Advertisement

Perchlorate pp 111-152 | Cite as

Recent Developments in Perchlorate Detection

  • Pamela A. Mosier-Boss

Keywords

Selectivity Coefficient Surface Enhance Raman Spectroscopy Perchlorate Concentration Surface Enhance Raman Spectroscopy Surface Enhance Raman Spectroscopy Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U.S. EPA (2003). Occurrence and potential sources of perchlorate releases in the environment as of April, 2003, retrieved from http://www.epa.gov/swerffrr/pdf/perchlorate_occurrence_april03a.pdfGoogle Scholar
  2. 2.
    Hogue C. Rocket-fueled river. Chem. Eng. News 2003; 81:37–46.Google Scholar
  3. 3.
    Kirk A.B., Smith E.E., Tian K., Anderson T.A., Dasgupta P.K. Perchlorate in milk, Environ. Sci. Technol. 2003; 37:4979–4981.CrossRefGoogle Scholar
  4. 4.
    Bao H., Gu, B. Natural perchlorate has a unique oxygen isotope signature, Environ. Sci. Technol. 2004; 38: 5073–5077.CrossRefGoogle Scholar
  5. 5.
    Erickson B.E. Tracing the origin of perchlorate, Anal. Chem. 2004; 76: 388A–389A.CrossRefGoogle Scholar
  6. 6.
    Hoering T.C., Ishimori F.T., McDonald H.O. Oxygen exchange between oxy-anions and water. II. chlorite, chlorate, and perchlorate, J. Am. Chem. Soc. 1958; 80, 3876–3979.CrossRefGoogle Scholar
  7. 7.
    Brown, G.M., Bonnesen P.V., Moyer B.A., Gu B., Alexandratos S.D., Patei V., Ober R. “The design of selective resins for the removal of pertechnetate and perchlorate from water.” In Perchlorate in the Environment. E.T. Urbansky, ed. New York, NY: Kluwer Academic/Plenum Publishers, 2000.Google Scholar
  8. 8.
    Bonnesen P.V., Brown, G.M., Alexandratos S.D., Bavoux L.B., Presley D.J., Patel V., Ober R., Moyer B.A. Development of bifunctional anion-exchange resins with improved selectivity and sorptive kinetics for pertechnetate: batch-equilibrium experiments, Environ. Sci. Technol. 2000; 34: 3861–3766.CrossRefGoogle Scholar
  9. 9.
    Gu B., Ku Y.-K., Brown G.M. Treatment of perchlorate-contaminated groundwater using highly selective, regenerable ion-exchange technology: a pilot-scale demonstation. Remediation. 2002; 12: 51–68.CrossRefGoogle Scholar
  10. 10.
    Urbansky E.T. Perchlorate chemistry: implications for analysis and remediation, Bioremediation Journal, 1998; 2: 81–95.CrossRefGoogle Scholar
  11. 11.
    Nabar G.M., Ramachandran C.R. Quantitative determination of perchlorate ion in solution, Anal. Chem., 1959; 31:263–265.CrossRefGoogle Scholar
  12. 12.
    Cyganski A., Kowalczyk P., Krystek J., Ptaszynski B. New cetyltrimethylammonium methods of determination of perchlorate, Chemical Analysis. 2000; 45: 911–919.Google Scholar
  13. 13.
    Urbansky E.T. Quantitaion of perchlorateion: practices and advances applied to the analysis of common matrices, Crit. Rev. Anal. Chem., 2000; 30: 311–343.Google Scholar
  14. 14.
    Baczuk R.J., DuBois R.J. Potentiometric titration of perchlorate with tetraphenylarsonium chloride and a perchlorate ion specific electrode, Anal. Chem. 1968; 40: 685–689.CrossRefGoogle Scholar
  15. 15.
    Smith M.J., Manahan S.E. Low-temperature precipitation titration of perchlorate and tetrafluoroborate with tetraphenylarsonium chloride and ion-selective electrodes, Anal. Chim. Acta, 1969; 48: 315–319.CrossRefGoogle Scholar
  16. 16.
    Selig W. Lower limits of the potentiometric titration of perchlorate using a perchlorate ion-selective electrode, Microchem. Journal, 1977; 22: 1–6.CrossRefGoogle Scholar
  17. 17.
    Thorne P.G. Field Screening Method for Perchlorate in Water and Soil, U.S. Army Corps of Engineers ERDC/CRREL TR04-8, April 2004.Google Scholar
  18. 18.
