Advertisement

Perchlorate pp 279-295 | Cite as

The Microbiology of Perchlorate Reduction and its Bioremediative Application

  • John D. Coates
  • Laurie A. Achenbach
Chapter

Conclusions

The field of microbial perchlorate reduction has clearly advanced significantly in a very short period from a poorly understood metabolism to a burgeoning scientific field of discovery. As outlined above, there is now a much greater appreciation of the microbiology involved and the application of the knowledge to the successful treatment of contaminated environments. Overall, the future is promising even though research in this field is still in its infancy. Nothing is known of the evolutionary root of this metabolism. From a biogeochemical perspective, a better understanding of how perchlorate is formed in the natural environment and what geochemical conditions are required for its formation might give some insight into plotting the metabolism against a realistic evolutionary timeline. From a microbial perspective, it will be important to look for this metabolism in more extreme environments such as hypersaline or hyperthermophilic environments to obtain DPRB isolates across a broader phylogeny to establish a broad-base molecular chronometer. With the development of this field comes a better understanding of the ideal electron donors available and the individual factors which truly control the activity of the these organisms in-situ allowing for the design of more effective and robust enhanced in situ bioremediation technologies.

Keywords

Electron Donor Nitrate Reductase Injection Well Ammonium Perchlorate Chlorine Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aslander, A. 1928. Experiments on the eradication of Canada Thistle, Cirsium arvense, with chlorates and other herbicides. J Agric Res. 36:915.Google Scholar
  2. 2.
    Coates, J. D., U. Michaelidou, S. M. O’Connor, R. A. Bruce, and L. A. Achenbach 2000. The diverse microbiology of (per)chlorate reduction., p. 257–270. In E. D. Urbansky (ed.), Perchlorate in the Environment. Kluwer Academic/ Plenum, New York.Google Scholar
  3. 3.
    Germgard, U., A. Teder, and D. Tormund 1981. Chlorate formation during chlorine dioxide bleaching of softwood kraft pulp. Paperi ja Puu. 3:127–133.Google Scholar
  4. 4.
    Rosemarin, A., K. Lehtinen, and M. Notini 1990. Effects of treated and untreated softwood pulp mill effluents on Baltic sea algae and invertebrates in model ecosystems. Nord. Pulp and Paper Res. J. 2:83–87.Google Scholar
  5. 5.
    Agaev, R., V. Danilov, V. Khachaturov, B. Kasymov, and B. Tishabaev 1986. The toxicity to warm-blooded animals and fish of new defoliants based on sodium and magnesium chlorates. Uzb. Biol. Zh. 1:40–43.Google Scholar
  6. 6.
    Urbanski, T. 1984. Salts of nitric acid and of oxy-acids of chlorine, p. 444–461. In T. Urbanski (ed.), Chemistry and Technology of Explosives, vol. 4. Pergamon Press, Elmsford, N.Y.Google Scholar
  7. 7.
    Urbanski, T. 1984. Composite propellants, p. 602–620. In T. Urbanski (ed.), Chemistry and Technology of Explosives, vol. 4. Pergamon Press, New York.Google Scholar
  8. 8.
    Motzer, W. E. 2001. Perchlorate: problems, detection, and solutions. Environ For. 2:301–311.Google Scholar
  9. 9.
    Urbansky, E. T. 1998. Perchlorate chemistry: implications for analysis and remediation. Bioremed J. 2:81–95.CrossRefGoogle Scholar
  10. 10.
    Roote, D. S. 2001. Technology status report perchlorate treatment technologies first edition. Technology status report DAAE30-98-C-1050. Ground-Water Remediation Technologies Analysis Center.Google Scholar
  11. 11.
    Urbansky, E. T. 2002. Perchlorate as an environmental contaminant. Environ Sci Pollut Res. 9:187–192.CrossRefGoogle Scholar
  12. 12.
    Urbansky, E. T., and S. K. Brown 2003. Perchlorate retention and mobility in soils. J. Environ Monit. 5:455–462.CrossRefGoogle Scholar
  13. 13.
