Advertisement

Perchlorate pp 49-69 | Cite as

Occurrence and Formation of Non-Anthropogenic Perchlorate

  • W. Andrew Jackson
  • Todd Anderson
  • Greg Harvey
  • Greta Orris
  • Srinath Rajagopalan
  • Namgoo Kang

Keywords

United States Geological Survey Southern High Plain Perchlorate Concentration Chlorine Isotope Public Water System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schumacher, J. Perchlorates: Their Properties, Manufacture and Uses, New York: Reinhold Publishing Corporation, 1960.Google Scholar
  2. 2.
    Ericksen, G.E., Hosterman, J.W., St. Amand., P. Chemistry, mineralogy and origin of the clay-hill nitrate deposits, Amargosa River Valley, Death Valley region, California, U.S.A. Chem. Geol. 1988; 67:85–102.CrossRefGoogle Scholar
  3. 3.
    Baas Becking, L.G.M., Haldane, A.D., Izard, D. Perchlorate, an important constituent of seawater. Nature 1958; 182:645–7.CrossRefGoogle Scholar
  4. 4.
    Loach, K.W. Estimation of low concentrations of perchlorate in natural materials. Nature 1962; 195:794–5.Google Scholar
  5. 5.
    Michalski, G., Böhlke, J.K., Thiemens, M. Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions. Geochim. Cosmochim. Adta 2004; 68:4023–38.CrossRefGoogle Scholar
  6. 6.
    Böhlke, J.K., Ericksen, G.E., Revesz, K. Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, USA. Chem. Geol. 1997; 136:135–52.CrossRefGoogle Scholar
  7. 7.
    Murphy, D..M., Thomson, D.S. Halogen ions and NO+ in the mass spectra of aerosols in the upper troposphere and lower stratosphere. Geophys. Res. Lett. 2000; 27:3217–20.CrossRefGoogle Scholar
  8. 8.
    Dasgupta, P.K., Martinelango, P.K., Jackson, W.A., Anderson, T.A., Tian, K., Tock, R.W., Rajagopalan, S. The origin of naturally occurring perchlorate: the role of atmospheric processes. Environ. Sci. Technol. 2005; 39:1569–75.CrossRefGoogle Scholar
  9. 9.
    Bao, H., Gu., B. Natural perchlorate has a unique oxygen isotope signature. Environ. Sci. Technol. 2004; 38:5073–7.CrossRefGoogle Scholar
  10. 10.
    Sturchio, N.C., Hatzinger, P.B., Arkins, M.D., Suh, C, Heraty, L.J. Chlorine isotope fractionation during microbial reduction of perchlorate. Environ. Sci. Technol. 2003; 37:3859–63.CrossRefGoogle Scholar
  11. 11.
    Ericksen, G.E. The Chilean nitrate deposits. Am. Scientist 1983; 71:366–74.Google Scholar
  12. 12.
    Grossling, B.F., Ericksen, G.E. Computer Studies of the composition of Chilean nitrate ores: Data reduction, basic statistics, and correlation analysis. USGS Open File Series, no. 1519, 1971.Google Scholar
  13. 13.
    Vogt, R. “Reactive Halogen Compounds in the Atmosphere.” In Iodine Compounds in the Atmosphere, Fabian, P., Singh, O.N., eds. Berlin Heidelberg: Springer-Verlag, 1999.Google Scholar
  14. 14.
    Simonaitis, R., Heicklen, J. Perchloric acid: a possible sink for stratospheric chlorine. Planet. Space Sci. 1975; 23:1567–9.CrossRefGoogle Scholar
  15. 15.
    Ericksen, G.E. Geology of salt deposits and the salt industry of northern Chile. USGS Open File Series, no. 689. 1963Google Scholar
  16. 16.
    Asociación de Productores de Salitre de Chile (1930). Industria del Salitre de Chile 1830–1930. Valparaíso: Sociedad Imprenta y Litografía Universo. Retrieved January 2005 from: http://www.albumdesierto.cl/ingles/2estadis.htm Google Scholar
  17. 17.
    US Bureau of Mines, Mineral Yearbook 1938–1993. Retrieved from: http://libtext.librarv.wisc.edu/cgi-bin/EcoNatRes/EcoNatRes-idx?type=browse&scope=ECONATRES.MINERALSYEARBK Google Scholar
  18. 18.
