Advertisement

Perchlorate pp 17-47 | Cite as

The Chemistry of Perchlorate in the Environment

  • Gilbert M. Brown
  • Baohua Gu

Conclusions

The persistence of perchlorate in groundwater can be understood from its chemical and physical properties and its chemical reactivity. Although perchlorate is a powerful oxidizing agent, its notorious lack of reactivity can be understood from the requirement that reduction involves oxygen atom transfer. Because perchlorate is relatively unreactive, remediation schemes involving direct chemical or electrochemical reduction are not effective. The low hydration energy of perchlorate anions favors sorption on organic anion exchange resins. Remediation methods involving collection on such resins prior to reduction or some other means of disposal are feasible. Biological systems that naturally reduce and degrade perchlorate are also a potentially practical means of remediating perchlorate-contaminated groundwater in a cost-effective manner.

Keywords

Perchloric Acid Chlorine Atom Ammonium Perchlorate Hydration Energy Chlorine Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hogue, C. “Rocket-Fueled River,” Chem. Eng. News 2003, 81, 37–46.Google Scholar
  2. 2.
    Brandhuber, P and Clark, S. “Perchlorate Occurrence Mapping,” American Water Works Association: Washington, DC, 2005, report available at the web site www.awwa.org/Advacocy/PerchlorateOccurrenceReportFinalb02092005.pdfGoogle Scholar
  3. 3.
    National Research Council. Health Implications of Perchlorate Ingestion. The National Academies Press: Washington, DC, 2005.Google Scholar
  4. 4.
    Urbansky E.T. Perchlorate chemistry: implications for analysis and remediation. Bioremediation J. 1998, 2: 81–95.CrossRefGoogle Scholar
  5. 5.
    Motzer, W. E., Perchlorate: Problems, Detection, and Solutions, Environ. Forensics, 2, 2001, 301–311.Google Scholar
  6. 6.
    Urbansky, E. T., Quantitation of Perchlorate Ion: Practices and advances Applied to the analysis of Common Matrices, Crit. Rev. Anal Chem, 30, 2000, 311–343.Google Scholar
  7. 7.
    Urbansky, E. T. and Schrock, M. R., Issues in Managing the Risks Associated with Perchlorate in Drinking Water, J. Environ. Mgmt, 1999, 56:79–95.CrossRefGoogle Scholar
  8. 8.
    Urbansky, E. T., Ed. Perchlorate in the Environment; Kluwer Academic/Plenum Publishers: New York, 2000.Google Scholar
  9. 9.
    Hatzinger, P., Perchlorate Biodegradation for Water Treatment, Environ. Sci. Technol., 2005, 39:239A–247A.Google Scholar
  10. 10.
    Latimer, W. E., Oxidation Potentials, 2nd Ed, New York: Prentice Hall, 1952.Google Scholar
  11. 11.
    Bratsch, S. D. Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 °K, J. Phys Chem Ref Data, 1989, 18: 1–21.CrossRefGoogle Scholar
  12. 12.
    Shilt, A.A., Perchloric Acid and Perchlorates, Columbus, OH: GF Smith Chemical Company, 1979.Google Scholar
  13. 13.
    Gordon, G., Is all Chlorine Dioxide Created Equal?, J. Am. Water Works Assoc, 2001, 163–174.Google Scholar
  14. 14.
    The Occurrence and Sources of Perchlorate in Massachusetts, draft report by Massachusetts Department of Environmental Protection, August, 2005, http://www.mass.gov/dep/Google Scholar
  15. 15.
    Jackson, W. A., Anandam, S. K., Anderson, T., Lehman, T., Rainwater, K., Rajagopalan, S., Ridley, M., and Tock, R. Ground Water Monitoring and Remediation, 2005, 25:137–149.CrossRefGoogle Scholar
  16. 16.
    Olah, G. A., G. K. Surya Prakash, and J. Sommer, Superacids, New York: John Wiley and Sons, 1985.Google Scholar
  17. 17.
    Hoering, T. C, Ishimori, F. T., and McDonald, H. O., The Oxygen Exchange Between Oxy-anions and Water. 11. Chlorite, Chlorate and Perchlorate Ions, J. Am Chem Soc, 1958, 80:3876–3879.CrossRefGoogle Scholar
  18. 18.
    Moyer, B. A. and P. V. Bonnesen, “Physical Factors in Anion Separation,” in Supramolecular Chemistry of Anions, A. Bianchi, K. Bowman-James, and E. Garcia-Espana, ed, New York: Wiley-VCH, Inc, 1979, p 1–44.Google Scholar
  19. 19.
