.A., Chittajallu, R., Belachew, S. and Gallo, V. (2004). NG2-expressing cells in the subventricular zone are type C-like cells and contribute to interneuron generation in the postnatal hippocampus. J. Cell Biol. 165: 575–589.PubMedCrossRefGoogle Scholar
  3. Altman, J. (1963). Autoradiographic Investigation of Cell Proliferation in the Brains of Rats and Cats. Anat. Rec. 145: 573–591.PubMedCrossRefGoogle Scholar
  4. Altman, J. (1966). Proliferation and migration of undifferentiated precursor cells in the rat during postnatal gliogenesis. Exp. Neurol. 16: 263–278.PubMedCrossRefGoogle Scholar
  5. Altman, J. and Das, G.D. (1966). Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J. Comp. Neurol. 126: 337–389.PubMedCrossRefGoogle Scholar
  6. Anderson, S.A., Eisenstat, D.D., Shi, L. and Rubenstein, J.L. (1997). Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. [see comments]. Science 278: 474–476.PubMedCrossRefGoogle Scholar
  7. Angevine, J.B. and Sidman, R.L. (1961). Autoadiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192: 766–768.Google Scholar
  8. Baker, H., Liu, N., Chun, H.S., Saino, S., Berlin, R., Volpe, B. and Son, J.H. (2001). Phenotypic differentiation during migration of dopaminergic progenitor cells to the olfactory bulb. J. Neurosci. 21: 8505–8513.PubMedGoogle Scholar
  9. Bayer, S.A. and Altman, J. (1991). Neocortical Development. New York, NY Raven Press.Google Scholar
  10. Belachew, S., Chittajallu, R., Aguirre, A.A., Yuan, X., Kirby, M., Anderson, S., and Gallo, V. (2003). Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J. Cell Biol. 161: 169–186.PubMedCrossRefGoogle Scholar
  11. Betarbet, R., Zigova, T., Bakat, R.A. and Luskin, M.B. (1996). Dopaminergic and GABAergic interneurons of the olfactory bulb are derived from the neonatal subventricular zone. Int. J. Dev. Neurosci. 14: 921–930.PubMedCrossRefGoogle Scholar
  12. Blakemore, W.F. (1969). The ultrastructure of the subependymal plate in the rat. J. Anat. 104: 423–433.PubMedGoogle Scholar
  13. Bryans, W.A. (1959). Mitotic activity in the brain of the adult rat. Anatomical Record 133: 65–73.CrossRefGoogle Scholar
  14. Campbell, K. and Gotz, M. (2002). Radial glia: multi-purpose cells for vertebrate brain development. Trends Neurosci. 25: 235–238.PubMedCrossRefGoogle Scholar
  15. Carleton, A., Petreanu, L.T., Lansford, R., Alvarez-Buylla, A. and Lledo, P.M. (2003). Becoming a new neuron in the adult olfactory bulb. Nat. Neurosci. 6: 507–518.PubMedGoogle Scholar
  16. Chandran, S., Kato, H., Gerreli, D., Compston, A., Svendsen, C.N. and Allen, N.D. (2003). FGF-dependent generation of oligodendrocytes by a hedgehog-independent pathway. Development 130: 6599–6609.PubMedCrossRefGoogle Scholar
  17. Ciccolini, F. (2001). Identification of two distinct types of multipotent neural precursors that appear sequentially during CNS development. Mol. Cell. Neurosci. 17: 895–907.PubMedCrossRefGoogle Scholar
  18. Doetsch, F. and Alvarez-Buylla, A. (1996). Network of tangential pathways for neuronal migration in adult mammalian brain. Proc. Natl. Acad. Sci. U S A 93: 14895–14900.PubMedCrossRefGoogle Scholar
  19. Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M. and Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97: 703–716.PubMedCrossRefGoogle Scholar
  20. Edelman, G.M. and Rutishauser, U. (1981). Molecules involved in cell-cell adhesion during development. J. Supramol. Struct. Cell. Biochem. 16: 259–268.PubMedCrossRefGoogle Scholar
  21. Gorski, J.A., Talley, T., Qiu, M., Puelles, L., Rubenstein, J.L. and Jones, K.R. (2002). Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22: 6309–6314.PubMedGoogle Scholar
  22. Hartfuss, E., Galli, R., Heins, N. and Gotz, M.,(2001). Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229: 15–30.PubMedCrossRefGoogle Scholar