    Renner, R. Study finding perchlorate in fertilizer rattles industry. Environ. Sci. Technol. 1999; 33:394A–5A.Google Scholar
  19. 19.
    Beaton, J.D. Fertilizer Use-A Historical Perspective. Retrieved February 2005 from: http://www.back-to-basics.net/efu/pdfs/history.pdf Google Scholar
  20. 20.
    Urbansky, E. T., Collette, T.W., Robarge, W.P., Hall, W.L., Skillen, J.M., Kane, P.F. EPA/600/R-01/049. Survey of Fertilizers and Related Materials for Perchlorate: Final Report. Cincinnati, OH: U.S. Environmental Protection Agency, July 2001b.Google Scholar
  21. 21.
    Tollenaar, H., Martin, C. Perchlorate in Chilean nitrate as the cause of leaf rugosity in soybean plant in Chile. Phytopathology 1972; 62:1164–6.CrossRefGoogle Scholar
  22. 22.
    Urbansky, E.T., Brown, S.K., Magnuson, M.L., Kelty, C.A. Perchlorate levels in samples of sodium nitrate fertilizer derived from Chilean caliche. Environ. Pollut. 2001a; 112:299–302.CrossRefGoogle Scholar
  23. 23.
    Ericksen, G. E. Geology and origin of the Chilean nitrate deposits, 1981; U.S. Geological Survey Professional Paper 1188, 37.Google Scholar
  24. 24.
    Van Moort, J.C. Procesos naturals de enriquecimiento de iones nitrato, sulfato, perchlorato, iodato, borato, perclordo y chromato en los claiches del norte de Chile, in IV Congreso Geologico Chileno: Antofagasta, Chile, Universidad del Norte Chile, 1985; 4:3.674–702.Google Scholar
  25. 25.
    Orris, G.J., Harvey, G.J., Tsui, D.T., Eldridge, J.E. Preliminary analyses for perchlorate in selected natural materials and their derivative products. USGS Open File Report 03-314. Retrieved 2003 from: http://geopubs.wr.usgs.gov/open-file/of03-314/OF03-314.pdf Google Scholar
  26. 26.
    Jackson, W.A., Anderson, T.A., Lehman, T., Rainwater, K.A., Rajagopalan, S., Ridley, M., Tock, W.R. Distribution and potential sources of perchlorate in the high plains region of Texas. Final Report to the Texas Commission on Environmental Quality. 2004.Google Scholar
  27. 27.
    Jackson, W.A., Anandam, S., Anderson, T.A., Lehman, T., Rainwater, K.A., Rajagopalan, S., Ridley, M., Tock, W.R. Perchlorate occurrence in the Texas southern high plains aquifer system. Groundwater Monitoring and Remediation 2005a; 25:137–49.CrossRefGoogle Scholar
  28. 28.
    Patil, L. B. Vertical Distribution of Perchlorate in the Unsaturated Zone, Master’s Thesis, Texas Tech University, Lubbock, Texas, 2005.Google Scholar
  29. 29.
    Dale, M.R., Granzow, K.P., Yanicak, S.M., Englert, D.E., Longmire, P.A., Counce, D.A., Trace Perchlorate in Ground Waters of the Pajarito Plateau, Española Basin and the Rio Grande North of Taos, New Mexico. Los Alamos National Laboratory Hydrogeologic Characterization Program Quarterly Meeting, 2004 October 25; New Mexico Environment Department, DOE Oversight Bureau (poster presentation).Google Scholar
  30. 30.
    Roefer, P., Zikmund, K., Snyder, S. Low level perchlorate sampling results in the Colorado river system, and Lake Mead. Southern Nevada Water Authority Report, 2004.Google Scholar
  31. 31.
    Personal Communication with Greg HarveyGoogle Scholar
  32. 32.
    Martin, L. R., Wren, A. G., Wun, M. Chlorine atom and ClO wall reaction products. Int. J. Chem. Kinet. 1979; XI:543–57.CrossRefGoogle Scholar
  33. 33.