    Diamond, R. M., Whitney, D. C. In Ion Exchange, Vol. I; Marinsky, J. A., Ed.; Marcel Dekker: New York, 1966, pp 277–351.Google Scholar
  20. 20.
    Mendiratta, S. K., Dotson, R. L., and Brooker, R. T., Perchloric acid and Perchlorates, in Kirk-Othmer Encyclopedia of Science and Technology, 4th Ed, New York: John Wiley and Sons, 1996, Vol 18, p157–170.Google Scholar
  21. 21.
    Arora, P. and Srinivasan, V., Report on the Electrolytic Industries for the Year 2001, J. Electrochem. Soc, 2002, 149:K1–K29.CrossRefGoogle Scholar
  22. 22.
    Srinivasan, V. and Lipp, L., Report on the Electrolyric Industries for the Year 2002, J. Electrochem. Soc, 2003, 150:K15–K38.CrossRefGoogle Scholar
  23. 23.
    Burns, D. T., Chimpalee, N., and Harriott, M., Flow-Injection Extraction-Spectrophotometric Determination of Perchlorate with Brilliant Green, Anal. Chim. Acta., 1989,217:177–181.CrossRefGoogle Scholar
  24. 24.
    Encyclopedia of Chemical Processing and Design, McKetta, J. J. and Weismantel, G. E., Ed, New York: Marcel Dekker, 1995, Vol 51, p180Google Scholar
  25. 25.
    Earley, J. E., Tofan, D. C, Amadei, G. A., “Reduction of Perchlorate Ion by Titanous Ion in Ethanolic Solution,” In Perchlorate in the Environment; Urbansky, E. T., Ed.; New York: Kluwer/Plenum, 2000, pp 89–98.Google Scholar
  26. 26.
    Espenson, J. H., “The Problem and Perversity of Perchlorate,” In Perchlorate in the Environment; Urbansky, E. T., Ed.; New York: Kluwer/Plenum, 2000, pp 1–7.Google Scholar
  27. 27.
    Urbansky, E.T. Perchlorate chemistry: implications for analysis and remediation. Bioremediation J 1998; 2: 81–95.CrossRefGoogle Scholar
  28. 28.
    Taube, H. “Observations on Atom Transfer Reactions” In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D. B., Endicott, J. F., Eds.; ACS Symposium Series No. 198, 1982, pp 151.Google Scholar
  29. 29.
    Duke, F. R. and Quinney, P. R. The Kinetics of Reduction of Perchlorate Ion by Ti(III) in Dilute Solution, J. Am Chem Soc, 1954, 76:3800–3803.Google Scholar
  30. 30.
    Cope, V. W., Miller, R. G., and Fraser, R. T. M., Titanium (III) as a Reductant in Electron-Transfer Reactions, J. Chem Soc (A), 1967, 301–306.Google Scholar
  31. 31.
    Kallen, T. W. and Earley, J. E., Reduction of Perchlorate by Aquoruthenium(II), Inorg Chem, 1971, 10:1152–1155.CrossRefGoogle Scholar
  32. 32.
    King, W. R and Garner, C. S., Kinetics of the Oxidation of Vanadium(II) and Vanadium(III) Ions by Perchlorate Ion, J. Phys. Chem, 1954, 58:29–33.CrossRefGoogle Scholar
  33. 33.
    Liu, B.-Y, Wagner, P.A., and Earley, J. E., Reduction of Perchlorate Ion by (N-(Hydroxyethyl)ethylenediaminetriacetato)aquotitanium(III), Inorg. Chem., 1984, 23:3418–3420.CrossRefGoogle Scholar
  34. 34.
    Endicott, J. F. and Taube, H., J. Am. Chem. Soc, 84, 1962, 4984; Endicott, J. F. and Taube, H., Inorg Chem., 4, 1965, 437.CrossRefGoogle Scholar
  35. 35.
    Baes, C. F. and Mesmer, R. E. Hydrolysis of Cations, New York: Wiley-Interscience, 1973, p 199.Google Scholar
  36. 36.
    Abu-Omar, M. M. and Espenson, J. H., Facile Abstraction of Successive Oxygen Atoms from Perchlorate Ions by Methylrhenium Dioxide, Inorg. Chem., 1995, 34:6239–6240.CrossRefGoogle Scholar
  37. 37.