    Urbansky E.T., Magnuson M.L., Freeman D., Jelks C. Quantitation of perchlorate ion by electrospray ionization mass spectrometry (ESI-MS) using stable association complexes with organic cations and bases to enhance selectivity, J. Anal. Atomic Spect., 1999; 14: 1861–1866.CrossRefGoogle Scholar
  19. 19.
    Magnuson M.L., Urbansky E.T., Kelty C.A. Determination of perchlorate at trace levels in drinking water by ion-pair extraction with electrospray ionization mass spectrometry, Anal. Chem., 2000; 72: 25–29.CrossRefGoogle Scholar
  20. 20.
    Magnuson M.L., Urbansky E.T., Kelty C.A. Microscale extraction of perchlorate in drinking water with low level detection by electrospray-mass spectrometry, Talanta, 2000; 52: 285–291.CrossRefGoogle Scholar
  21. 21.
    Janata. J. Principles of Chemical Sensors, Plenum Press, New York, NY, 1989.Google Scholar
  22. 22.
    Bühlmann, P., Amemiya, S., Nishizawa S., Xiao K.P., Umezawa Y., “Hydrogen-bonding ionophores for inorganic anions and nucleotides and their application in chemical sensors”, J. Inclusion Phenom. Mol. Recognit. Chem., 1998; 32: 151–163.CrossRefGoogle Scholar
  23. 23.
    Steed J.W., Atwood J.L. Supramolecular Chemistry, John Wiley and Sons, Ltd., Chichester, England, 2000.Google Scholar
  24. 24.
    Bühlmann P., Pretsch E., Baker E., “Carrier-based ion-selective electrodes and bulk electrodes. 2. ionophores for potentiometric and optical sensors”, Chem. Rev., 1998; 98: 1593–1687.CrossRefGoogle Scholar
  25. 25.
    Schmidtchen F.P., Berger M. Artificial organic host molecules for anions, Chem. Rev., 1997; 97: 1609–1646.CrossRefGoogle Scholar
  26. 26.
    Xiao K.P., Bühlmann P., Umezawa Y., “Ion-channel-mimetic sensing of hydrophilic anions based on monolayers of a hydrogen bond-forming receptor”, Anal. Chem., 1999; 71: 1183–1137.CrossRefGoogle Scholar
  27. 27.
    Xiao K.P., Bühlmann P., Nishizawa S., Amemiya S., Umezawa Y., “A chloride ion-selective solvent polymeric membrane electrode based on a hydrogen bond forming ionophore”, Anal. Chem., 1997; 69: 1038–1044.CrossRefGoogle Scholar
  28. 28.
    Shugar G.J., Dean J.A. The Chemist’s Ready Reference Handbook, McGraw-Hill Inc., New York, NY 1990.Google Scholar
  29. 29.
    Sánchez-Pedreño C, Ortuño.T.A., Hernández J. Perchlorate-selective polymeric membrane electrode based on a gold(I) complex: application to water and urine analysis, Anal. Chim. Acta, 2000; 415: 159–164.CrossRefGoogle Scholar
  30. 30.
    Shamsipur M., Soleymanpour A., Akhond M., Sharghi H., Hasaninejad A.R. Perchlorate selective membrane electrodes based on a phosphorous(V)-tetraphenyl porphyrin complex, Sensors and Actuators B, 2003; 89: 9–14.CrossRefGoogle Scholar
  31. 31.
    Errachid A., Pérez-Jiménez C, Casabó J., Escriche L., Muñoz J.A., Bratov A., Bausells J. Perchlorate-selective MEMFETS and ISEs based on a new phosphadithiamacrocycle, Sensors and Actuators B, 1997; 43: 206–210.CrossRefGoogle Scholar
  32. 32.
    Casabó J., Escriche L., Pérez-Jiménez C, Muñoz J.A., Teixidor F., Bausells J., Escriche L. Application of a new phosphadithiamacrocycle to ClO4selective CHEMFET and ion-selective electrode devices, Anal. Chim. Acta, 1996; 320: 63–68.CrossRefGoogle Scholar
  33. 33.
    Jie Z., Xiwen H. Study of the nature of recognition in molecularly imprinted polymer selective for 2-aminopyridine, Anal. Chem. Acta, 1999; 381: 85–91.CrossRefGoogle Scholar
  34. 34.
    Al-Kindy S., Badia R., Suárez-Rodríguez J.L., Díaz-García M.E. Molecularly imprinted polymers and optical sensing applications, Crit. Rev. in Anal. Chem., 2000; 30: 291–309.Google Scholar
  35. 35.