    Miller, G., Kempley, R., Awadh, G., Richman, K. Photo-oxidation of chloride to perchlorate in the presence of titanium dioxide and nitrate. Abstract of Papers of the American Chemical Society, August 22, U92-U92 056-AGRO Part 1. 2004.Google Scholar
  34. 34.
    Pszenny, A.A.P., Moldanová, J., Keene, W.C., Sander, R., Maben, J.R., Martinez, M., Crutzen, P.J. Halogen cycling and aerosol pH in the Hawaiian marine boundary layer. Atmos. Chem. Phys. 2004; 4:147–68.CrossRefGoogle Scholar
  35. 35.
    Keene, W.C., Sander, R., Pszenny, A.A.P., Vogt, R., Crutzen, P.J., Galloway, J.N. Aerosol pH in the marine boundary layer: A review and model evaluation. J. Aerosol Sci. 1998; 29: 339–56.CrossRefGoogle Scholar
  36. 36.
    NRC. Global Tropospheric Chemistry: A Plan for Action. Washington, D.C.: National Academy Press, 1984.Google Scholar
  37. 37.
    Buckley, P.T., Birks, J.W. Evaluation of visible-light photolysis of ozone-water cluster molecules as a source of atmospheric hydroxyl radical and hydrogen peroxide. Atmospheric Environ. 1995; 29: 2409–15.CrossRefGoogle Scholar
  38. 38.
    Faust, B.C. Photochemistry of clouds, fogs, and aerosols. Environ. Sci. Technol. 1994; 28: 217A–22A.Google Scholar
  39. 39.
    Arakaki, T., Faust, B.C. Sources, sinks, and mechanisms of hydroxyl radical (OH) photoproduction and consumption in authentic acidic continental cloud waters from Whiteface Mountain, New York: The role of the Fe(r) (r = II, III) photochemical cycle. J. Geophys. Res. 1998; 103:3487–504.CrossRefGoogle Scholar
  40. 40.
    Behra, P., Sigg, L. Evidence of redox cylcling of iron in atmospheric water droplets. Nature 1990; 344:419–21.CrossRefGoogle Scholar
  41. 41.
    Graedel, T.E., Mandich, M.L. Kinetic model studies of atmospheric droplet chemistry 2. Homogeneous transition metal chemistry in raindrops. J. Geophys. Res. 1986; 91:5205–21.CrossRefGoogle Scholar
  42. 42.
    Roeselová, M., Jungwirth, P., Tobias, D.J., Gerber, R.B. Impact, trapping, and accomodation of hydroxyl radical and ozone at aqueous salt aerosol surfaces. A molecular dynamics study. J. Phys. Chem. 2003; 107: 12690–9.Google Scholar
  43. 43.
    Knipping, E.M., Dabdub, D. Modeling Cl2 formation from aqueous NaCl particles: evidence for interfacial reactions and importance of Cl2 decomposition in alkaline solution. J. Geophys. Res. 2002, 107:4360, ACH 8:1–30.CrossRefGoogle Scholar
  44. 44.
    Keene, W.C., Khalil, M.A.K., Erickson III, D.J., McCulloch, A., Graedel, T.E., Lobert, J.M., Aucott, M.L., Gong, S.L., Harper, D.B., Kleiman, G., Midgley, P., Moore, R.M., Seuzaret, C., Sturges, W.T., Benkovitz, C. M., Koropalov, V., Barrie, L.A., Li, Y.F. Composite global emissions of reactive chlorine from anthropogenic and natural sources: reactive chlorine emission inventory. J. Geophys. Res. 1999; 104: 8429–40.CrossRefGoogle Scholar
  45. 45.
    Bizjak, M., Grgic, I., Hudnik, V. The role of aerosol composition in the chemical processes in the atmosphere. Chemosphere 1999; 38:1233–1240.CrossRefGoogle Scholar
  46. 46.
    Dentener, F.J., Carmichael, G.R., Zhang, Y., Lelieveld, J., Crutzen, P.J. Role of mineral aerosol as a reactive surface in the global troposphere. J. Geophys. Res. 1996; 101:22869–89.CrossRefGoogle Scholar
  47. 47.
    Oum, K.W., Lakin, M.J., DeHaan, D.O., Brauers, T., Finlayson-Pitts, B.J. Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles. Science 1998; 279:74–7.CrossRefGoogle Scholar
  48. 48.
