Skip to main content

Modelling Spatial Point Patterns in R

  • Chapter

Part of the Lecture Notes in Statistics book series (LNS,volume 185)

Summary

We describe practical techniques for fitting stochastic models to spatial point pattern data in the statistical package R. The techniques have been implemented in our package spatstat in R. They are demonstrated on two example datasets.

Key words

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Anselin. Local indicators of spatial association — LISA. Geographical Analysis, 27:93–115, 1995.

    Article  Google Scholar 

  2. A.C. Atkinson. Plots, Transformations and Regression. Number 1 in Oxford Statistical Science Series. Oxford University Press/ Clarendon, 1985.

    Google Scholar 

  3. A.J. Baddeley, J. Møller, and R.P. Waagepetersen. Non-and semiparametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 54(3):329–350, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  4. A.J. Baddeley and R. Turner. spatstat: an R package for analyzing spatial point patterns. Journal of Statistical Software, 12(6):1–42, 2005. URL: http://www.jstatsoft.org.

    Google Scholar 

  5. A.J. Baddeley and R. Turner. Practical maximum pseudolikelihood for spatial point patterns (with discussion). Australian and New Zealand Journal of Statistics, 42(3):283–322, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  6. A.J. Baddeley and R. Turner. Spatstat: an R package for analyzing spatial point patterns. Research Report 2004/13, School of Mathematics and Statistics, University of Western Australia, September 2004.

    Google Scholar 

  7. A.J. Baddeley, R. Turner, J. Møller and M. Hazelton. Residual analysis for spatial point processes. Journal of the Royal Statistical Society (series B), 67:1–35, 2005.

    Article  Google Scholar 

  8. A.J. Baddeley, M.N.M. van Lieshout and J. Møller. Markov properties of cluster processes. Advances in Applied Probability, 28:346–355, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  9. M.S. Bartlett. The spectral analysis of two-dimensional point processes. Biometrika, 51:299–311, 1964.

    Article  MathSciNet  Google Scholar 

  10. M.S. Bartlett. The statistical analysis of spatial pattern. Chapman and Hall, London, 1975.

    MATH  Google Scholar 

  11. M. Berman. Testing for spatial association between a point process and another stochastic process. Applied Statistics, 35:54–62, 1986.

    MATH  Google Scholar 

  12. M. Berman and T.R. Turner. Approximating point process likelihoods with GLIM. Applied Statistics, 41:31–38, 1992.

    MATH  Google Scholar 

  13. J.E. Besag. Statistical analysis of non-lattice data. The Statistician, 24:179–195, 1975.

    Google Scholar 

  14. J.E. Besag and P.J. Diggle. Simple Monte Carlo tests for spatial pattern. Applied Statistics, 26:327–333, 1977.

    Google Scholar 

  15. C. Chatfield. Problem solving: a statistician’s guide. Chapman and Hall, 1988.

    Google Scholar 

  16. D. Collett. Modelling Binary Data. Chapman and Hall, London, 1991.

    Google Scholar 

  17. D.R. Cox and V. Isham. Point processes. Chapman and Hall, London, 1980.

    MATH  Google Scholar 

  18. D.R. Cox and E.J. Snell. Applied Statistics: principles and examples. Chapman and Hall, 1981.

    Google Scholar 

  19. The Comprehensive R Archive Network. URL http://www.cran.r-project.org.

    Google Scholar 

  20. N.A.C. Cressie and L.B. Collins. Analysis of spatial point patterns using bundles of product density LISA functions. Journal of Agricultural, Biological and Environmental Statistics, 6:118–135, 2001.

    Article  MathSciNet  Google Scholar 

  21. N.A.C. Cressie and L.B. Collins. Patterns in spatial point locations: local indicators of spatial association in a minefield with clutter. Naval Research Logistics, 48:333–347, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  22. N.A.C. Cressie. Statistics for Spatial Data. John Wiley and Sons, New York, 1991.

    MATH  Google Scholar 

  23. N.A.C. Cressie. Statistics for Spatial Data. John Wiley and Sons, New York, 1993. Revised edition.

    Google Scholar 

  24. A.C. Davison and E.J. Snell. Residuals and diagnostics. In D.V. Hinkley, N. Reid, and E.J. Snell, editors, Statistical theory and modelling (in honour of Sir David Cox FRS), Chap. 4, pp. 83–106. Chapman and Hall, London, 1991.

    Google Scholar 

  25. P.J. Diggle. A kernel method for smoothing point process data. Journal of the Royal Statistical Society, series C (Applied Statistics), 34:138–147, 1985.