  23. His, W. (1904). Die Entwicklung des menschlichen Gehirn Wåhrend der ersten Monate. Leipzig, von S. Hirzel.Google Scholar
  24. Imamoto, K., Paterson, J.A. and Leblond, C.P. (1978). Radioautographic investigation of gliogenesis in the corpus callosum of young rats. I. Sequential changes in oligodendrocytes. J. Comp. Neurol. 180: 115–138.PubMedCrossRefGoogle Scholar
  25. Kakita, A. and Goldman, J.E. (1999). Patterns and dynamics of SVZ cell migration in the postnatal forebrain: monitoring living progenitors in slice preparations. Neuron 23: 461–472.PubMedCrossRefGoogle Scholar
  26. Kakita, A., Zerlin, M., Takahashi, H. and Goldman, J.E. (2003). Some glial progenitors in the neonatal subventricular zone migrate through the corpus callosum to the contralateral cerebral hemisphere. J. Comp. Neurol. 458: 381–388.PubMedCrossRefGoogle Scholar
  27. Kershman, J., (1938). The medulloblast and the medulloblastoma. Archives of Neurological Psychiatry 40: 937–967.Google Scholar
  28. Kessaris, N., Jamen, F., Rubin, L.L. and Richardson, W.D. (2004). Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development 131: 1289–1298.PubMedCrossRefGoogle Scholar
  29. Laywell, E.D., Rakic, P., Kukekov, V.G., Holland, E.C. and Steindler, D.A. (2000). Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl. Acad. Sci. U. S. A. 97: 13883–13888.PubMedCrossRefGoogle Scholar
  30. Levine, S.M. and Goldman, J.E. (1988). Ultrastructural characteristics of GD3 ganglioside-positive immature glia in rat forebrain white matter. J. Comp. Neurol. 277: 456–464.PubMedCrossRefGoogle Scholar
  31. Levison, S.W., Chuang, C., Abramson, B.J. and Goldman, J.E. (1993a). The migrational patterns and developmental fates of glial precursors in the rat subventricular zone are temporally regulated. Development 119: 611–622.PubMedGoogle Scholar
  32. Levison, S.W., Chuang, C., Abramson, B.J. and Goldman, J.E. (1993b). The migrational patterns and developmental fates of glial precursors in the rat subventricular zone are temporally regulated. Development 119: 611–623.PubMedGoogle Scholar
  33. Levison, S.W. and Goldman, J.E. (1993). Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron 10: 201–12.PubMedCrossRefGoogle Scholar
  34. Levison, S.W. and Goldman, J.E. (1997). Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. J. Neurosci. Res. 48: 83–94.PubMedCrossRefGoogle Scholar
  35. Levison, S.W., Young, G.M. and Goldman, J.E. (1999). Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. J. Neurosci. Res. 57: 435–446.PubMedCrossRefGoogle Scholar
  36. Lewis, P.D. (1968). The fate of the subependymal cell in the adult rat brain, with a note on the origin of microglia. Brain 91: 721–736.PubMedGoogle Scholar
  37. Lewis, P.D. and Lai, M. (1974). Cell generation in the subependymal layer of the rat brain during the early postnatal period. Brain Res. 77: 520–525.CrossRefGoogle Scholar
  38. Lois, C., Garcia-Verdugo, J.M. and Alvarez-Buylla, A. (1996). Chain migration of neuronal precursors. Science 271: 978–981.PubMedGoogle Scholar
  39. Luskin, M.B. (1993). Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11: 173–189.PubMedCrossRefGoogle Scholar
  40. Luskin, M.B., Parnavelas, J.G. and Barfield, J.A. (1993). Neurons, astrocytes, and oligodendrocytes of the rat cerebral cortex originate from separate progenitor cells: An ultrastructural analysis of clonally related cells. J. Neurosci. 13: 1730–1750.PubMedGoogle Scholar
  41. Luskin, M.B., Pearlman, A.L. and Sanes, J.R. (1988). Cell lineage in the cerebral Cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1: 635–647.PubMedCrossRefGoogle Scholar
  42. Malatesta, P., Hartfuss, E. and Gotz, M. (2000). Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development—Supplement 127: 5253–5263.Google Scholar