    Behnke, W., Zetzsch, C. Heterogeneous formation of chlorine atoms from various aerosols in the presence of O3 and HCl. J. Aerosol Sci. 1989; 20:1167–70.CrossRefGoogle Scholar
  49. 49.
    Wongdontri-Stuper, W., Jayanty, R.K.M., Simonaitis, R., Heicklen, J. The Cl2 photosensitized decomposition of O3: The reactions of ClO and OClO with O3. J. Photochem. 1979; 10:163–86.CrossRefGoogle Scholar
  50. 50.
    Nowell, L.H., Hoigné, J. Photolysis of aqueous chlorine at sunlight and ultraviolet wavelengths-II. Hydroxyl radical production. Wat. Res. 1992; 26:599–605.CrossRefGoogle Scholar
  51. 51.
    Francisco, J.S. Ab initio characterization of HOClO3 and HO4Cl: Implication for atmospheric chemistry. J. Phys. Chem. 1995; 99:13422–5.CrossRefGoogle Scholar
  52. 52.
    Prasad, S.S., Lee, T.J. Atmospheric chemistry of the reaction ClO + O2 ↔ C1O·O2 Where it stands, what needs to be done, and why? J. Geophys. Res. 1994; 99:8225–8230.CrossRefGoogle Scholar
  53. 53.
    Jaeglé, L., Yung, Y.L., Toon, G.C., Sen, B., Blavier, J.-F. Balloon observation of organic and inorganic chlorine in the stratosphere: the role of HClO4 production on sulfate aerosols. Geophys. Res. Lett. 1996; 23:1749–52.CrossRefGoogle Scholar
  54. 54.
    Huie, R.E., Peterson, N.C. The photolysis of concentrated perchloric acid solutions. J. Photochem. 1983; 21:31–4.CrossRefGoogle Scholar
  55. 55.
    Hoering, T.C., Ishimori, F.T., McDonald, H.O. The oxygen exchange between oxyanions and water. II. Chlorite, chlorate and perchlorate ions. J. Am. Chem. Soc. 1958; 80:3876–9.CrossRefGoogle Scholar
  56. 56.
    Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995; 95:69–96.CrossRefGoogle Scholar
  57. 57.
    Legrini, O., Oliveros, E., Braun, A.M. Photochemical processes for water treatment. Chem. Rev. 1993; 93:671–98.CrossRefGoogle Scholar
  58. 58.
    Mack, J., Bolton, J. R. Photochemistry of nitrite and nitrate in aqueous solution: a review. J. Photochem. Photobiol. 1999; 128:1–13.CrossRefGoogle Scholar
  59. 59.
    Walvoord, M.A., Phillips, F.M., Stonestrom, D.A., Evans, R.D., Hartsough, P.C., Newman, B.D., Striegl, R.G. A reservoir of nitrate beneath desert soils. Science 2003; 302:1021–4.CrossRefGoogle Scholar
  60. 60.
    FDA (2004). Exploratory Data on Perchlorate in Food. Retrieved March 2005 from: http://www.cfsan.fda.gov/~dms/clo4data.html Google Scholar
  61. 61.
    Tan, K, Anderson, T.A., Jones, M.W., Smith, P.N., Jackson, W.A. Uptake of perchlorate in aquatic and terrestrial plants at field scale, J. Environ. Qual. 2004; 33:1638–46.CrossRefGoogle Scholar
  62. 62.
    Yu, L., Cãnas, J.E., Cobb, G.P., Jackson, W.A., Anderson, T.A. Uptake of Perchlorate in Terrestrial Plants. Ecotoxicol. Environ. Safety 2004; 58:44–9.CrossRefGoogle Scholar
  63. 63.
    Jackson, W.A., Joseph, P.C., Patil, L.B., Tan, K., Smith, P.N., Yu, L., Anderson, T.A. Perchlorate Accumulation in Forage and Edible Vegetation. J. Agri. Food Chem. 2005b; 53:369–73.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • W. Andrew Jackson
    • 1
  • Todd Anderson
  • Greg Harvey
  • Greta Orris
  • Srinath Rajagopalan
  • Namgoo Kang
  1. 1.Dept. of Civil EngineeringTexas Tech UniversityLubbock

Personalised recommendations