Design, Fabrication and Characterization of a Flexible System Based on Thermal Glue for in Air and in SEM Microassembly

  • Cédric Clévy
  • Arnaud Hubert
  • Stephan Fahlbusch
  • Nicolas Chaillet
  • Johann Michler
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 198)

Abstract

This paper presents the design, fabrication and characterization of a device able to exchange the tip part (so-called the tools) of a two fingered microgripper. The principle of this tool changer is based on the use of a thermal glue whose state (liquid or solid) is changed by heating or cooling. Several kinds of pairs of tools have been designed. The suitable pair of tools can be chosen according to the size, shape and material of the object to manipulate. The tool changer enables one to perform a sequence of elementary micromanipulation tasks (i.e. an assembly sequence) by using only one gripper mounted on only one manipulator. The tool changer has been automated and successfully tested in air and in the vacuum chamber of a Scanning Electron Microscope (SEM). It brings flexibility to the micromanipulation cell and contributes to reduce the costs, the used space and experimentations time for micro-manipulations in the SEM. The assembly of a ball bearing (the balls are 200 µm. in diameter) has been successfully tested using the microgripper equipped with the tool changer in a SEM. This tool changer has been designed for a microgripper but can be easily adapted to lots of other kinds of systems.

Keywords

Micromanipulation cell Tool Changer Micromanipulation Microassembly Flexibility Microfactory Scanning Electron Microscope Automation 

References

  1. [1]
    K. F. Bohringer, R. S. Fearing, and K. Y. Goldberg. Handbook of industrial robotics. Wiley and sons, 1998. Chapter Microassembly.Google Scholar
  2. [2]
    J. M. Breguet and A. Bergander. Toward the personal factory? SPIE, 4568:293–303, 2001.Google Scholar
  3. [3]
    H. Van Brussel, J. Peirs, D. Reynaerts, A. Delchambre, G. Reinhart, N. Roth, M. Weck, and E. Zussman. Assembly of microsystems. Annals of the CIRP, 49(2):451–472, 2000.CrossRefGoogle Scholar
  4. [4]
    C. Clévy, A. Hubert, J. Agnus, and N. Chaillet. A micromanipulation cell including a tool changer. Journal of Micromechanics and Microengineering, 15:292–301, July 2005.CrossRefGoogle Scholar
  5. [5]
    C. Clévy, A. Hubert, and N. Chaillet. A new micro-tools exchange principle for micromanipulation. In IROS, Sendai, Japan, September 2004.Google Scholar
  6. [6]
    R. Eberhardt, T. Scheller, G. Tittelbach, and V. Guyenot. Automated assembly of micro-optical components. SPIE, 3202:117–127, 1998.Google Scholar
  7. [7]
    S. Fatikow, A. Kortschack, H. Hudsen, T. Sievers, and T. Wich. Towards fully automated microhandling. In IWMF, pages 34–39, Shanghai, China, 2004.Google Scholar
  8. [8]
    T. Kasaya, H. Miyazaki, S. Saito, and T. Sato. Micro object handling under sem by vision-based automatic control. In ICRA, pages 2189–2196, Detroit, USA, 1999.Google Scholar
  9. [9]
    B. Kim, H. Rang, D.H. Kirn, G.T. Park, and J.O. Park. Flexible microassembly system based on hybrid manipulation scheme. In International Conference on Intelligent Robots and Systems, pages 2091–2066, Las-Vegas, USA, October 2003.Google Scholar
  10. [10]
    B.E. Kratochvil, K.B. Yesin, V. Hess, and B. J. Nelson. Design of a visually guided 6 dof micromanipulator system for 3d assembly of hybrid mems. In International Workshop on Microfactories, pages 128–133, Shanghai, China, 2004.Google Scholar
  11. [11]
    H. Miyazaki and T. Sato. Mechanical assembly of three-dimensional microstructures from fine particles. Advanced robotics, 11(2): 139–185, 1997.Google Scholar
  12. [12]
    M. Nienhaus, W. Ehrfeld, F. Michel, V. Graeff, and A. Wolf. Handling and bonding of millimeterwave monolithic integrated circuits with high density interconnections for automotive and it applications. In 3rd workshop on “Area array packaging technologies”, Berlin, Germany, 1999.Google Scholar
  13. [13]
    R. Perez, J. Agnus, C. Clévy, A. Hubert, and N. Chaillet. Modelling, fabrication and validation of a high performance 2 dof microgripper. ASME/IEEE Transaction on Mechatronics, 10(2), April 2005.Google Scholar
  14. [14]
    S. Saito, H. Miyazaki, and T. Sato. Pick and place operation of a micro object with high reliability and precision based on micro physics under sem. In ICRA, pages 2736–2743, Detroit Michigan, USA, May 1999.Google Scholar
  15. [15]
    E. Shimada, J.A. Thompson, J. Yan, R. Wood, and R.S. Fearing. Prototyping millirobots using dextrous microassembly and folding. In ASME IMECE/DSCD, pages 1–8, Orlando, USA, November 2000.Google Scholar
  16. [16]
    G. D. Skidmore, M. Ellis, E. Parker, N. Sarkar, and R. Merkle. Micro assembly for top down nanotechnology. In Int symposium on Mechatronics and human science, pages 3–9, Nagoya, Japan, 2000.Google Scholar
  17. [17]
    T. Tanikawa, M. Kawai, N. Koyachi, T. Arai, T. Ide, S. Kaneko, R. Ohta, and T. Hirose. Force control system for autonomous micro manipulation. In ICRA, pages 610–615, Seoul, Korea, May 2001.Google Scholar
  18. [18]
    J.A Thompson and R.S. Fearing. Automating microassembly with ortho-tweezers and force sensing. In IROS, Maui HI, 2001.Google Scholar
  19. [19]
    M. Weck and C. Peschke. Equipment technology for flexible and automated micro-assembly. Microsystem technologies, 10(3):241–246, 2004.CrossRefGoogle Scholar
  20. [20]
    B. Winzek, S. Schmitz, and T. Sterzl. Microgrippers with shape memory thin film actuators. In IPAS, pages 77–84, Bad Hofgastein, Austria, February 2004.Google Scholar
  21. [21]
    G. Yang, J. A. Gaines, and B. J. Nelson. A flexible experimental workcell for efficient and reliable wafer-level 3d microassembly. In ICRA, pages 133–138, Seoul, Korea, May 2001.Google Scholar

Copyright information

© International Federation for Information Processing 2006

Authors and Affiliations

  • Cédric Clévy
    • 1
  • Arnaud Hubert
    • 1
  • Stephan Fahlbusch
    • 2
  • Nicolas Chaillet
    • 1
  • Johann Michler
    • 2
  1. 1.Laboratoire d’Automatique de BesançonUMR CNRS 6596 - ENSMM - UFCBesançonFrance
  2. 2.Swiss Federal Laboratories for Materials Testing and Research (EMPA)ThunSwitzerland

Personalised recommendations