Power Control and Clustering in Wireless Sensor Networks

  • Lahcène Dehni
  • Francine Krief
  • Younès Bennani
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 197)

Abstract

The use of the wireless sensor networks (WSNs) should be increasing in different fields. However, the sensor’s size is an important limitation in term of energetic autonomy, and thus of lifetime because battery must be very small. This is the reason why, today, research mainly carries on the energy management in the WSNs, taking into account communications, essentially. In this context, we compare different clustering methods used in the WSNs, particularly EECS, with an adaptive routing algorithm that we named LEA2C. This algorithm is based on topological self-organizing maps. We obtain important gains in term of energy and thus of network lifetime.

Key words

Wireless sensor networks clustering power control adaptive routing algorithm topological self-organizing maps 

8. References

  1. 1.
    Technology Review: 10 Emerging technologies that till change the world (February 2003); http://www.technologyreview.com.Google Scholar
  2. 2.
    G.J. Pottic and al. Wireless integrated network sensors; Communications of the ACM 43(5), pp. 551–558. (2000).Google Scholar
  3. 3.
    C. Perkins and E. Royer, Ad-Hoc on-demand distance vector (AODV) routing, The Second IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’99). (1999)Google Scholar
  4. 4.
    K. Scott and N. Bambos, Routing and channel assignment for low power transmission in PCS; 5th IEEE Int. Conf. on Universal Personal Communications, volume 2. (1996)Google Scholar
  5. 5.
    S. Ghiasi et al. Optimal energy aware clustering in sensor networks; SENSORS Journal, Vol. 2, Issue 7, pp. 258–269, July 2002.Google Scholar
  6. 6.
    M. Ye, C. Li, G. Chen and J. Wu, EECS: An energy efficient clustering scheme in wireless sensor networks; IEEE IWSEEASN’05. (2005).Google Scholar
  7. 7.
    I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, A survey on sensor networks”; IEEE Communications Magazine, Vol. 40, No. 8, pp. 102–114, (2002).CrossRefGoogle Scholar
  8. 8.
    W. Heinzelman, A.P. Chandrakasan and H. Balakrishnan; Energy-efficient communication protocol for wireless microsensor networks; Sensor 2002, 2, pp. 258–269. (2002)Google Scholar
  9. 9.
    W. Heinzelman, A.P. Chandrakasan and H. Balakrishnan, An application-specific protocol architecture for wireless microsensor networks; IEEE Transactions on Wireless Communications, Vol. 1, No. 4, pp. 660–670, (2002)CrossRefGoogle Scholar
  10. 10.
    E.-S. Jung and N. H. Vaidya, A power control MAC protocol for ad-hoc networks; ACM MOBICOM. (2002).Google Scholar
  11. 11.
    V. Kawadia and P. R. Kumar, Power control and clustering in Ad Hoc networks; IEEE INFOCOM. (2003)Google Scholar
  12. 12.
    T. Murata and H. Ishibuchi, Performance evaluation of genetic algorithms for flowshop scheduling problems; 1st IEEE Conference Evolutionary Computation, volume 2. (1994)Google Scholar
  13. 13.
    A. Juha and A. Esa, Clustering of the self-organizing map; IEEE Tractions On Neural Networks, volume 11, no 3, (2000)Google Scholar
  14. 14.
    David L. Davies and Donald W. Bouldin, A cluster separation measure; IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-1(2): pp. 224–227. (1979)CrossRefGoogle Scholar
  15. 15.
    E. Alhoniemi and al. SOM Toolbox, (2000). http://www.cis.hut.fi/projects/somtoolbox/Google Scholar

Copyright information

© International Federation for Information Processing 2006

Authors and Affiliations

  • Lahcène Dehni
    • 1
  • Francine Krief
    • 2
  • Younès Bennani
    • 1
  1. 1.Laboratoire d’Informatique de l’Université Paris NordInstitut GaliléeVilletaneuseFrance
  2. 2.Laboratoire Bordelais de Recherche en InformatiqueDomaine UniversitaireTalence CedexFrance

Personalised recommendations