    Xu, J., Y. Song, B. Min, L. Steinberg, and B. E. Logan 2003. Microbial degradation of perchlorate: principles and applications. Environ Eng Sci. 20:405–422.CrossRefGoogle Scholar
  14. 14.
    Bryan, E. H., and G. A. Rohlich 1954. Biological reduction of sodium chlorate as applied to measurement of sewage BOD. Sew Ind Waste. 26:1315–1324.Google Scholar
  15. 15.
    Bryan, E. H. 1966. Application of the chlorate BOD procedure to routine measurement of wastewater strength. J Wat Pol Con Fed. 38:1350–1362.Google Scholar
  16. 16.
    Hackenthal, E., W. Mannheim, R. Hackenthal, and R. Becher 1964. Die Reduktion Von Perchlorat Durch Bakterien. I.* Untersucungen An Intaken Zellen. Biochem Pharm. 13:195–206.CrossRefGoogle Scholar
  17. 17.
    Hackenthal, E. 1965. Die reduktion von perchlorat durch bacterien-II. Die identitat der nitratreduktase und des perchlorat reduzierenden enzyms aus B. cereus. Biochem. Pharm. 14:1313–1324.CrossRefGoogle Scholar
  18. 18.
    de Groot, G. N., and A. H. Stouthamer 1969. Regulation of reductase formation in Proteus mirabilis. I. Formation of reductases and enzymes of the formic hydrogenlyase complex in the wild type and in chlorate resistant mutants. Arch Microbiol. 66:220–233.Google Scholar
  19. 19.
    Roldan, M. D., F. Reyes, C. Moreno-Vivian, and F. Castillo 1994. Chlorate and Nitrate reduction in the phototrophic bacteria Rhodobacter capsulatus and Rhodobacter sphaeroides. Cur Microbiol. 29:241–245.CrossRefGoogle Scholar
  20. 20.
    Stewart, V. 1988. Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol. Rev. 52:190–232.Google Scholar
  21. 21.
    Neidhardt, F. C., R. Curtiss, J. Ingraham, E. Lin, K. Brooks Low, B. Magasanik, W. Rfznikopp, M. Riley, M. Schaechter, and H. E. Umbarger (eds.) 1996 Escherichia coli and Salmonella-Cellular and Molecular Biology. ASM Press, Washington DC.Google Scholar
  22. 22.
    Oltmann, L. F., W. N. M. Reijnders, and A. H. Stouthamer 1976. Characterization of purified nitrate reductase a and chlorate reductase c from Proteus mirabilis. Archi Microbiol. 111:25–35.CrossRefGoogle Scholar
  23. 23.
    Coates, J. D., and L. A. Achenbach 2004. Microbial perchlorate reduction: rocket fuelled metabolism. Nat Rev Microbiol. 2:569–580.CrossRefGoogle Scholar
  24. 24.
    Coates, J. D., U. Michaelidou, R. A. Bruce, S. M. O’Connor, J. N. Crespi, and L. A. Achenbach 1999. The ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microbiol. 65:5234–5241.Google Scholar
  25. 25.
    Bruce, R. A., L. A. Achenbach, and J. D. Coates 1999. Reduction of (per)chlorate by a novel organism isolated from a paper mill waste. Environ Microbiol. 1:319–331.CrossRefGoogle Scholar
  26. 26.
    Michaelidou, U., L. A. Achenbach, and J. D. Coates 2000. Isolation and characterization of two novel (per)chlorate-reducing bacteria from swine waste lagoons., p. 271–283. In E. D. Urbansky (ed.), Perchlorate in the Environment. Kluwer Academic/ Plenum, New York.Google Scholar
  27. 27.
    Romanenko, V. I., V. N. Korenkov, and S. I. Kuznetsov 1976. Bacterial decomposition of ammonium perchlorate. Mikrobiologiya. 45:204–209.Google Scholar
  28. 28.
    Stepanyuk, V., G. Smirnova, T. Klyushnikova, N. Kanyuk, L. Panchenko, T. Nogina, and V. Prima 1992. New species of the Acinetobacter genus Acinetobacter thermotoleranticus sp. nov. Mikrobiologiya. 61:347–356.Google Scholar
  29. 29.
    Malmqvist, A., T. Welander, E. Moore, A. Ternstrom, G. Molin, and I.-M. Stenstrom 1994. Ideonella dechloratans gen. nov., sp. nov., a new bacterium capable of growing anarobically with chlorate as an electron acceptor. Sys. Appl. Microbiol. 17:58–64.Google Scholar
  30. 30.
    Rikken, G., A. Kroon, and C. van Ginkel 1996. Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation. Appl. Microbiol. Biotechnol. 45:420–426.CrossRefGoogle Scholar
  31. 31.
    Wallace, W., T. Ward, A. Breen, and H. Attaway 1996. Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes. J Ind Microbiol. 16:68–72.CrossRefGoogle Scholar
