Skip to main content

Are There “CO2 Sensors” in the Lung?

  • Conference paper
Book cover THE ARTERIAL CHEMORECEPTORS

Part of the book series: ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY ((AEMB,volume 580))

Abstract

Previous investigators have suggested the existence of “CO2 sensors” in the lung and an important role of these receptors in detecting the increase in venous CO2 flux and in regulating ventilatory response to meet the metabolic demand during exercise (38). However, no direct and definitive evidence has been established in identifying the CO2 receptor in the lung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adriaensen D, Timmermans JP, Brouns I, Berthoud HR, Neuhuber WL, and Scheuermann DW. Pulmonary intraepithelial vagal nodose afferent nerve terminals are confined to neuroepithelial bodies: an anterograde tracing and confocal microscopy study in adult rats. Celi Tissue Res 293: 395–405, 1998.

    Article  CAS  Google Scholar 

  2. Agostoni E, Chinnock JE, De Daly MB, and Murray JG. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol 135: 182–205, 1957.

    PubMed  CAS  Google Scholar 

  3. Baluk P, Nadel JA, and McDonald, DM. Substance P-immunoreactive sensory axons in the rat respiratory tract: a quantitative study of their distribution and role in neurogenic inflammation. J Comp Neurol 319: 586–598, 1992.

    Article  PubMed  CAS  Google Scholar 

  4. Brodwick MS and Eaton DC. Sodium channel inactivation in squid axon is removed by high internal pH or tyrosine-specific reagents. Science 200: 1494–1496, 1978.

    Article  PubMed  CAS  Google Scholar 

  5. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, and Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816–824, 1997.

    Article  PubMed  CAS  Google Scholar 

  6. Coleridge JC and Coleridge HM. Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol 99: 1–110, 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Coyle AJ, Perretti F, Manzini S, and Irvin CG. Cationic protein-induced sensory nerve activation: role of substance P in airway hyperresponsiveness and plasma protein extravasation. J Clin Invest 94: 2301–2306, 1994.

    Article  PubMed  CAS  Google Scholar 

  8. Crone C and Levitt DG. Capillary permeability to small solutes. In: Handbook of Physiology. Bethesda, MD: Am. Physiol. Soc, 1984, sect. 2, vol. IV, chapt. 10, p. 411–466.

    Google Scholar 

  9. Delpierre S, Grimaud C, Jammes Y, and Mei N. Changes in activity of vagal broncho-pulmonary C fibres by chemical and physical stimuli in the cat. J Physiol 316: 61–74, 1981.

    PubMed  CAS  Google Scholar 

  10. Gordon T, Venugopalan CS, Amdur MO, and Drazen JM. Ozone-induced airway hyperreactivity in the guinea pig. J Appl Physiol 57: 1034–1038, 1984.

    PubMed  CAS  Google Scholar 

  11. Gu Q and Lee LY. Hypersensitivity of pulmonary C fibre afferents induced by cationic proteins in the rat. J Physiol 537: 887–897, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Gu Q, Ruan T, Hong JL, Burki N, and Lee LY. Hypersensitivity of pulmonary C-fibers induced by adenosine in anesthetized rats. J Appl Physiol 95: 1315–1324, 2003.

    PubMed  CAS  Google Scholar 

  13. Heming TA, Stabenau EK, Vanoye CG, Moghadasi H, and Bidani A. Roles of intra- and extracellular carbonic anhydrase in alveolar-capillary CO2 equilibration. J Appl Physiol 77: 697–705, 1994.

    PubMed  CAS  Google Scholar 

  14. Ho CY, Gu Q, Hong JL, and Lee LY. Prostaglandin E2 enhances chemical and mechanical sensitivities of pulmonary C-fibers. Am J Respir Crit Care Med 162: 528–533, 2000.

    PubMed  CAS  Google Scholar 

  15. Ho CY and Lee LY. Ozone enhances excitabilities of pulmonary C-fibers to chemical and mechanical stimuli in anesthetized rats. J Appl Physiol 85: 1509–1515, 1998.

    PubMed  CAS  Google Scholar 

  16. Holtzman MJ, Cunningham JH, Sheller JR, Irsigler GB, Nadel JA, and Boushey HA. Effect on ozone on bronchial reactivity in atopic and nonatopic subjects. Am Rev Respir Dis 120: 1059–1067, 1979.

    PubMed  CAS  Google Scholar 

  17. Holtzman MJ, Fabbri LM, O'Byrne PM, Gold BD, Aizawa H, Walters EH, Alpert SE, and Nadel JA. Importance of airway inflammation for hyperresponsiveness induced by ozone. Am Rev Respir Dis 127: 686–690, 1983.

    PubMed  CAS  Google Scholar 

  18. Holtzman MJ. Sources of inflammatory mediators in the lung: the role of epithelial and leukocyte pathways for arachidonic acid oxygenation. In: Lung Biology in Health and Disease Series. Mediators of Pulmonary Inflation, edited by Bray MA and Anderson WH. New York: Dekker, 1991, vol. 54, chapt. 6, p. 279–325.

    Google Scholar 

  19. Hong JL, Kwong K, and Lee LY. Stimulation of pulmonary C fibres by lactic acid in rats: contributions of H+ and lactate ions. J Physiol 500: 319–329, 1997.

    PubMed  CAS  Google Scholar 

  20. Hong JL, Ho CY, Kwong K, and Lee LY. Activation of pulmonary C fibres by adenosine in anaesthetized rats: role of adenosine A1 receptors. J Physiol (Lond) 508: 109–118, 1998.

