Perchlorate pp 197-207 | Cite as

Using Biomonitoring to Assess Human Exposure to Perchlorate

  • Benjamin C. Blount
  • Liza Valentín-Blasini


Scientifically valid exposure assessment is crucial to risk assessment, risk management, and prevention of environmental disease. Biomonitoring is an excellent tool for evaluating human exposure to perchlorate from all sources, and often provides complementary information to environmental data. Analytical methods for perchlorate biomonitoring must be adequately sensitive and selective to detect sub-parts-per-billion levels in complex matrixes. Through improved exposure assessment we can better evaluate the relevance of environmental perchlorate to human exposure and health.


Human Exposure Exposure Assessment Public Water System Average Relative Percent Difference Quality Control Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mendiratta, S. K.; Dotson, R. L.; and Brooker, R.T. Perchloric acid and perchlorates. 1996, 18, 157–170. New York, John Wiley & Sons. Kirk-Othmer encyclopedia of chemical technology. Kroschwitz JI and Howe-Grant M.Google Scholar
  2. 2.
    Dasgupta, P. K.; Martinelango, P. K..; Jackson, W. A.; Anderson, T. A.; Tian, K.; Tock, R. W.; Rajagopalan, S. The origin of naturally occurring perchlorate: the role of atmospheric processes. Environ.Sci.Technol. 2005, 39, 1569–75.CrossRefGoogle Scholar
  3. 3.
    Urbansky, E. T.; Brown, S. K.; Magnuson, M. L.; Kelty, C. A. Perchlorate levels in samples of sodium nitrate fertilizer derived from Chilean caliche. Environ. Pollut. 2001, 112, 299–302.CrossRefGoogle Scholar
  4. 4.
    Environmental Protection Agency Federal Registry 1998, 63, 10274.Google Scholar
  5. 5.
    Unregulated Contaminant Monitoring Regulation (UCMR) data from public water systems. US EPA. 2004. [Accessed October 11, 2005].Google Scholar
  6. 6.
    Jackson, A.; Arunagiri, S.; Tock, R.; Anderson, T. A.; Rainwater, K. Electrochemical generation of perchlorate in municipal drinking water systems. Journal of the American Water Works Association 2004, 96, 103–08.Google Scholar
  7. 7.
    Yu, Lu; Canas, Jaclyn E; Cobb, George P.; Jackson William A.; Anderson, T. A. Uptake of perchlorate in terrestrial plants. Ecotoxicology and Environmental Safety 2004, 58, 44–49.CrossRefGoogle Scholar
  8. 8.
    Capuco, A. V.; Rice, C. P.; Baldwin, R. L. Fate of dietary perchlorate in lactating dairy cows. Proceedings of the National Academy of Sciences 2005, 102(45):16152–16157.CrossRefGoogle Scholar
  9. 9.
    Kirk, A. B.; Smith, E. E.; Tian, K.; Anderson, T. A.; Dasgupta, P. K. Perchlorate in milk. Environ.Sci.Technol. 2003, 37, 4979–81.CrossRefGoogle Scholar
  10. 10.
    Kirk, A. B.; Martinelango, P. K.; Tian, K.; Dutta, A.; Smith, E. E.; Dasgupta, P. K. Perchlorate and iodide in dairy and breast milk. Environ.Sci.Technol. 2005, 39, 2011–17.CrossRefGoogle Scholar
  11. 11.
    Hogue, C. Environmental Pollution: Rocket-Fueled River. Chemical & Engineering News 2003, 87, 37–46.Google Scholar
  12. 12.
    Greer, M. A.; Goodman, G.; Pleus, R. C; Greer, S. E. Health effects assessment for environmental perchlorate contamination: the dose response for inhibition of thyroidal radioiodine uptake in humans. Environ. Health Perspect. 2002, 110, 927–37.Google Scholar