    Abu-Omar, M. M, Appelman, E. H., and Espenson, J. H., Oxygen-Transfer Reactions of Methylrhenium Oxides, Inorg. Chem., 1996, 35:7751–7757.CrossRefGoogle Scholar
  38. 38.
    Espenson, J. H. and Abu-Omar, M. M, in Electron Transfer Reactions: Inorganic, Organic, and Biological Applications, Isied, S. S., ed, Advances in Chemistry 253, American Chemical Society: Washington, DC, 1997, 99–134.Google Scholar
  39. 39.
    Espenson, J. H. Atom-Transfer Reactions Catalyzed by Methyltrioxorhenium(VII)-Mechanisms and Applications, Chem. Commun, 1999, 479–488.Google Scholar
  40. 40.
    Abu-Omar, M. M., McPherson, L. D., Arias, J., and Bereau, V. M, Clean and Efficient Catalytic Reduction of Perchlorate, Angew. Chem. Int. Ed., 2000, 39:4310–4313.CrossRefGoogle Scholar
  41. 41.
    Abu-Omar, M. M., Effective and Catalytic Reduction of Perchlorate by Atom-Transfer Reaction-Kinetics and Mechanism, Comments on Inorganic Chemistry, 2003, 24:15–37.Google Scholar
  42. 42.
    Horanyi, G. “Electrosorption Studies in Electrocatalysis,” in A Specialist Periodical Report, Vol 12, Spivey, J. J. (ed), The Royal Society of Chemistry: Cambridge, 1996, pp 254–301.Google Scholar
  43. 43.
    Láng, G. G. and Horayni, G., Some Interesting Aspects of the Catalytic and Electrocatalytic Reduction of Perchlorate Ions, J. Electroanal. Chem., 2003, 552:197–211.CrossRefGoogle Scholar
  44. 44.
    Adams, R. N., Electrochemistry at Solid Electrodes, Marcel Dekker: New York, 1969, p 29.Google Scholar
  45. 45.
    Horanyi, G. and G. Vertes. Catalytic and electrochemical reduction of perchlorate ions on platinum in aqueous solution. J. Electroanal. Chem. 64 (1975) 252–254.Google Scholar
  46. 46.
    Bakos, I., G. Horanyi, An experimental study of the relationship between platinization and the shape of the voltammetric curves obtained at Pt/Pt electrodes in 0.5M H2SO4. J. Electroanal. Chem. 1992, 332:147–154. G. Horanyi, and I. Bakos, Experimental evidence demonstrating the occurrence of reduction processes of ClO4 ions in an acid medium at platinized platinum electrodes. J. Electroanal. Chem. 1992, 331:727–737.CrossRefGoogle Scholar
  47. 47.
    Horanyi, G. and G. Vertes, Reduction of perchlorate ions by molecular hydrogen in the presence of tungsten carbide. Inorg. Nucl. Chem. Lett. 1974, 10:767–770.CrossRefGoogle Scholar
  48. 48.
    Sanchez Cruz, M., M.J. Gonzalez Tejera, and M.C. Villamanan, Reduction electrochimique de l’ion ClO4-sur l’electrode d’iridium. Electrochim. Acta. 1985, 30:1563–1569.CrossRefGoogle Scholar
  49. 49.
    Go’mez, R. and M.J. Weaver, Electrochemical infrared studies of monocrystalline iridium surfaces. Part 2: Carbon monoxide and nitric oxide adsorption on Ir(110). Langmuir. 1998, 14:2525–2534.CrossRefGoogle Scholar
  50. 50.
    Bakos, I., G. Horanyi, S. Szabo, E.M. Rizmayer, Electrocatalytic reduction of C1O4-ions at an electrodeposited Re layer. J. Electroanal. Chem. 1993, 359:241–252.CrossRefGoogle Scholar
  51. 51.
    Horanyi, G., E.M. Rizmayer, A radiotracer study of the adsorption of Cl ions on rhodized electrodes. J. Electroanal. Chem. 1986, 198:379–391. C.K. Rhee, M. Wasberg, G. Horanyi, A. Wieckowski, Strong anion/surface interactions: perchlorate reduction on Rh(100) electrode studied by voltammetry. J. Electroanal. Chem. 1990, 291:281–287.CrossRefGoogle Scholar
  52. 52.
    Rhee, C.K., M. Wasberg, P. Zelenay, and P. Wieckowski, Reduction of perchlorate on rhodium and its specificity to surface crystallographic orientation. Catalysis Lett. 1991, 10: 149–164. Clavilier, J., M. Wasberg, M. Petit, and L.H. Klein, Detailed analysis of the voltammetry of Rh(l11) in perchloric acid solution. J. Electroanal. Chem. 1994, 374:123–131.CrossRefGoogle Scholar
  53. 53.