  32. 32.
    Coates, J. D., R. Chakraborty, J. G. Lack, S. M. O’Connor, K. A. Cole, K. S. Bender, and L. A. Achenbach 2001. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature. 411:1039–1043.CrossRefGoogle Scholar
  33. 33.
    Zhang, H. S., M. A. Bruns, and B. E. Logan 2002. Chemolithoautotrophic perchlorate reduction by a novel hydrogen-oxidizing bacterium. Environ Microbiol. 4:570–576.CrossRefGoogle Scholar
  34. 34.
    Herman, D. C, and W. T. Frankenberger, Jr. 1999. Bacterial reduction of perchlorate and nitrate in water. J Environ Qual. 28:1018–1024.CrossRefGoogle Scholar
  35. 35.
    Okeke, B. C, T. Giblin, and W. T. Frankenberger 2002. Reduction of perchlorate and nitrate by salt tolerant bacteria. Environ Pollut. 118:357–363.CrossRefGoogle Scholar
  36. 36.
    Coates, J. D., K. A. Cole, R. Chakraborty, S. M. O’Connor, and L. A. Achenbach 2002. The diversity and ubiquity of bacteria utilizing humic substances as an electron donor for anaerobic respiration. Appl Environ Microbiol. 68:2445–2452.CrossRefGoogle Scholar
  37. 37.
    Chaudhuri, S. K., J. G. Lack, and J. D. Coates 2001. Biogenic magnetite formation through anaerobic biooxidation of Fe(II). Appl Environ Microbiol. 67:2844–2848.CrossRefGoogle Scholar
  38. 38.
    Lack, J. G., S. K. Chaudhuri, S. D. Kelly, K. M. Kemner, S. M. O’Connor, and J. D. Coates 2002. Immobilization of radionuclides and heavy metals through anaerobic biooxidation of Fe(II). Appl Environ Microbiol. 68:2704–2710.CrossRefGoogle Scholar
  39. 39.
    Lack, J. G., S. K. Chaudhuri, R. Chakraborty, L. A. Achenbach, and J. D. Coates 2002. Anaerobic biooxidation of Fe(II) by Dechlorosoma suillum. Microb Ecol. 43:424–431.CrossRefGoogle Scholar
  40. 40.
    Logan, B. 1998. A review of chlorate-and perchlorate-respiring microorganisms. Bioremed J. 2:69–79.CrossRefGoogle Scholar
  41. 41.
    Wolterink, A. F. W. M., A. B. Jonker, S. W. M. Kengen, and A. J. M. Stams 2002. Pseudomonas chloritidismutans sp. nov., a non-denitrifying, chlorate-reducing bacterium. Int J Syst Evol Microbiol. 52:2183–2190.CrossRefGoogle Scholar
  42. 42.
    Coleman, M. L., M. Ader, S. Chaudhuri, and J. D. Coates 2003. Microbial isotopic fractionation of perchlorate chlorine. Appl Environ Microbiol. 69:4997–5000.CrossRefGoogle Scholar
  43. 43.
    Sturchio, N. C., P. B. Hatzinger, M. Arkins, C. Suh, and L. Heraty 2003. Chlorine isotope fractionation during microbial reduction of perchlorate. Environ Sci Technol. 37:3859–3863.CrossRefGoogle Scholar
  44. 44.
    Achenbach, L. A., R. A. Bruce, U. Michaelidou, and J. D. Coates 2001. Dechloromonas agitata N.N. gen., sp. nov. and Dechlorosoma suillum N.N. gen., sp. nov. two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Microbiol. 51:527–533.Google Scholar
  45. 45.
    Bender, K. S., C. Shang, R. Chakraborty, S. M. Belchik, J. D. Coates, and L. A. Achenbach 2005. Identification, characterization, and classification of genes encoding perchlorate reductase. J Bacteriol. 187:5090–5096CrossRefGoogle Scholar
  46. 46.
    Bender, K. S. 2003. The genetics of (per)chlorate reduction. PhD. Thesis Southern Illinois University.Google Scholar
  47. 47.
    Achenbach, L. A., and J. D. Coates 2000. Disparity between bacterial phylogeny and physiology. ASM News. 66:714–716.Google Scholar
  48. 48.
    Tan, Z., and B. Reinhold-Hurek 2003. Dechlorosoma suillum Achenbach et al. 2001 is a later subjective synonym of Azospira oryzae Reinhold-Hurek and Hurek 2000. Int J Sys Evol Microbiol. 53:1139–1142.CrossRefGoogle Scholar
  49. 49.
    Coates, J. D., R. A. Bruce, J. A. Patrick, and L. A. Achenbach 1999. Hydrocarbon bioremediative potential of (per)chlorate-reducing bacteria. Bioremed J. 3:323–334.CrossRefGoogle Scholar
  50. 50.
