Perchlorate pp 209-251 | Cite as

Recent Advances in Ion Exchange for Perchlorate Treatment, Recovery and Destruction

  • Baohua Gu
  • Gilbert M. Brown


Regenerant Solution Resin Bead Perchlorate Concentration Spend Resin Background Electrolyte Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nachod, F. C, Schubert, J. Ion exchange technology; Academic Press: New York, 1956.Google Scholar
  2. 2.
    Arden, T. V. Water purification by ion exchange; Plenum Press: New York, 1968.Google Scholar
  3. 3.
    Kunin, R. Ion exchange resins, 2nd Ed.; Krieger Pub.: Malabar, Fla., 1972.Google Scholar
  4. 4.
    Helfferich, F. Ion Exchange; Dover Publications, New York, 1995.Google Scholar
  5. 5.
    Gu, B., Ku, Y., Jardine, P. M. Sorption and binary exchange of nitrate, sulfate, and uranium on an anion-exchange resin. Environ Sci. Technol, 2004; 38:3184–3188.CrossRefGoogle Scholar
  6. 6.
    Gu, B., Brown, G. M., Alexandratos, S. D., Ober, R., Dale, J. A., Plant, S. In Perchlorate in the Environment; Urbansky, E. T., Ed.; Kluwer/Plenum: New York, 2000, pp 165–176.Google Scholar
  7. 7.
    Batista, J. R., McGarvey, F. X., Vieira, A. R. In Perchlorate in the Environment; Urbansky, E. T., Ed.; Kluwer/Plenum: New York, 2000, pp 135–145.Google Scholar
  8. 8.
    Moyer, B. A., Bonnesen, P. V. In Supramolecular chemistry of anions; Bianchi, A., Bowman-James, K., Garcia-Espana, E., Eds.; VCH: New York, 1997.Google Scholar
  9. 9.
    Bonnesen, P. V., Brown, G. ML, Bavoux, L. B., Presley, D. J., Moyer, B. A., Alexandratos, S. D., Patel, V., Ober, R. Development of bifunctional anion exchange resins with improved selectivity and sorptive kinetics for pertechnetate. 1. Batch-equilibrium experiments. Environ. Sci. Technol., 2000; 34:3761–3766.CrossRefGoogle Scholar
  10. 10.
    Gu, B., Brown, G. M., Bonnesen, P. V., Liang, L., Moyer, B. A., Ober, R., Alexandratos, S. D. Development of novel bifunctional anion-exchange resins with improved selectivity for pertechnetate sorption from contaminated groundwater. Environ. Sci. Technol., 2000; 34:1075–1080.CrossRefGoogle Scholar
  11. 11.
    Gu, B., Ku, Y., Brown, G. M. Treatment of perchlorate-contaminated water using highly-selective, regenerable ion-exchange technology: a pilot-scale demonstration. Remediation, 2002; 12:51–68.CrossRefGoogle Scholar
  12. 12.
    Gu, B., Ku, Y., Brown, G. Sorption and desorption of perchlorate and U(VI) by strong-base anion-exchange resins. Environ. Sci. Technol., 2005; 39:901–907.CrossRefGoogle Scholar
  13. 13.
    Brown, G. M., Bonnesen, P. V., Moyer, B. A., Gu, B., Alexandratos, S. D., Patel, V., Ober, R. In Perchlorate in the Environment; Urbansky, E. T., Ed.; Kluwer/Plenum: New York, 2000, pp 155–164.Google Scholar
  14. 14.
    Alexandratos, S. D., Hussain, L. A. Bifunctionality as a means of enhancing complexation kinetics in selective ion exchange resins. Ind. Eng. Chem. Res., 1995; 34:251–258.CrossRefGoogle Scholar
  15. 15.
    Barrett, J. H., Lundquist, E. G., Miers, J. A., Pafford, M. M., Carlin Jr., W. H. High selectivity perchlorate removal resins and methods and systems using same. US Patent Application, 10/831,988, 2004.Google Scholar
  16. 16.
    Gu, B., Brown, G. M., Maya, L., Lance, M. J., Moyer, B. A. Regeneration of perchlorate (ClO4 )-loaded anion exchange resins by novel tetrachloroferrate (FeCl4 ) displacement technique. Environ. Sci. Technol., 2001; 35:3363–3368.CrossRefGoogle Scholar
  17. 17.
    Tripp, A. R., Clifford, D. A. In Perchlorate in the Environment; Urbansky, E. T., Ed.; Kluwer/Plenum: New York, 2000, pp 123–134.Google Scholar
  18. 18.
    Venkatesh, K. R., Klara, S. M., Jennings, D. L., Wagner, N. J. In Perchlorate in the Environment; Urbansky, E. T., Ed.; Kluwer/Plenum: New York, 2000, pp 147–153.Google Scholar
  19. 19.