  43. Marin, O., Anderson, S. and Rubenstein, J.L. (2000). Origin and molecular specification of striatal interneurons. J. Neurosci. 20: 6063–6076.PubMedGoogle Scholar
  44. Marshall, C.A. and Goldman, J.E. (2002). Subpallial dlx2-expressing cells give rise to astrocytes and oligodendrocytes in the cerebral cortex and white matter. J. Neurosci. 20: 30–42.Google Scholar
  45. McConnell, S.K. (1991). The generation of neuronal diversity in the central nervous system. Annu. Rev. Neurosci. 14: 269–300.PubMedCrossRefGoogle Scholar
  46. Menezes, J.R., Smith, C.M., Nelson, K.C. and Luskin, M.B. (1995). The division of neuronal progenitor cells during migration in the neonatal mammalian forebrain. Mol. Cell Neurosci. 6: 496–508.PubMedCrossRefGoogle Scholar
  47. Mi, H., Haeberle, H. and Barres, B.A. (2001). Induction of astrocyte differentiation by endothelial cells. J. Neurosci. 21: 1538–1547.PubMedGoogle Scholar
  48. Misson, J.P., Austin, C.P., Takahashi, T., Cepko, C.L. and Caviness, Jr., V.S. (1991). The alignment of migrating neural cells in relation to the murine neopallial radial glial fiber system. Cereb. Cortex 1: 221–229.PubMedGoogle Scholar
  49. Morshead, C.M., Reynolds, B.A., Craig, C.G., McBurney, M.W., Staines, W.A., Morassutti, D., Weiss, S. and Van der Kooy, D. (1994). Neural stem cells in the adult mammalian forebrain: A relatively quiescent subpopulation of subependymal cells. Neuron 13: 1071–1082.PubMedCrossRefGoogle Scholar
  50. Nait-Oumesmar, B., Decker, L., Lachapelle, F., Avellana-Adalid, V., Bachelin, C. and Van Evercooren, A.B. (1999). Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci. 11: 4357–4366.PubMedCrossRefGoogle Scholar
  51. Nishiyama, A., Watanabe, M., Yang, Z. and Bu, J. (2002). Identity, distribution, and development of polydendrocytes: NG2-expressing glial cells. J. Neurocytol. 31: 437–455.PubMedCrossRefGoogle Scholar
  52. Noctor, S.C., Flint, A.C., Weissman, T.A., Dammerman, R.S. and Kriegstein, A.R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature 409: 714–720.PubMedCrossRefGoogle Scholar
  53. Noctor, S.C., Martinez-Cerdeno, V., Ivic, L. and Kriegstein, A.R. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7: 136–144.PubMedCrossRefGoogle Scholar
  54. Parnavelas, J.G. (1999). Glial cell lineages in the rat cerebral cortex. Exp. Neurol. 156: 418–429.PubMedCrossRefGoogle Scholar
  55. Paterson, J.A. (1983). Dividing and newly produced cells in the corpus callosum of adult mouse cerebrum as detected by light microscopic radioautography. Anat. Anz. 153: 149–168.PubMedGoogle Scholar
  56. Paterson, J.A., Privat, A., Ling, E.A. and Leblond, C.P. (1973). Investigation of glial cells in semithin sections III Transformation of subependymal cells into glial cells as shown by radioautography after 3H-thymidine injection into the lateral ventricle of the brain of young rats. J. Comp. Neurol. 149: 83–102.PubMedCrossRefGoogle Scholar
  57. Pleasure, S.J., Anderson, S., Hevner, R., Bagri, A., Marin, O., Lowenstein, D.H. and Rubenstein, J.L. (2000). Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron 28: 727–740.PubMedCrossRefGoogle Scholar
  58. Privat, A. and Leblond, C.P. (1972). The subependymal layer and neighboring region in the brain of the young rat. J. Comp. Neurol. 146: 227–302.CrossRefGoogle Scholar
  59. Qian, X., Davis, A.A., Goderie, S.K. and Temple, S. (1997). FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron 18: 81–93.PubMedCrossRefGoogle Scholar
  60. Raff, M.C., Abney, E.R., Cohen, J., Lindsay, R. and Noble, M. (1983). Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J. Neurosci. 3: 1289–1300.PubMedGoogle Scholar
  61. Rakic, P. (1971). Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J. Comp. Neurol. 141: 283–312.PubMedCrossRefGoogle Scholar