    MATH  Google Scholar 

  26. P.J. Diggle. Statistical analysis of spatial point patterns. Academic Press, London, 1983.

    MATH  Google Scholar 

  27. P.J. Diggle. A point process modelling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point. Journal of the Royal Statistical Society, series A, 153:349–362, 1990.

    Google Scholar 

  28. P.J. Diggle. Statistical Analysis of Spatial Point Patterns. Arnold, second edition, 2003.

    Google Scholar 

  29. P.J. Diggle, D.J. Gates, and A. Stibbard. A nonparametric estimator for pairwise-interaction point processes. Biometrika, 74:763–770, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Divino, A. Frigessi and P.J. Green. Penalised pseudolikelihood estimation in Markov random field models. Scandinavian Journal of Statistics, 27(3):445–458, 2000.

    Article  MATH  Google Scholar 

  31. R. Foxall and A.J. Baddeley. Nonparametric measures of association between a spatial point process and a random set, with geological applications. Applied Statistics, 51(2):165–182, 2002.

    MathSciNet  MATH  Google Scholar 

  32. C.J. Geyer. Likelihood inference for spatial point processes. In O.E. Barndorff-Nielsen, W.S. Kendall, and M.N.M. van Lieshout, editors, Stochastic Geometry: Likelihood and Computation, number 80 in Monographs on Statistics and Applied Probability, Chap. 3, pp. 79–140. Chapman and Hall / CRC, Boca Raton, Florida, 1999.

    Google Scholar 

  33. C.J. Geyer and J. Møller. Simulation procedures and likelihood inference for spatial point processes. Scandinavian Journal of Statistics, 21(4):359–373, 1994.

    MathSciNet  MATH  Google Scholar 

  34. K.-H. Hanisch and D. Stoyan. Remarks on statistical inference and prediction for a hard-core clustering model. Statistics, 14:559–567, 1983.

    MathSciNet  MATH  Google Scholar 

  35. R.D. Harkness and V. Isham. A bivariate spatial point pattern of ants’ nests. Applied Statistics, 32:293–303, 1983.

    Google Scholar 

  36. H. Högmander and A. Särkkä. Multitype spatial point patterns with hierarchical interactions. Biometrics, 55:1051–1058, 1999.

    Article  MATH  Google Scholar 

  37. A.C.A. Hope. A simplified Monte Carlo significance test procedure. Journal of the Royal Statistical Society, series B, 30:582–598, 1968.

    MATH  Google Scholar 

  38. K. Hornik. The R Faq: Frequently asked questions on R. URL http://www.ci.tuwien.ac.at/~hornik/R/. ISBN 3-901167-51-X.

    Google Scholar 

  39. F. Huang and Y. Ogata. Improvements of the maximum pseudolikelihood estimators in various spatial statistical models. Journal of Computational and Graphical Statistics, 8(3):510–530, 1999.

    Article  Google Scholar 

  40. R. Ihaka and R. Gentleman. R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3):299–314, 1996.

    Article  Google Scholar 

  41. V.S. Isham. Multitype Markov point processes: some approximations. Proceedings of the Royal Society of London, Series A, 391:39–53, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  42. J.L. Jensen and H.R. Künsch. On asymptotic normality of pseudo likelihood estimates for pairwise interaction processes. Annals of the Institute of Statistical Mathematics, 46:475–486, 1994.

    MathSciNet  MATH  Google Scholar 

  43. J.L. Jensen and J. Møller. Pseudolikelihood for exponential family models of spatial point processes. Annals of Applied Probability, 1:445–461, 1991.

    MathSciNet  MATH  Google Scholar 

  44. F.P. Kelly and B.D. Ripley. On Strauss’s model for clustering. Biometrika, 63:357–360, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  45. J.F.C. Kingman. Poisson Processes. Oxford University Press, 1993.

    Google Scholar 

  46. A.B. Lawson. A deviance residual for heterogeneous spatial Poisson processes. Biometrics, 49:889–897, 1993.

    MATH  MathSciNet  Google Scholar 

  47. M.N.M. van Lieshout. Markov Point Processes and their Applications. Imperial College Press, 2000.

    Google Scholar 

  48. M.N.M. van Lieshout and A.J. Baddeley. A nonparametric measure of spatial interaction in point patterns. Statistica Neerlandica, 50:344–361, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  49. M.N.M. van Lieshout and A.J. Baddeley. Indices of dependence between types in multivariate point patterns. Scandinavian Journal of Statistics, 26:511–532, 1999.

