Skip to main content

Coupling and Dephasing in Josephson Charge-Phase Qubit with Radio Frequency Readout

  • Chapter
Quantum Computing in Solid State Systems
  • 1854 Accesses

Abstract

The Cooper pair box qubit of a two-junction-SQUID configuration enables the readout of the qubit states by probing the effective Josephson inductance of the SQUID. This is realized by coupling the qubit to a high-Q tank circuit which induces a small alternating supercurrent in the SQUID loop. The effect of a small (but finite) geometrical inductance of the loop on the eigenstates of the system is figured out. The effect of qubit dephasing due to quadratic coupling to the tank circuit is evaluated. It is shown that the rate of dephasing in the vicinity of the magic points is relatively low unless the Josephson junctions forming the qubit are rather dissimilar. In the vicinity of the avoided level-crossing point such dephasing is always significant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. B. Zorin, Cooper-pair qubit and Cooper-pair electrometer in one device, Physica C 368, 284–288 (2002).

    Article  ADS  Google Scholar 

  2. E. Il’ichev, A.Yu. Smirnov, M. Grajcar, A. Izmalkov, D. Born, N. Oukhanski, Th. Wagner, W. Krech, H.-G. Meyer, and A.M. Zagoskin, Radio-frequency method for investigation of quantum properties of superconducting structures, cond-mat/0402559 and references therein.

    Google Scholar 

  3. A. Lupaşcu, C. J. M. Verwijs, R. N. Schouten, C. J. P. M. Harmans, and J. E. Mooij, Nondestructive readout for a superconducting flux qubit, cond-mat/0311510.

    Google Scholar 

  4. I. Siddiqi, R. Vijay, F. Pierre, C.M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, and M.H. Devoret, An RF-driven Josephson bifurcation amplifier for quantum Measurements, cond-mat/0312623.

    Google Scholar 

  5. D. V. Averin, Quantum nondemolition measurements of a qubit, Phys. Rev. Lett. 88, 207901 (2002).

    Article  ADS  Google Scholar 

  6. V. Bouchiat, D. Vion, P. Joyez, D. Esteve and M. H. Devoret, Quantum coherence with a single Cooper pair, Phys. Scr. T76, 165–170 (1998).

    Article  ADS  Google Scholar 

  7. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve and M. H. Devoret, Manipulating the quantum state of an electrical current, Science 296, 886–889 (2002).

    Article  ADS  Google Scholar 

  8. A. B. Zorin, Josephson charge-phase qubit with radio frequency readout: coupling and decoherence, Zh. Éksp. Teor. Fiz. 125(6), 1423–1435 (2004); [JETP 98(6), 1250–1261 (2004)].

    Google Scholar 

  9. W. Krech, M. Grajcar, D. Born, I. Zhilyaev, Th. Wagner, E. Il’ichev, and Ya. Greenberg, Dynamic features of a charge qubit closed by a superconducting inductive ring, Phys. Lett. A 303, 352–357 (2002).

    Article  ADS  MATH  Google Scholar 

  10. R. Rifkin and B. S. Deaver, Jr., Charge-phase relation and phase-dependent conductance of superconducting point contacts from rf impedance measurements, Phys. Rev. B 13(9), 3894–3901 (1976).

    Article  ADS  Google Scholar 

  11. D. S. Crankshaw and T. P. Orlando, Inductance effects in the persistent current qubit, IEEE Appl. Supercond. 11(1), 1006–1009 (2001).

    Article  Google Scholar 

  12. A. Maassen van den Brink, Hamiltonian for coupled qubits, cond-mat/0310425.

    Google Scholar 

  13. In the rf-SQUID circuits comprising Josephson weak-links instead of tunnel junctions a sufficiently small value of effective capacitance \( \tilde C\) and, hence high ω L may cause quantum behavior of phase φ; see, for example, R. Whiteman, V. Schöllmann, M. Everitt, T. D. Clark, R. J. Prance, H. Prance, J. Diggins, G. Buckling, and J. F. Ralf, Adiabatic modulation of a superconducting quantum interference device (SQUID) ring by an electromagnetic field, J. Phys.: Condens. Matter 10, 9951–9968 (1998).

    Google Scholar 

  14. P. K. Hansma, Superconducting single-junction interferometers with small critical currents, J. Appl. Phys. 44(9), 4191–4194 (1973).

    Article  ADS  Google Scholar 

  15. Handbook of Mathematical Functions, ed. by M. Abramowitz and I. A. Stegun (U.S. GPO, Washingtin, D.C., 1972), Chapter 20.

    MATH  Google Scholar 

  16. Yu. Makhlin and A. Shnirman, Dephasing of solid-state qubits at optimal points, cond-mat/0308297.

    Google Scholar 

  17. S. A. Akhmanov, Yu. E. Dyakov and A. S. Chirkin, Vvedenie v Statisticheskuyu Radiofiziku i Optiku (Introduction to Statistical Radiophysics and Optics), (Nauka, Moscow, 1981), Chapter 5-in Russian.

    Google Scholar 

  18. A. Shnirman, Yu. Makhlin and G. Schön, Noise and decoherence in quantum two-level systems, Phys. Scr. T102, 147–154 (2002).

    Article  ADS  Google Scholar 

  19. M. Mück, J. B. Kycia and J. Clarke, Superconducting quantum interference device as a near-quantum-limited amplifier at 0.5 GHz, Appl. Phys. Lett. 78(7), 967–969 (2001).

    Article  ADS  Google Scholar 

  20. C. Cosmelli, M. G. Castellano, F. Chiarello, R. Leoni, D. Simeone, G. Torrioli, and P. Carelli, Controllable flux coupling for the integration of flux qubits, cond-mat/0403690.

    Google Scholar 

  21. E. Paladino, L. Faoro, G. Falci, and R. Fazio, Decoherence and 1/f noise in Josephson qubits, Phys. Rev. Lett. 88, 228304 (2002).

    Article  ADS  Google Scholar 

  22. D. J. Van Harlingen, T. L. Robertson, B. L. T. Plourde, P. A. Reichardt, T. A. Crane, and J. Clarke, Decoherence in Josephson-junction qubits due to critical current fluctuations, cond-mat/0404307.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Zorin, A.B. (2006). Coupling and Dephasing in Josephson Charge-Phase Qubit with Radio Frequency Readout. In: Ruggiero, B., Delsing, P., Granata, C., Pashkin, Y., Silvestrini, P. (eds) Quantum Computing in Solid State Systems. Springer, New York, NY. https://doi.org/10.1007/0-387-31143-2_3

Download citation

Publish with us

Policies and ethics