  13. 13.
    Wyngaarden, J. B; Stanbury, J. B.; Rapp, B. The effects of iodide, perchlorate, thiocyanate and nitrate administration upon the iodide concentrating mechanism of the rat thyroid. Endocrinology 1953, 52, 568–74.CrossRefGoogle Scholar
  14. 14.
    Utiger, R. D. and Braverman, L. E. Werner and Ingbar’s The Thyroid: A fundamental and clinical text. 8th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, 2000.Google Scholar
  15. 15.
    Haddow, J. E.; Palomaki, G. E.; Allan, W. C; Williams, J. R.; Knight, G. J.; Gagnon, J.; O’Heir, C. E.; Mitchell, M. L.; Hermos, R. J.; Waisbren, S. E.; Faix, J. D.; Klein, R. Z. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl. J Med. 1999, 341, 549–55.CrossRefGoogle Scholar
  16. 16.
    Klein, R. Z.; Sargent, J. D.; Larsen, P. R.; Waisbren, S. E.; Haddow, J. E.; Mitchell, M. L. Relation of severity of maternal hypothyroidism to cognitive development of offspring. J Med. Screen. 2001, 8, 18–20.CrossRefGoogle Scholar
  17. 17.
    NAS. Monitoring Human Tissues for Toxic Substances. 1991. Washington, National Academy Press. [Accessed October 11, 2005].Google Scholar
  18. 18.
    Pirkle, J. L.; Needham, L. L.; Sexton, K. Improving exposure assessment by monitoring human tissues for toxic chemicals. J. Expo. Anal. Environ. Epidemiol. 1995, 5, 405–24.Google Scholar
  19. 19.
    NAS. Health Implications of Perchlorate Ingestion. 2005. Washington. D.C, National Research Council, National Academy Press. [Accessed October 11, 2005].Google Scholar
  20. 20.
    Merrill, E. A.; Clewell, R. A.; Robinson, P. J.; Jarabek, A. M.; Gearhart, J. M.; Sterner, T. R.; Fisher, J. W. PBPK model for radioactive iodide and perchlorate kinetics and perchlorate-induced inhibition of iodide uptake in humans. Toxicol. Sci. 2005, 83, 25–43.CrossRefGoogle Scholar
  21. 21.
    Anbar, M.; Guttmann, S.; Lweitus, Z. Int J Appl Radiat Isot 1959, 7, 87–96.CrossRefGoogle Scholar
  22. 22.
    Lawrence, J. E.; Lamm, S. H.; Pino, S.; Richman, K.; Braverman, L. E. The effect of short-term low-dose perchlorate on various aspects of thyroid function. Thyroid 2000, 10, 659–63.CrossRefGoogle Scholar
  23. 23.
    US EPA. 2005 Glossary of Terms. America’s Children and the Environment. [Accessed October 11,2005].Google Scholar
  24. 24.
    Fenske, R. A.; Kissel, J. C; Lu, C; Kalman, D. A.; Simcox, N. J.; Allen, E. H.; Keifer, M. C. Biologically based pesticide dose estimates for children in an agricultural community. Environ. Health Perspect. 2000, 108, 515–20.Google Scholar
  25. 25.
    Mage, D. T.; Allen, R. H.; Gondy, G.; Smith, W.; Barr, D. B.; Needham, L. L. Estimating pesticide dose from urinary pesticide concentration data by creatinine correction in the Third National Health and Nutrition Examination Survey (NHANES-III). J Expo.Anal.Environ.Epidemiol. 2004, 14, 457–65.CrossRefGoogle Scholar
  26. 26.
    Okamoto, H. S.; Rishi, D. K.; Steeber, W. R.; Baumann, F. J.; Perera, S. K. Using ion chromatography to detect perchlorate. J. Am. Water Works Assoc. 1999, 91, 73–84.Google Scholar
  27. 27.
    Krynitsky, A. J.; Niemann, R. A.; Nortrup, D. A. Determination of perchlorate anion in foods by ion chromatography-tandem mass spectrometry. Anal.Chem. 2004, 76, 5518–22.CrossRefGoogle Scholar