    Lu Z., Sun A., Dong S. Study of ClO4 — selective electrode based on a conducting polymer polypyrrole, Electroanalysis, 1989; 1: 271–277.CrossRefGoogle Scholar
  36. 36.
    Hutchins R.S. and Bachas L.G. Nitrate-selective electrode developed by electrochemically mediated imprinting/doping of polypyrrole, Anal. Chem., 1995; 67: 1654–1660.CrossRefGoogle Scholar
  37. 37.
    Wu J., Mullett W.M., Pawliszyn J. Electrochemically controlled solid-phase microextraction based on conductive polypyrrole films, Anal. Chem., 2002; 74: 4855–4859.CrossRefGoogle Scholar
  38. 38.
    Biesaga M., Kwiatkowska M., Trojanowicz M. Separation of chlorine-containing anions by ion chromatography and capillary electrophoresis, J. Chromatogr. A, 1997; 777: 375–381.CrossRefGoogle Scholar
  39. 39.
    Okamoto H.S., Rishi D.K., Steeber W.R., Baumann F.J., Perera S.K. Using ion chromatography to detect perchlorate”, J. Amer. Water Works Assoc., 1999; 91: 73–84.Google Scholar
  40. 40.
    U.S. EPA, Method 314: Determination of Perchlorate in Drinking Water Using Ion Chromatography, 1999.Google Scholar
  41. 41.
    Urbansky E.T., Gu B., Magnusin M.L., Brown G.M., Kelty C.A. Survey of bottled waters for perchlorate by electrospray ionization mass spectrometry (ESI-MS) and ion chromatography (IC), J. Sci. Food Agric., 2000; 80: 1798–1804.CrossRefGoogle Scholar
  42. 42.
    Tian K., Dasgupta P.K., Anderson T.A. Determination of trace perchlorate in high-salinity water samples by ion chromatography with on-line preconcentration and preelution, Anal. Chem., 2003; 75: 701–706.CrossRefGoogle Scholar
  43. 43.
    Ellington J.J., Wolfe N.L., Garrison A.W., Evans J.J., Avants J.K., Teng Q., Determination of perchlorate in tobacco plants and tobacco products, Environ, Sci. Technol. 2001; 35: 3213–3218.CrossRefGoogle Scholar
  44. 44.
    De Borba B.M., Urbansky E.T. Performance of poly(vinyl alcohol) gel columns on the ion chromatographic determination of perchlorate in fertilizers, J. Environ, Monit., 2002; 4: 149–155.CrossRefGoogle Scholar
  45. 45.
    Winkler P., Mirteer M., Willey J. Analysis of perchlorate in water and soil by electrospray LC/MS/MS, Anal. Chem., 2004; 76: 469–473.CrossRefGoogle Scholar
  46. 46.
    Krynitsky A.J., Niemann R.A., Nortrup D.A. Determination of perchlorate anion in foods by ion chromatography-tandem mass spectrometry, Anal. Chem., 2004; 76: 5518–5522.CrossRefGoogle Scholar
  47. 47.
    Williams T.L., Martin R.B., Collette T.W. Raman spectroscopic analysis of fertilizers and plant tissue for perchlorate, Appl. Spectrosc., 2001; 55: 967–983.CrossRefGoogle Scholar
  48. 48.
    Ehmann T., Bächmann K., Fabry L., Rüfer H., Pahlke S., Kotz L. Optimization of the electrokinetic sample introduction in capillary electrophoresis for the ultra trace determination of anions on silicon wafer surfaces, Chromatographia, 1997; 45: 301–311.Google Scholar
  49. 49.
    Polesello S., Valsecchi S.M. Electrochemical detection in the capillary electrophoresis analysis of inorganic compounds, J. Chromatogr. A, 1999; 834: 103–116.CrossRefGoogle Scholar
  50. 50.
    Nann A., Pretsch E. Potentiometric detection of anions separated by capillary electrophoresis using an ion selective electrode, J. Chromatogr. A, 1994; 676: 437–442.CrossRefGoogle Scholar
  51. 51.
    Kowalchyk W.K., Walker P.A. III, Morris M.D. Rapid normal Raman spectroscopy of sub-ppm oxy-anion solutions: the role of electrophoretic preconcentration, Appl. Spectrosc, 1995; 49: 1183–1188.CrossRefGoogle Scholar
  52. 52.
    Wang J., Chen G., Muck A. Jr., Collins G.E. Electrophoretic microchip with dual-opposite injection for simultaneous measurements of anions and cations, Electrophoresis, 2003; 24: 3728–3734.CrossRefGoogle Scholar
  53. 53.
