Advertisement

Perchlorate pp 297-310 | Cite as

The Biochemistry and Genetics of Microbial Perchlorate Reduction

  • Laurie A. Achenbach
  • Kelly S. Bender
  • Yvonne Sun
  • John D. Coates

Conclusion

The identification and analysis of the genes encoding perchlorate reductase and chlorite dismutase has provided not only a building block for pathway understanding, but has also provided a tool for bioremediative and phylogenetic studies. On-going genome sequencing will further facilitate transcriptional profiling under perchlorate-reducing conditions via microarray analyses. This analysis will give a more inclusive look into transcriptional expression patterns associated with the perchlorate metabolism. While further advancements in the genetic analysis of perchlorate-reducing bacteria continue, the recent development of a genetic system in D. aromatica will provide an invaluable tool for corroborating microarray results and solidifying hypotheses regarding microbial perchlorate metabolism.

Keywords

Transposase Gene Perchlorate Reduction Chlorate Reduction Chlorite Dismutase Nest Polymerase Chain Reaction Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van Ginkel, C.G., Rikken, G.B., Kroon, A.G.M., and Kengen, S.W.M. Purification and characterization of the chlorite dismutase: a novel oxygen-generating enzyme. Arch. Microbiol. 1996; 166:321–326.CrossRefGoogle Scholar
  2. 2.
    Bruce, R.A., Achenbach, L.A., and Coates, J.D. Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environ. Microbiol. 1999; 1:319–329.CrossRefGoogle Scholar
  3. 3.
    Bender, K.S., O’Connor, S.M., Chakraborty, R., Coates, J.D., and Achenbach, L.A. Sequencing and transcriptional analysis of the chlorite dismutase gene of Dechloromonas agitata and its use as a metabolic probe. Appl. Environ. Microbiol. 2002; 68:4820–4826.CrossRefGoogle Scholar
  4. 4.
    Danielsson-Thorell, H., Karlsson, J., Portelius, E., and Nilsson, T. Cloning, characterisation, and expression of a novel gene encoding chlorite dismutase from Ideonella dechloratans. Biochim. Biophys. Acta 2002; 1577:445–451.Google Scholar
  5. 5.
    Coates, J.D., Michaelidou, U., Bruce, R.A., O’Connor, S.M., Crespi, J.N., and Achenbach, L.A. Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria Appl. Environ. Microbiol. 1999; 65:5234–5241.Google Scholar
  6. 6.
    Stenklo, K., Danielsson-Thorell, H., Bergius, H., Aasa, R., and Nilsson, T. Chlorite dismutase from Ideonella dechloratans. J. Biol. Inorg. Chem. 2001; 6:601–607.CrossRefGoogle Scholar
  7. 7.
    O’Connor, S.M. and Coates, J.D. Universal immunoprobe for (per)chlorate-reducing bacteria. Appl. Environ. Microbiol. 2002; 68:3108–3113.CrossRefGoogle Scholar
  8. 8.
    Ebihara, A., Okamoto, A., Kousumi, Y., Yamamoto, H., Masui, R., Ueyama, N., Yokoyama, S., and Kuramits, S. Structure-based functional identification of a novel heme-binding protein from Thermus thermophilus HB8. J. Struct. Funct. Genomics 2005; 6:21–32.CrossRefGoogle Scholar
  9. 9.
    Xu, J., Trimble, J.J., Steinberg, L., and Logan, B.E. Chlorate and nitrate reduction pathways are separately induced in the perchlorate-respiring bacterium Dechlorosoma sp. KJ and the chlorate-respiring bacterium Pseudomonas sp. PDA. Water Res. 2004; 38:673–680.CrossRefGoogle Scholar
  10. 10.
    Dong, X.R., Li, S.F., and DeMoss, J.A. Upstream sequence elements required for NarL-mediated activation of transcription from the narGHJI promoter of Escherichia coli. J. Biol. Chem. 1992; 267:14122–14128.Google Scholar
  11. 11.
    Darwin, A.J., Li, J., and Stewart, V. Analysis of nitrate regulatory protein NarL-binding sites in the fdnG and narG operon control regions of Escherichia coli K-12. Mol. Microbiol. 1996; 20:621–632.CrossRefGoogle Scholar
  12. 12.
    Barrios, H., Valderrama, B., and Morett, E. Compilation and analysis of [sigma]54-dependent promoter sequences. Nucleic Acids Res. 1999; 27:4305–4313.CrossRefGoogle Scholar
  13. 13.