    Colom, F. and M.J. Gonzalez-Tejera, Reduction of perchlorate ion on ruthenium electrodes in aqueous solutions. J. Electroanal. Chem. 1985, 190:243–255.CrossRefGoogle Scholar
  54. 54.
    Horanyi, G. and I. Bakos, Combined radiometric and electrochemical study of the behavior of Tc (VII) ions at gold and platinized surfaces in acidic media. J. Appl. Electrochem. 1993, 23: 547–552.CrossRefGoogle Scholar
  55. 55.
    Almeida, C.M.V.B., Giannnetti, B. F., Rabockai, Electrochemical Study of Perchlorate Reduction at Tin Electrodes, J. Electroanal. Chem., 1997, 422:185–189.CrossRefGoogle Scholar
  56. 56.
    Lang, G., Inzelt, G., Vrabecz, A., and Horanyi, G., Electrochemical Aspects of Some Features Connected with the Behavior of Iron Group Metals in Aqueous Perchloric Acid/Perchlorate Media, J. Eleectroanal Chem, 2005, 582:249–257.CrossRefGoogle Scholar
  57. 57.
    Brown, G. M., The Reduction of Chlorate and Perchlorate Ions at an Active Titanium Electrode, J. Electroanal Chem, 1986, 198:319–330.CrossRefGoogle Scholar
  58. 58.
    Painot, J. and J. Augustynski, Etude potentiostatique et spectroscopique de l’aluminum recouvert par une couche d’oxyde: effet de differents anions. Electrochim. Acta. 1975, 20, 747–752.CrossRefGoogle Scholar
  59. 59.
    Gu, B., Brown, G. M. Regeneration of anion exchange resins by catalyzed electrochemical reduction. 2002:US Patent No. 6,358,396.Google Scholar
  60. 60.
    Ericksen, G.E. The Chilean nitrate deposits. Amer Scientist 1983; 71: 366–374.Google Scholar
  61. 61.
    Brenninkmeijer, C. A. M., Janssen, C., Kaiser, J., Rockmann, T., Rhee, T. S., and Assonov, S. S., Isotope Effects in the Chemistry of Atmospheric Trace Compounds, Chem Rev, 2003, 103:5125–5161.CrossRefGoogle Scholar
  62. 62.
    Thrush, B. A., The Chemistry of the Stratosphere, Rep. Prog. Phys, 1988, 51:1341–1371.CrossRefGoogle Scholar
  63. 63.
    Bedjanian, Y. and Poulet, G., Kinetics of Halogen Oxide Radicals in the Stratosphere, Chem. Rev., 2003, 103:4639–4655.CrossRefGoogle Scholar
  64. 64.
    Monks, P. S., Gas-phase Radical Chemistry in the Troposphere, Chem. Soc. Rev., 2005, 34:376–395.CrossRefGoogle Scholar
  65. 65.
    Finlayson-Pitts, B. J., The Tropospheric Chemistry of Sea Salt: A Molecular-Level View of the Chemistry of NaCl and NaBr, Chem. Rev., 2003, 103: 4801–4822.CrossRefGoogle Scholar
  66. 66.
    Michalski G., Böhlke J.K., and Thiemens M.. Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: New evidence from mass-independent oxygen isotopic compositions. Geochim Cosmochim Acta 2004; 68: 4023–4038.CrossRefGoogle Scholar
  67. 67.
    Simonaitis, R., and Heicklen, J. Perchloric Acid: A Possible Sink for Stratospheric Chlorine, Planet. Space Sci. 1975, 23:1567–1569.CrossRefGoogle Scholar
  68. 68.
    Jaeglé, L., Yung, Y. L., Toon, G. C, Sen, B., and Blavier, J.-F. Balloon observation of organic and inorganic chlorine in the stratosphere: the role of HC1O4 production on sulfate aerosols, Geophys. Res. Lett,. 1996, 23:1749–1752.CrossRefGoogle Scholar
  69. 69.
    Gu, B., Dong, W., Brown, G. M., Cole, D. R. Complete degradation of perchlorate in ferric chloride and hydrochloric acid under controlled temperature and pressure. Environ. Sci. Technol., 2003; 37:2291–2295.CrossRefGoogle Scholar
  70. 70.
