Skip to main content

Changes in Antioxidant Protein SP-22 of Chipmunk Carotid Bodies during the Hibernation Season

  • Conference paper
THE ARTERIAL CHEMORECEPTORS

Abstract

Hibernators survive repeated cycles of torpor and arousal during the hibernation season. During torpor, hibernating animals drastically reduce their heart rate, respiratory rate, body temperature, blood flow and oxygen consumption; however, during periodic arousal, this suppressed physiological state rapidly surges and returns to euthermy (Daan, 1991; Waßmer et al., 1997; Fukuhara et al., 2003; 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araki M, Nanri H, Ejima K, Murasato Y, Fujiwara T, Nakashima Y, Ikeda M (1999) Antioxidant function of the mitochondrial protein SP-22 in the cardiovascular system. J Biol Chem 274: 2271–8

    Article  PubMed  CAS  Google Scholar 

  • Buzadzic B, Spasic M, Saicic ZS, Radojicic R, Petrovic VM, Halliwell B (1990) Antioxidant defenses in the ground squirrel (Citellus citellus). 2. The effect of hibernation. Free Radic Biol Med.9: 407–13.

    Article  PubMed  CAS  Google Scholar 

  • Carey HV and Andrews MT and Martun SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83: 1153–81

    PubMed  CAS  Google Scholar 

  • Carey HV, Sills NS, Gorham DA (1999) Stress proteins in mammalian hibernation. Am Zool 39: 825–835

    CAS  Google Scholar 

  • Daan S, Barnes BM, Strijkstra AM (1991) Warming up for sleep? Ground squirrels sleep during arousals from hibernation. Neurosci Lett 128: 265–268

    Article  PubMed  CAS  Google Scholar 

  • Drew KL, Osborne PG, Frerichs KU, Hu Y, Hallenbeck JM and Rice ME (1999) Ascorbate and glutathione regulation in hibernating ground squirrels. Brain Res 851: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Drew KL, Toien O, Rivera PM, Smith MA, Perry G, Rice ME (2002) Role of the antioxidant ascorbate in hibernation and warming from hibernation. Comp Biochem Physiol C Toxicol Pharmacol 133: 483–92

    Article  PubMed  CAS  Google Scholar 

  • Fukuhara K, Senoo H, Yoshizaki K, Ohtomo K. (2003) Immunohistochemical study of the carotid body just after arousal from hibernation. Adv Exp Med Biol 536: 619–28

    PubMed  Google Scholar 

  • Fukuhara K, Yoshizaki K, Wu Y, Senoo H, Ohtomo K (2004) Immunohistochemical and morphological changes in chipmunk carotid body during hibernation. Akita J Med 31: 71–81

    Google Scholar 

  • Hermes-Lima M, Zenteno-Savin T (2002) Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol. 133: 537–56

    Article  PubMed  Google Scholar 

  • Kusakabe T, Hirakawa H, Oikawa S, Matsuda H, Kawakami T, Takenaka T, Hayashida Y (2004) Morphological changes in the rat carotid body 1, 2, 4, and 8 weeks after the termination of chronically hypocapnic hypoxia. Histol Histopathol 19: 1133–40

    PubMed  CAS  Google Scholar 

  • Lee M, Choi I, Park K (2002) Activation of stress signaling molecules in bat brain during arousal from hibernation. J Neurochem 82: 867–73

    Article  PubMed  CAS  Google Scholar 

  • Lundberg JM, Hokfelt T, Fahrenkrug J, Nilsson G, Terenius L (1979) Peptides in the cat carotid body (glomus caroticum): VIP-, enkephalin-, and substance P-like immunoreactivity. Acta Physiol Scand 107: 279–281

    PubMed  CAS  Google Scholar 

  • Malatesta M, Battistelli S, Rocchi MB, Zancanaro C, Fakan S, Gazzanelli G (2001) Fine structural modifications of liver, pancreas and brown adipose tissue mitochondria from hibernating, arousing and euthermic dormice. Cell Biol Int 25: 131–8

    Article  PubMed  CAS  Google Scholar 

  • Oomori Y, Nakaya K, Tanaka H, Iuchi H, Ishikawa K, Satoh Y, Ono K (1994) Immunohistochemical and histochemical evidence for the presence of noradrenaline, serotonin and gamma-aminobutyric acid in chief cells of the mouse carotid body. Cell Tissue Res 278: 249–254

    PubMed  CAS  Google Scholar 

  • Pallot DJ (1987) The mammalian carotid body. Adv Anat Embryol Cell Biol 102: 1–91

    PubMed  CAS  Google Scholar 

  • Shibata E, Nanri H, Ejima K, Araki M, Fukuda J, Yoshimura K, Toki N, Ikeda M, Kashimura M (2003) Enhancement of mitochondrial oxidative stress and up-regulation of antioxidant protein peroxiredoxin III/SP-22 in the mitochondria of human pre-eclamptic placentae. Placenta 24: 698–705

    Article  PubMed  CAS  Google Scholar 

  • Toien O, Drew KL, Chao ML, Rice ME (2001) Ascorbate dynamics and oxygen consumption during arousal from hibernation in arctic ground squirrels. Am J Physiol Regul Integr Comp Physiol 281: R572–83)

    CAS  Google Scholar 

  • Wang LCH (1988) Mammalian hibernation: An escape from the cold. In: Advances in Comparative and Environmental Physiology (Gilles R, ed.), Berlin, Springer, Vol 2, pp 1–45

    Google Scholar 

  • Wang LCH (1978) Time patterns and metabolic rates of natural torpor in the Richardson's ground squirrel. Can J Zool 57: 149–155

    Article  Google Scholar 

  • Waβmer T, Wollnik F (1997) Timing of torpor bouts during hibernation in European hamsters (Cricetus cricetus L). J Comp Physiol B 167: 270–279

    Article  Google Scholar 

  • Watabe S, Kohno H, Kouyama H, Hiroi T, Hasegawa H, Yago N, Nakazawa T (1994) Purification and characterization of a substrate protein for mitochondrial ATP-dependent protease in bovine adrenal cortex. J Biochem (Tokyo) 115: 648–654

    CAS  Google Scholar 

  • Watabe S, Hasegawa H, Takimoto K, Yamamoto Y, Takahashi SY (1995) Possible function of SP-22, a substrate of mitochondrial ATP-dependent protease, as a radical scavenger. Biochem Biophys Res Commun 213: 1010–1016

    Article  PubMed  CAS  Google Scholar 

  • Zancanaro C, Malatesta M Vogel P Fakan S (1997) Ultrastructure of the adrenal cortex of hibernating, arousing, and euthermic dormouse, Muscardinus avellanarius. Anat Rec 249: 359–64

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

FUKUHARA, K. et al. (2006). Changes in Antioxidant Protein SP-22 of Chipmunk Carotid Bodies during the Hibernation Season. In: Hayashida, Y., Gonzalez, C., Kondo, H. (eds) THE ARTERIAL CHEMORECEPTORS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, vol 580. Springer, Boston, MA. https://doi.org/10.1007/0-387-31311-7_11

Download citation

Publish with us

Policies and ethics