    Chaudhuri, S.K., O’Connor, S.M., Gustavson, R.L., Achenbach, L.A., and Coates, J.D. Environmental factors that control microbial perchlorate reduction. Appl. Environ. Microbiol. 2002; 68:4425–4430.CrossRefGoogle Scholar
  14. 14.
    Wallace, W., Ward, T., Breen, A., and Attaway, H. Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes. J. Ind. Microbiol. 1996; 16:68–72.CrossRefGoogle Scholar
  15. 15.
    van Ginkel, C.G., Plugge, C.M., and Stroo, C.A. Reduction of chlorate with various energy substrates and inocula under anaerobic conditions. Chemosphere 1995; 31:4057–4066.CrossRefGoogle Scholar
  16. 16.
    Attaway, H. and Smith, M. Reduction of perchlorate by an anaerobic enrichment culture. J. Ind. Microbiol. 1993; 12:408–412.CrossRefGoogle Scholar
  17. 17.
    Logan, B.E., Zhang, H., Mulvaney, P., Milner, M.G., Head, I.M., and Unz, R.F. Kinetics of perchlorate-and chlorate-respiring bacteria. Appl. Environ. Microbiol. 2001; 67:2499–2506.CrossRefGoogle Scholar
  18. 18.
    Achenbach, L.A. and Coates, J.D. Disparity between bacterial phylogeny and physiology. ASM News 2000; 66:714–716.Google Scholar
  19. 19.
    Achenbach, L.A., Michaelidou, U., Bruce, R.A., Fryman, J., and Coates, J.D. Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int. J. Syst. Evol. Microbiol. 2001; 51:527–533.Google Scholar
  20. 20.
    Coates, J.D., Michaelidou, U., O’Connor, S.M., Bruce, R.A., and Achenbach, L.A. “The diverse microbiology of (per)chlorate reduction.” In Perchlorate in the Environment, E.T. Urbansky, ed. p. 257–270. New York, NY: Kluwer Academic/Plenum, 2000.Google Scholar
  21. 21.
    Bender, K.S., Rice, M.R., Fugate, W.H., Coates, J.D., and Achenbach, L.A. Metabolic primers for detection of (per)chlorate-reducing bacteria in the environment and phylogenetic analysis of cld gene sequences. Appl. Environ. Microbiol. 2004; 70:5651–5658.CrossRefGoogle Scholar
  22. 22.
    Karr, E.A., Sattley, W.M., Jung, D.O., Madigan, M.T., and Achenbach, L.A. Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl. Environ. Microbiol. 2003; 69:4910–4914.CrossRefGoogle Scholar
  23. 23.
    Smets, B.F., Siciliano, S.D., and Verstraete, W. Natural attenuation: extant microbial activity forever and ever? Environ. Microbiol. 2002; 4:15–317.CrossRefGoogle Scholar
  24. 24.
    Bender, K.S., Shang, C, Chakraborty, R., Belchik, S.M., Coates, J.D., and Achenbach, L.A. Identification, characterization, and classification of genes encoding perchlorate reductase. J. Bacteriol. 2005; 187:5090–5096.CrossRefGoogle Scholar
  25. 25.
    Shang, C, Bender, K.S., Achenbach, L.A., and Coates, J.D. Genetic system for the insertional mutagenesis of the (per)chlorate reducer Dechloromonas aromatica. Appl. Environ. Microbiol. 2005; (submitted)Google Scholar
  26. 26.
    Kengen, S.W., Rikken, G.B., Hagen, W.R., van Ginkel, C.G., and Stams, A.J.M. Purification and characterization of (per)chlorate reductase from the chlorate-respiring strain GR-1. J. Bacteriol. 1999; 181:6706–6711.Google Scholar
  27. 27.
    Berks, B.C., Sargent, F., and Palmer, T. The Tat protein export pathway. Mol. Microbiol. 2000; 35:260–274.CrossRefGoogle Scholar
  28. 28.
    Coates, J.D. and Achenbach, L.A. Microbial perchlorate reduction: rocket-fuelled metabolism. Nature Microbiol. Rev. 2004; 2:569–580.CrossRefGoogle Scholar
  29. 29.
    Danielsson-Thorell, H., Stenklo, K., Karlsson, J., and Nilsson, T. A gene cluster for chlorate metabolism in Ideonella dechloratans. Appl. Environ. Microbiol. 2003; 69:5585–5592.CrossRefGoogle Scholar
  30. 30.
    McEwan, A.G., Ridge, J.P., McDevitt, C.A., and Hugenholtz, P. The DMSO reductase family of microbial molybdenum enzymes; molecular properties and role in the dissimilatory reduction of toxic metals. Geomicrobiol. J. 2002; 19:3–21.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Laurie A. Achenbach
    • 1
  • Kelly S. Bender
    • 2
  • Yvonne Sun
    • 3
  • John D. Coates
    • 3
  1. 1.Southern Illinois UniversityCarbondale
  2. 2.BioInsite, LLCCarbondale
  3. 3.University of California-BerkeleyBerkeley

Personalised recommendations