    Moore, A. M., De Leon, C. H., Young, T. M. Rate and extent of aqueous perchlorate removal by iron surfaces. Environ. Sci. Technol., 2003; 37:3189–3198.CrossRefGoogle Scholar
  71. 71.
    Moore, A. M., Young, T. M. Chloride interactions with iron surfaces: implications for perchlorate and nitrate remediation using permeable reactive barriers. J. Environ. Eng., 2005; 131:924–933.CrossRefGoogle Scholar
  72. 72.
    Cao, J. S., Elliott, D., Zhang, W. X. Perchlorate reduction by nanoscale iron particles. J. Nanopart. Res., 2005; 7:499–506.CrossRefGoogle Scholar
  73. 73.
    Urbansky, E. T., Brown, S. K. Perchlorate retention and mobility in soils. J. Environ. Mon., 2003; 5:455–462.CrossRefGoogle Scholar
  74. 74.
    Gu, B., Schulz, R. K. Anion retention in soil: possible application to reduce migration of buried technetium and iodine. NUREG/CR-5464. U.S. Nuclear Regulatory Commission, 1991: Washington, DC 20555.Google Scholar
  75. 75.
    Ticknor, K. V., Cho, Y. H. Interaction of iodide and iodate with granitic fracture-filling minerals. J. Radioanal. Nucl. Chem., 1990; 140:75–90.CrossRefGoogle Scholar
  76. 76.
    Whitehead, D. C. The sorption of iodide by soil components. J. Sci. Food Agric, 1974; 25:73–79.Google Scholar
  77. 77.
    Routson, R. C, Jansen, G., Robinson, A. V. Am-241, Np-237 and Tc-99 sorption on two United States subsoils from differing weathering intensity areas. Health Physics, 1977; 36:21–30.Google Scholar
  78. 78.
    Sisson, D. H., MacLean, S. C, Schulz, R. K., Borg, R. J. A preliminary study of the migration of technetium in soil under hydrous conditions. National Technical Service, UCRL-52832, 1979:U.S. Department of Commerce.Google Scholar
  79. 79.
    Flowers, T. C, Hunt, J. R. In Perchlorate in the Environment; Urbansky, E. T., Ed.; Kluwer/Plenum: New York, 2000, pp 177–188.Google Scholar
  80. 80.
    Tan, K., Jackson, W. A., Anderson, T. A., Pardue, J. H. Fate of perchlorate-contaminated water in upflow wetlands. Wat. Res., 2004; 38:4173–4185.CrossRefGoogle Scholar
  81. 81.
    Tan, K., Anderson, T. A., Jackson, W. A. Temporal and spatial variation of perchlorate in streambed sediments: results from in-situ dialysis samplers. Environ. Poll, 2005; 136:283–291.CrossRefGoogle Scholar
  82. 82.
    Nozawa-Inoue, M., Scow, K. M., Rolston, D. E. Reduction of perchlorate and nitrate by microbial communities in vadose soil. Appl. Environ. Microbiol., 2005; 71:3928–3934.CrossRefGoogle Scholar
  83. 83.
    Tan, K., Anderson, T. A., Jackson, W. A. Temporal and spatial variation of perchlorate in streambed sediments: results from in-situ dialysis samplers. Environ. Poll, 2005; 136:283–291.; Nozawa-Inoue, M., Scow, K. M., Rolston, D. E. Reduction of perchlorate and nitrate by microbial communities in vadose soil. Appl. Environ. Microbiol, 2005; 71:3928–3934. Urbansky, E. T., Magnuson, M. L., Kelty, C. A., Brown, S. K. Perchlorate uptake by salt cedar (Tamarix ramosissima) in the Las Vegas Wash riparian ecosystem. Sci. Total Environ., 2000; 256:227–232.CrossRefGoogle Scholar
  84. 84.
    van Aken, B., Schnoor, J. L. Evidence of perchlorate (CIO4 ) reduction in plant tissues (poplar tree) using radio-labeled (CIO4 )-Cl-36. Environ. Sci. Technol., 2002; 36:2783–2788.CrossRefGoogle Scholar
  85. 85.
    Tan, K., Anderson, T. A., Jones, M. W., Smith, P. N., Jackson, W. A. Accumulation of perchlorate in aquatic and terrestrial plants at a field scale. J. Environ. Qual., 2004; 33:1638–1646.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Gilbert M. Brown
    • 1
  • Baohua Gu
    • 1
  1. 1.Chemical Sciences and Environmental Sciences DivisionsOak Ridge National LaboratoryOak Ridge

Personalised recommendations