    Cole R.B. Some tenants pertaining to electrospray ionization mass spectrometry, J. Mass Spectrom., 2000; 35: 763–772.CrossRefGoogle Scholar
  54. 54.
    Koester C.L., Beller H.R. Halden R.U. Analysis of perchlorate in groundwater by electrospray ionization mass spectrometry/mass spectrometry, Environ. Sci. Technol., 2000; 34: 1862–1864.CrossRefGoogle Scholar
  55. 55.
    Iavarone A.T., Udekwu O.A., Williams E.R. Buffer loading for counteracting metal salt-induced signal suppression in electrospray ionization, Anal. Chem., 2004; 76: 3944–3950.CrossRefGoogle Scholar
  56. 56.
    Nakamoto K. Infrared Spectra of Inorganic and Coordination Compounds, John Wiley and Sons Inc., New York, NY 1963.Google Scholar
  57. 57.
    Hebert G.N., Odom M.A., Bowman S.C., Strauss S.H. Attenuated total reflectance FTIR detection and quantification of low concentrations of aqueous polyatomic anions, Anal. Chem., 2004; 76: 781–787.CrossRefGoogle Scholar
  58. 58.
    Kazarian S.G., Flichy N.M.B., Coombs D., Poulter G. Potential of ATR-IR spectroscopy in applications to supercritical fluids and liquefied gases, Am. Lab., 2001; 2001: 44–48.Google Scholar
  59. 59.
    Strauss S. H., Odom M. A., Hebert G. N., Clapsaddle B. J. ATR-FTIR detection of 25 µg/L aqueous cyanide, perchlorate, and perfluorooctylsulfonate, J. Am. Water Works Assoc., 2002; 94: 109–115.Google Scholar
  60. 60.
    Strauss S.H. Monitoring low levels of ionic pollutants in water using attenuated total reflectance infrared spectroscopy. Proceedings of the Themes in Potable Water sponsored by the Division of Environmental Chemistry of the American Chemical Society during the 222nd National Meeting of the American Chemical Society; 2001 August 26–30; Chicago, Illinois; American Chemical Society, 2001.Google Scholar
  61. 61.
    Mosier-Boss P.A., Lieberman S.H. Detection of anions by normal Raman spectroscopy and surface-enhanced Raman spectroscopy of cationic-coated substrates, Appl. Spectrosc, 2003, 57: 1129–1137.CrossRefGoogle Scholar
  62. 62.
    Susarla S., Collette T.W., Garrison A.W., Wolfe N.L., McCutcheon S.C., Perchlorate identification in fertilizers, Environ. Sci. Technol., 1999, 33: 3469–3472.CrossRefGoogle Scholar
  63. 63.
    Gu B., Tio J., Wang W., Ku Y.-K., Dai S., Raman spectroscopic detection for perchlorate at low concentrations, Appl. Spectrosc, 2004; 58: 741–744.CrossRefGoogle Scholar
  64. 64.
    Fleischmann M., Hendra P.J., McQuillan A.J., Raman spectra of pyridine adsorbed at a silver electrode, Chem Phys. Lett., 1974; 26: 163–166.CrossRefGoogle Scholar
  65. 65.
    Jeanmaire D.L., Van Duyne R.P., Surface Raman spectroelectrochemistry part i. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem., 1977; 84: 1–20.Google Scholar
  66. 66.
    Mosier-Boss P.A., Boss R.D., Lieberman S.H. Determination of the ion-pair constant between chloride ion and cationic-coated, silver SERS substrates using competitive complexation, Langmuir, 2000; 16: 5441–5448.CrossRefGoogle Scholar
  67. 67.
    Mosier-Boss P.A., Lieberman S.H. Detection of anionic nutrients by SERS of cationic-coated silver substrates. Effect of chloride ion, Appl. Spectrosc., 2001; 55: 1327–1336.CrossRefGoogle Scholar
  68. 68.
    Mosier-Boss P.A., Lieberman S.H. Detection of nitrate and sulfate anions by normal Raman spectroscopy and SERS of cationic-coated substrates, Appl. Spectrosc, 2000; 54: 1126–1135.CrossRefGoogle Scholar
  69. 69.
    Mosier-Boss P. A., Lieberman S.H. SERS substrate composed of chemically modified gold colloid particles immobilized on magnetic microparticles, Anal. Chem., 2005; 77: 1031–1037.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Pamela A. Mosier-Boss
    • 1
  1. 1.SPAWAR Systems Center San DiegoSan Diego

Personalised recommendations