    Article  MATH  Google Scholar 

  50. P. McCullagh and J.A. Nelder. Generalized Linear Models. Chapman and Hall, second edition, 1989.

    Google Scholar 

  51. J. Møller and R.P. Waagepetersen. Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton, 2003.

    Google Scholar 

  52. Y. Ogata and M. Tanemura. Estimation of interaction potentials of spatial point patterns through the maximum likelihood procedure. Annals of the Institute of Statistical Mathematics, B 33:315–338, 1981.

    MATH  Google Scholar 

  53. Y. Ogata and M. Tanemura. Likelihood analysis of spatial point patterns. Journal of the Royal Statistical Society, series B, 46:496–518, 1984.

    MathSciNet  MATH  Google Scholar 

  54. Y. Ogata and M. Tanemura. Likelihood estimation of interaction potentials and external fields of inhomogeneous spatial point patterns. In I.S. Francis, B.J.F. Manly, and F.C. Lam, editors, Pacific Statistical Congress, pp. 150–154. Elsevier, 1986.

    Google Scholar 

  55. A. Penttinen. Modelling Interaction in Spatial Point Patterns: Parameter Estimation by the Maximum Likelihood Method. Number 7 in Jyväskylä Studies in Computer Science, Economics and Statistics. University of Jyväskylä, 1984.

    Google Scholar 

  56. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2004. ISBN 3-900051-00-3.

    Google Scholar 

  57. B.D. Ripley. The second-order analysis of stationary point processes. Journal of Applied Probability, 13:255–266, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  58. B.D. Ripley. Modelling spatial patterns (with discussion). Journal of the Royal Statistical Society, Series B, 39:172–212, 1977.

    MathSciNet  Google Scholar 

  59. B.D. Ripley. Spatial Statistics. John Wiley and Sons, New York, 1981.

    MATH  Google Scholar 

  60. B.D. Ripley. Spatial statistics: developments 1980-3. International Statistical Review, 52:141–150, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  61. B.D. Ripley. Statistical Inference for Spatial Processes. Cambridge University Press, 1988.

    Google Scholar 

  62. B.D. Ripley. Gibbsian interaction models. In D.A. Griffiths, editor, Spatial Statistics: Past, Present and Future, pp. 1–19. Image, New York, 1989.

    Google Scholar 

  63. A. Särkkä. Pseudo-likelihood approach for pair potential estimation of Gibbs processes. Number 22 in Jyväskylä Studies in Computer Science, Economics and Statistics. University of Jyväskylä, 1993.

    Google Scholar 

  64. B.W. Silverman and T.C. Brown. Short distances, flat triangles and poisson limits. Journal of Applied Probability, 15:815–825, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  65. D. Stoyan and P. Grabarnik. Second-order characteristics for stochastic structures connected with Gibbs point processes. Mathematische Nachrichten, 151:95–100, 1991.

    MathSciNet  MATH  Google Scholar 

  66. D. Stoyan and P. Grabarnik. Statistics for the stationary Strauss model by the cusp point method. Statistics, 22:283–289, 1991.

    MathSciNet  MATH  Google Scholar 

  67. D. Stoyan, W.S. Kendall and J. Mecke. Stochastic Geometry and its Applications. John Wiley and Sons, Chichester, second edition, 1995.

    MATH  Google Scholar 

  68. D. Stoyan and H. Stoyan. Fractals, random shapes and point fields. Wiley, 1995.

    Google Scholar 

  69. D. Stoyan and H. Stoyan. Non-homogeneous Gibbs process models for forestry — a case study. Biometrical Journal, 40:521–531, 1998.

    Article  MATH  Google Scholar 

  70. R. Takacs and T. Fiksel. Interaction pair-potentials for a system of ants’ nests. Biometrical Journal, 28:1007–1013, 1986.

    MATH  Google Scholar 

  71. J. Tukey. Exploratory Data Analysis. Addison-Wesley, Reading, Mass., 1977.

    MATH  Google Scholar 

  72. W.N. Venables and B.D. Ripley. Modern Applied Statistics with S-Plus. Springer, second edition, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Baddeley, A., Turner, R. (2006). Modelling Spatial Point Patterns in R. In: Baddeley, A., Gregori, P., Mateu, J., Stoica, R., Stoyan, D. (eds) Case Studies in Spatial Point Process Modeling. Lecture Notes in Statistics, vol 185. Springer, New York, NY. https://doi.org/10.1007/0-387-31144-0_2

Download citation

Publish with us

Policies and ethics