    Article  CAS  Google Scholar 

  21. Kollarik M and Undem BJ. Mechanisms of acid-induced activation of airway afferent nerve fibres in guinea-pig. J Physiol 543: 591–600, 2002.

    Article  PubMed  CAS  Google Scholar 

  22. Kwong K and Lee LY. PGE2 sensitizes cultured pulmonary vagal sensory neurons to chemical and electrical stimuli. J Appl Physiol 93: 1419–1428, 2002.

    PubMed  CAS  Google Scholar 

  23. Lee LY, and Morton RF. Pulmonary Chemoreflexes are potentiated by Prostaglandin E2 in anesthetized rats. J Appl Physiol 79: 1679–1686, 1995.

    PubMed  CAS  Google Scholar 

  24. Lee LY, Morton RF, and Lundberg JM. Pulmonary chemoreflexes elicited by intravenous injection of lactic acid in anesthetized rats. J Appl Physiol 81: 2349–2357, 1996.

    PubMed  CAS  Google Scholar 

  25. Lee LY and Pisarri TE. Afferent properties and reflex functions of bronchopulmonary C-fibers. Respir Physiol 125: 47–65, 2001.

    Article  PubMed  CAS  Google Scholar 

  26. Lee LY and Undem BJ. Bronchopulmonary vagal sensory nerves. Chapter 11 in: Advances in Vagal Afferent Neurobiology. Ed. by Undem BJ and Weinreich D. Frontiers in Neuroscience Series, CRC Press, 2005.

    Google Scholar 

  27. Lin RL, Gu Q, Lin YS, and Lee LY. Stimulatory effect of CO2 on vagal bronchopulmonary C-fiber afferents during airway inflammation. J Appl Physiol (In press, 2005)

    Google Scholar 

  28. Nyce JW and Metzger WJ. DNA antisense therapy for asthma in an animal model. Nature 385: 721–725, 1997.

    Article  PubMed  CAS  Google Scholar 

  29. Phillipson E A, Fishman NH, Hickey RF, and Nadel JA. Effect of differential vagal blockade on ventilatory response to CO2 in awake dogs. J Appl Physiol 34: 759–763, 1973.

    PubMed  CAS  Google Scholar 

  30. Polosa R, Rorke S, and Holgate ST. Evolving concepts on the value of adenosine hyperresponsiveness in asthma and chronic obstructive pulmonary disease. Thorax 57: 649–654, 2002.

    Article  PubMed  CAS  Google Scholar 

  31. Qu Z, Zhu G, Yang Z, Cui N, Li Y, Chanchevalap S, Sulaiman S, Haynie H, and Jiang C. Identification of a critical motif responsible for gating of Kir2.3 channel by intracellular protons. J Biol Chem 274: 13783–13789, 1999.

    Article  PubMed  CAS  Google Scholar 

  32. Russell NJW, Raybould HE, and Trenchard D. Role of vagal C-fiber afferents in respiratory response to hypercapnia. J Appl Physio 56: 1550–1558, 1984.

    Article  CAS  Google Scholar 

  33. Tucker SJ, Gribble FM, Zhao C, Trapp S, and Ashcroft FM. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387: 179–83, 1997.

    Article  PubMed  CAS  Google Scholar 

  34. Uchida DA, Ackerman SJ, Coyle AJ, Larsen GL, Weller PF, Freed J, and Irvin CG. The effect of human eosinophil granule major basic protein on airway responsiveness in the rat in vivo. A comparison with polycations. Am Rev Respir Dis 147: 982–988, 1993.

    PubMed  CAS  Google Scholar 

  35. Voilley N, de Weille J, Mamet J, and Lazdunski M. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 21: 8026–8033, 2001.

    PubMed  CAS  Google Scholar 

  36. Waldmann R, Champigny G, Bassilana F, Heurteaux C, and Lazdunski M. A proton-gated cation channel involved in acid-sensing. Nature 386: 173–177, 1997.

    Article  PubMed  CAS  Google Scholar 

  37. Waldmann R, Bassilana F, de Weille J, Champigny G, Heurteaux C, and Lazdunski M. Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J Biol Chem 272: 20975–20978, 1997.

    Article  PubMed  CAS  Google Scholar 

  38. Wanke E, Carbone E, and Testa PL. K+ conductance modified by a titratable group accessible to protons from intracellular side of the squid axon membrane. Biophys J 26: 319–324, 1979.

    Article  PubMed  CAS  Google Scholar 

  39. Wasserman K, Whipp BJ, Casaburi R, and Beaver WL. Carbon dioxide flow and exercise hyperpnea. Cause and effect. Am Rev Resp Dis 115: 225–237, 1977.

    PubMed  CAS  Google Scholar 

  40. Wu ZX, Morton RF, and Lee LY. Role of tachykinins in ozone-induced airway hyperresponsiveness to cigarette smoke in guinea pigs. J Appl Physiol 83: 958–965, 1997.

    PubMed  CAS  Google Scholar 

  41. Xu H, Cui N, Yang Z, Qu Z, and Jiang C. Modulation of Kir4.1 and Kir5.1 by hypercapnia and intracellular acidosis. J Physiol (Lond) 524: 725–735, 2000.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

LEE, L., LIN, R., HO, C., GU, Q., HONG, J. (2006). Are There “CO2 Sensors” in the Lung?. In: Hayashida, Y., Gonzalez, C., Kondo, H. (eds) THE ARTERIAL CHEMORECEPTORS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, vol 580. Springer, Boston, MA. https://doi.org/10.1007/0-387-31311-7_44

Download citation

Publish with us

Policies and ethics