  28. 28.
    Martinelango, P. K.; Anderson, J. L.; Dasgupta, P. K.; Armstrong, D. W.; Al Horr, R. S.; Slingsby, R. W. Gas-phase ion association provides increased selectivity and sensitivity for measuring perchlorate by mass spectrometry. Anal.Chem. 2005, 77, 4829–35.CrossRefGoogle Scholar
  29. 29.
    Valentin-Blasini, L.; Mauldin, J. P.; Maple, D.; Blount, B. C. Analysis of perchlorate in human urine using ion chromatography and electrospray tandem mass spectrometry. Anal. Chem. 2005, 77, 2475–81.CrossRefGoogle Scholar
  30. 30.
    Braverman, L. E.; He, X.; Pino, S.; Cross, M.; Magnani, B.; Lamm, S. H.; Kruse, M. B.; Engel, A.; Crump, K. S.; Gibbs, J. P. The effect of perchlorate, thiocyanate, and nitrate on thyroid function in workers exposed to perchlorate long-term. J Clin. Endocrinol. Metab 2005, 90, 700–06.CrossRefGoogle Scholar
  31. 31.
    Gibbs, J. P.; Narayanan, L.; Mattie, D. R. Crump et al. study among school children in chile: subsequent urine and serum perchlorate levels are consistent with perchlorate in water in taltal. J. Occup. Environ. Med 2004, 46, 516–17.Google Scholar
  32. 32.
    Blount, B. C; Valentin-Blasini, L.; Mauldin, J. P.; Pirkle, J. L.; Osterloh, J. (personal communication).Google Scholar
  33. 33.
    Pearce, E. N.; Braverman, L. E.; Blount, B. C; Valentin-Blasini, L. (personal communication).Google Scholar
  34. 34.
    Ellington, J. J.; Evans, J. J. Determination of perchlorate at parts-per-billion levels in plants by ion chromatography. J. Chromatogr. A 2000, 898, 193–99.CrossRefGoogle Scholar
  35. 35.
    Anderson, T. A.; Wu, T. H. Extraction, cleanup, and analysis of the perchlorate anion in tissue samples. Bull. Environ. Contam Toxicol. 2002, 68, 684–91.CrossRefGoogle Scholar
  36. 36.
    Westgard, J. O.; Barry, P. L.; Hunt, M. R.; Groth, T. A multi-rule Shewhart chart for quality control in clinical chemistry. Clin. Chem. 1981, 27, 493–501.Google Scholar
  37. 37.
    Tonacchera, M.; Pinchera, A.; Dimida, A.; Ferrarini, E.; Agretti, P.; Vitti, P.; Santini, F.; Crump, K.; Gibbs, J. Relative potencies and additivity of perchlorate, thiocyanate, nitrate, and iodide on the inhibition of radioactive iodide uptake by the human sodium iodide symporter. Thyroid 2004, 14, 1012–19.CrossRefGoogle Scholar
  38. 38.
    CDC. 2004 National Health and Nutrition Examination Survey. National Center for Health Statistics, Hyattsville, MD. [Accessed October 11,2005].Google Scholar
  39. 39.
    Tellez, R. T.; Chacon, P. M.; Abarca, C. R.; Blount, B. C; Landingham, C. B.; Crump, K. S.; Gibbs, J. P. Long-term environmental exposure to perchlorate through drinking water and thyroid function during pregnancy and the neonatal period. Thyroid 2005, 15, 963–75.CrossRefGoogle Scholar
  40. 40.
    CDC 2005 National Report on Human Exposure to Environmental Chemicals. [Accessed October 11, 2005].Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Benjamin C. Blount
    • 1
  • Liza Valentín-Blasini
    • 1
  1. 1.Division of Laboratory Sciences, National Center for Environmental HealthCenters for Disease Control and PreventionAtlanta

Personalised recommendations