Advertisement

Perchlorate pp 373-387 | Cite as

Titanium Catalyzed Perchlorate Reduction and Applications

  • Baohua Gu
  • Peter V. Bonnesen
  • Frederick V. Sloop
  • Gilbert M. Brown

Summary and Implications

This work provides a proof-of-principle demonstration that Ti(III)-catalyzed electrochemical techniques could potentially be used for reduction of ClO4 in small waste streams, such as the regeneration of selective anion-exchange resins that are loaded with ClO4. The technique may not be directly applied for the treatment of large volumes of ClO4-contaminated water at relatively low concentrations because of its slow reaction kinetics and the use of chemical reagents. Further studies are needed to optimize the reaction conditions in order to achieve a complete reduction of ClO4 and the regeneration of spent resin beds. Alternative complexing and reducing agents may be used to enhance the reaction completeness of sorbed ClO4 in the resin and to overcome potential clogging of micropores within the resin beads resulting from the precipitation of TiO2.

Keywords

Oxalic Acid Anion Exchange Resin Resin Column Drinking Water Treatment Resin Bead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taube, H. In Mechanistic aspects of inorganic reactions. Rorabacher, D. B., R. Endicott, J. F., Eds., ACS Symposium Series No. 198, 1982, pp 151.Google Scholar
  2. 2.
    Urbansky, E. T. Perchlorate chemistry: Implications for analysis and remediation. Bioremed. J., 1998; 2:81–95.CrossRefGoogle Scholar
  3. 3.
    Gu, B., Dong, W., Brown, G. M., Cole, D. R. Complete degradation of perchlorate in ferric chloride and hydrochloric acid under controlled temperature and pressure. Environ. Sci. Technol., 2003; 37:2291–2295.CrossRefGoogle Scholar
  4. 4.
    Agon Carbon Corporation. Removal of perchlorate and other contaminants from groundwater at JPL, Report to Jet Propulsion Laboratory, Pasadena, AC. NAS7.000218. 1999.Google Scholar
  5. 5.
    Gu, B., Brown, G. Regeneration of anion exchange resins by catalyzed electrochemical reduction. 2002:US Patent 6,358,396.Google Scholar
  6. 6.
    Duke, F. R., Quinney, P. R. The kinetics of reduction of perchlorate ion by Ti(III) in dilute solution. J. Am. Chem. Soc., 1954; 76:3800–3803.Google Scholar
  7. 7.
    Cope, V. W., Miller, R. G., Fraser, R. T. M. Titanium III ion as a reductant in electron-transfer reactions. J. Chem. Soc. A., 1967; 2:301–306.CrossRefGoogle Scholar
  8. 8.
    Liu, B. Y., Wagner, P. A., Earley, J. E. S. Reduction of perchlorate ion by (N-(hydroxyethyl)ethylene-diaminetriacetato)aquotitanium(III). Inorg. Chem., 1984; 23:3418–3420.CrossRefGoogle Scholar
  9. 9.
    Earley, J. E. S., Tofan, D. C, Amadei, G. A. In Perchlorate in the Environment; Urbansky, E. T., Ed.; Kluwer/Plenum: New York, 2000, pp 89–98.Google Scholar
  10. 10.
    Bishop, E., Evans, N. The analytical kinetics of the titanium(III)-perchlorate reaction-homogeneous reaction kinetics. Talanta, 1970; 17:1125–1130.CrossRefGoogle Scholar
  11. 11.
    Gu, B., Brown, G. M., Alexandratos, S. D., Ober, R., Dale, J. A., Plant, S. In Perchlorate in the Environment; Urbansky, E. T., Ed.; Kluwer/Plenum: New York, 2000, pp 165–176.Google Scholar
  12. 12.
    Gu, B., Ku, Y., Brown, G. Sorption and desorption of perchlorate and U(VI) by strong-base anion-exchange resins. Environ. Sci. Technol., 2005; 39:901–907.CrossRefGoogle Scholar
  13. 13.
    Gu, B., Brown, G. M., Maya, L., Lance, M. J., Moyer, B. A. Regeneration of perchlorate (ClO4)-loaded anion exchange resins by novel tetrachloroferrate (FeCl4) displacement technique. Environ. Sci. Technol., 2001; 35:3363–3368.CrossRefGoogle Scholar
  14. 14.
    Abu-Omar, M. M., Appelman, E. H., Espenson, J. H. Oxygen-transfer reactions of methylrhenium oxides. Inorg. Chem., 1996; 35:7751–7757.CrossRefGoogle Scholar
  15. 15.
    Abu-Omar, M. M., Espenson, J. H. Facile Abstraction of Successive Oxygen Atoms from Perchlorate Ions by Methylrhenium Dioxide. Inorg. Chem., 1995; 34:6239–6240.CrossRefGoogle Scholar
  16. 16.
    Abu-Omar, M. M., McPherson, L. D., Arias, J., Bereau, V. M. Clean and efficient catalytic reduction of perchlorate. Angew. Chem. Int. Ed. Engl., 2000; 39:4310–4313.CrossRefGoogle Scholar
  17. 17.
    Deane-Drummond, C. E. Rapid method for the preparation of 36C1O3 from 36C1 by electrolysis. Int. J. Appl. Radiat. Isot., 1981; 32:758–759.CrossRefGoogle Scholar
  18. 18.
    Ruiz-Cristin, J., Chodera, A. J., Briskin, D. P. A modified method for the production of 36C1O3 for use in plant nitrate transport studies. Anal. Biochem., 1989; 182:146–150.CrossRefGoogle Scholar
  19. 19.
    Tromballa, H. W. Preparation and determination of 36Cl-labelled chloride, chlorate, and perchlorate. Radiochem. Radioanal. Let., 1970; 5:285–292.Google Scholar
  20. 20.
    Gu, B., Ku, Y., Brown, G. M. Treatment of perchlorate-contaminated water using highly-selective, regenerable ion-exchange technology: a pilot-scale demonstration. Remediation, 2002; 12:51–68.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Baohua Gu
    • 1
  • Peter V. Bonnesen
    • 1
  • Frederick V. Sloop
    • 1
  • Gilbert M. Brown
    • 1
  1. 1.Environmental Sciences and Chemical Sciences DivisionsOak Ridge National LaboratoryOak Ridge

Personalised recommendations