  62. Reid, C.B., Liang, I. and Walsh, C.A. (1999). Clonal mixing, clonal restriction, and specification of cell types in the developing rat olfactory bulb. J. Comp. Neurol. 403: 106–118.PubMedCrossRefGoogle Scholar
  63. Reynolds, B.A. and Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707–1710.PubMedGoogle Scholar
  64. Reynolds, B.A. and Weiss, S. (1996). Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175: 1–13.PubMedCrossRefGoogle Scholar
  65. Rousselot, P., Lois, C. and Alvarez-Buylla, A. (1995). Embryonic (PSA) N-CAM reveals chains of migrating neuroblasts between the lateral ventricle and the olfactory bulb of adult mice. J. Comp. Neurol. 351: 51–61.PubMedCrossRefGoogle Scholar
  66. Sauer, F.C. (1935). Mitosis in the neural tube. J. Comp. Neurol. 62: 377–405.CrossRefGoogle Scholar
  67. Smart, I.H. (1961). The subependymal layer of the mouse brain and its cellular production as shown by radioautography after thymidine-3h injection. J. Comp. Neurol. 116: 325–349.CrossRefGoogle Scholar
  68. Spassky, N., Heydon, K., Mangatal, A., Jankovski, A., Olivier, C., Queraud-Lesaux, F., Goujet-Zalc, C., Thomas, J.L. and Zalc, B. (2001). Sonic hedgehog-dependent emergence of oligodendrocytes in the telencephalon: evidence for a source of oligodendrocytes in the olfactory bulb that is independent of PDGFRalpha signaling. Development 128: 4993–5004.PubMedGoogle Scholar
  69. Spassky, N., Olivier, C., Perez-Villegas, E., Goujet-Zalc, C., Martinez, S., Thomas, J. and Zalc, B. (2000). Single or multiple oligodendroglial lineages: a controversy. Glia 29: 143–148.PubMedCrossRefGoogle Scholar
  70. Staugaitis, S.M., Zerlin, M., Hawkes, R., Levine, J.M. and Goldman, J.E. (2001). Aldolase C/zebrin II expression in the neonatal rat forebrain reveals cellular heterogeneity within the subventricular zone and early astrocyte differentiation. J. Neurosci. 21: 6195–6205.PubMedGoogle Scholar
  71. Stenman, J., Toresson, H. and Campbell, K. (2003). Identification of two distinct progenitor populations in the lateral ganglionic eminence: Implications for striatal and olfactory bulb neurogenesis. J. Neurosci. 23: 167–174.PubMedGoogle Scholar
  72. Takahashi, T., Nowakowski, R.S. and Caviness, Jr., V.S. (1995). Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. J. Neurosci. 15: 6058–6068.PubMedGoogle Scholar
  73. Thomaidou, D., Mione, M.C., Cavanagh, J.F. and Parnavelas, J.G. (1997). Apoptosis and its relation to the cell cycle in the developing cerebral cortex. J. Neurosci. 17: 1075–1085.PubMedGoogle Scholar
  74. Wichterle, H., Garcia-Verdugo, J.M. and Alvarez-Buylla, A. (1997). Direct evidence for homotypic, glia-independent neuronal migration. Neuron 18: 779–791.PubMedCrossRefGoogle Scholar
  75. Young, G.M. and Levison, S.W. (1996). Persistence of multipotential progenitors in the juvenile rat subventricular zone. Dev. Neurosci. 18: 255–265.PubMedGoogle Scholar
  76. Zerlin, M. and Goldman, J.E. (1997). Interactions between glial progenitors and blood vessels during early postnatal corticogenesis: blood vessel contact represents an early stage of astrocyte differentiation. J. Comp. Neurol. 387: 537–546.PubMedCrossRefGoogle Scholar
  77. Zerlin, M., Levison, S.W. and Goldman, J.E. (1995). Early patterns of migration, morphogenesis, and intermediate filament expression of subventricular zone cells in the postnatal rat forebrain. J. Neurosci. 15: 7238–7249.PubMedGoogle Scholar
  78. Zerlin, M., Milosevic, A. and Goldman, J.E. (2004). Glial progenitors of the neonatal subventricular zone differentiate asynchronously, leading to spatial dispersion of glial clones and to the persistence of immature glia in the adult mammalian CNS. Dev. Biol. 270: 200–213.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Steven W. Levison
  • James E. Goldman

There are no affiliations available

Personalised recommendations