    Logan, B. E., H. Zhang, P. Mulvaney, M. G. Milner, I. M. Head, and R. F. Unz 2001. Kinetics of perchlorate-and chlorate-respiring bacteria. Appl Environ. Microbiol. 67:2499–2506.CrossRefGoogle Scholar
  51. 51.
    Coates, J. D. 2005. Bacteria that respire oxyanions of chlorine. In D. Brenner, N. Krieg, J. Staley, and G. Garrity (eds), Bergey’s Manual of Sytematic Bacteriology, vol. 2. Springer-Verlag, New York, NY.Google Scholar
  52. 52.
    Michaelidou, U. 2005. An investigation of the environmental significance of microbial (per)chlorate reduction. MSc. Thesis Southern Illinois University.Google Scholar
  53. 53.
    Chaudhuri, S. K., S. M. O’Connor, R. L. Gustavson, L. A. Achenbach, and J. D. Coates 2002. Environmental factors that control microbial perchlorate reduction. Appl Environ Microbiol. 68: 4425–4430.CrossRefGoogle Scholar
  54. 54.
    Pollock, J. 2003. Diversity of perchlorate-reducing bacteria in relation to environmental factors. MSc. Thesis Southern Illinois University.Google Scholar
  55. 55.
    Logan, B. E., J. Wu, and R. F. Unz 2001. Biological perchlorate reduction in high-salinity solutions. Wat Res. 35:3034–3038.CrossRefGoogle Scholar
  56. 56.
    Cang, Y., D. J. Roberts, and D. A. Clifford 2004. Development of cultures capable of reducing perchlorate and nitrate in high salt solutions. Wat Res. 38:3322–3330.CrossRefGoogle Scholar
  57. 57.
    Bruce, R. A. 1999. The microbiology and bioremediative potential of (per)chlorate-reducing bacteria MSc. Thesis Southern Illinois University.Google Scholar
  58. 58.
    van Ginkel, C, G. Rikken, A. Kroon, and S. Kengen 1996. Purification and characterization of chlorite dismutase: a novel oxygen-generating enzyme. Arch. Microbiol. 166:321–326.CrossRefGoogle Scholar
  59. 59.
    Bender, K. S., S. M. O’Connor, R. Chakraborty, J. D. Coates, and L. A. Achenbach 2002. The chlorite dismutase gene of Dechloromonas agitata strain CKB: Sequencing, transcriptional analysis and its use as a metabolic probe. Appl Environ Microbiol. 68:4820–4826.CrossRefGoogle Scholar
  60. 60.
    Bender, K. S. 2003. The genetics of (per)chlorate reduction. PhD. Thesis Southern Illinois University.Google Scholar
  61. 61.
    Bardiya, N., and J. H. Bae 2004. Role of Citrobacter amalonaticus and Citrobacter farmeri in dissimilatory perchlorate reduction. J Bas Microbiol. 44:88–97.CrossRefGoogle Scholar
  62. 62.
    O’Connor, S. M., and J. D. Coates 2002. A universal immuno-probe for (perchlorate-reducing bacteria. Appl. Environ. Microbiol. 68:3108–3113.CrossRefGoogle Scholar
  63. 63.
    Lovley, D. R., and F. H. Chapelle 1995. Deep subsurface microbial processes. Rev Geophys. 33:365–381.CrossRefGoogle Scholar
  64. 64.
    Coates, J. D., and L. A. Achenbach 2001. The Biogeochemistry of Aquifer Systems, p. 719–727. In C. J. Hurst, G. R. Knudsen, M. J. Mclnerney, L. D. Stetzenbach, and M. W. Walter (eds), Manual of Environmental Microbiology, 2nd ed. ASM Press, Washington, DC.Google Scholar
  65. 65.
    Lovley, D. R., and S. Goodwin 1988. Hydrogen concentrations as an indicator of the predominant terminal electron accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta. 52:2993–3003.CrossRefGoogle Scholar
  66. 66.
    Champ, D. R., J. Gulens, and R. E. Jackson 1979. Oxidation-reduction sequences in ground water flow systems. Can. J. Earth Sci. 16:12–23.Google Scholar
  67. 67.
    Christensen, T. H., P. L. Bjerg, S. A. Banwart, R. Jakobsen, G. Heron, and H. Albrechtsen 2000. Characterization of redox conditions in groundwater contaminant plumes. J. Contam. Hydrol. 45:165–241.CrossRefGoogle Scholar
  68. 68.
    Ehrlich, H. L. 1990. Geomicrobiology, Third edition, Revised and Expanded ed. Marcel dekker, Inc., New York.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • John D. Coates
    • 1
  • Laurie A. Achenbach
    • 2
  1. 1.Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeley
  2. 2.Department of MicrobiologySouthern Illinois UniversityCarbondale

Personalised recommendations