    Brown, G. M., Gu, B., Moyer, B. A., Bonnesen, P. V. Regeneration of anion exchange resins by sequential chemical displacement. US Patent, 6,448,299, 2002.Google Scholar
  20. 20.
    Marcus, Y., Kertes, A. S. Ion exchange and solvent extraction of metal complexes; Wiley Interscience: New York, 1969.Google Scholar
  21. 21.
    Diamond, R. M., Whitney, D. C. In Ion Exchange, Vol. 1; Marinsky, J. A., Ed.; Marcel Dekker: New York, 1966, pp 277–351.Google Scholar
  22. 22.
    Kraus, K. K., Nelson, F. Proc. Int. Conf. Peaceful Uses Atomic Energy, Geneva, 1956; 7:113–135.Google Scholar
  23. 23.
    Gu, B., Dong, W., Brown, G. M., Cole, D. R. Complete degradation of perchlorate in ferric chloride and hydrochloric acid under controlled temperature and pressure. Environ. Sci. Technol., 2003; 37:2291–2295.CrossRefGoogle Scholar
  24. 24.
    Logan, B. E., Wu, J., Unz, R. F. Biological perchlorate reduction in high salinity solutions. Water Res., 2001; 35:3034–3038.CrossRefGoogle Scholar
  25. 25.
    Cang, Y., Roberts, D. J., Clifford, D. A. Development of cultures capable of reducing perchlorate and nitrate in high salt solutions. Wat. Res., 2004; 35:3322–3330.CrossRefGoogle Scholar
  26. 26.
    Gingras, T. M., Batista, J. R. Biological reduction of perchlorate in ion exchange regenerant solutions containing high salinity and ammonium levels. J. Environ. Mon., 2002; 4:96–101.CrossRefGoogle Scholar
  27. 27.
    Gu, B., Dowlen, K. E., Liang, L., Clausen, J. L. Efficient separation and recovery of technetium-99 from contaminated groundwater. Sep. Technol., 1996; 6:123–132.CrossRefGoogle Scholar
  28. 28.
    Gu, B., Cole, D. R., Brown, G. M. Destruction of perchlorate in ferric chloride and hydrochloric acid solution with control of temperature, pressure, and chemical reagents. US Patent 6,800,203, 2004.Google Scholar
  29. 29.
    Chen, J., Gu, B., LeBoeuf, E. J., Pan, H., Dai, S. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere, 2002; 48:59–68.CrossRefGoogle Scholar
  30. 30.
    Chin, Y. P., Traina, S. J., Swank, C. R., Backhus, D. Abundance and properties of dissolved organic-matter in pore waters of a fresh-water wetland. Limnol. Oceanography, 1998; 43:1287–1296.CrossRefGoogle Scholar
  31. 31.
    Gu, B., Schmitt, J., Chen, Z., Liang, L., McCarthy, J. F. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ. Sci. Technol., 1994; 28:38–46.CrossRefGoogle Scholar
  32. 32.
    Hatch, G. B. Evaluation of scaling tendencies. Mater. Prot. Perform., 1973; 12:49–50.Google Scholar
  33. 33.
    Clifford, D. A., Zhang, Z. Modifying ion exchange for combined removal of uranium and radium. J. AWWA, 1994; 86:214–227.Google Scholar
  34. 34.
    Gu, B., Liang, L., Dickey, M. J., Yin, X., Dai, S. Reductive precipitation of uranium(VI) by zero-valence iron. Environ. Sci. Technol., 1998; 32:3366–3373.CrossRefGoogle Scholar
  35. 35.
    Gu, B., Brooks, S. C, Roh, Y., Jardine, P. M. Geochemical reactions and dynamics during titration of a contaminated groundwater with high uranium, aluminum, and calcium. Geochim. Cosmochim. Acta, 2003; 67:2749–2761.CrossRefGoogle Scholar
  36. 36.
    Huikuri, P., Salonen, L. Removal of uranium from Finnish groundwaters in domestic use with a strong base anion resin. J. Radioanal. Nucl. Chem., 2000; 245:385–393.CrossRefGoogle Scholar
  37. 37.
    Vaaramaa, K., Pulli, S., Lehto, J. Effects of pH and uraniium concentration of the removal of uranium from drinking water by ion exchange. Radiochim. Acta, 2000; 88:845–849.Google Scholar
  38. 38.
    Zhang, Z., Clifford, D. A. Exhausting and regenerating resin for uranium removal. J. AWWA, 1994; 86:228–241.Google Scholar
  39. 39.
    Vaaramaa, K., Lehto, J., Jaakkola, T. Removal of U-234,U-238, Ra-226, Po-210 and Pb-210 from drinking water by ion exchange. Radiochim. Acta, 2000; 88:361–367.Google Scholar
  40. 40.
    Lovley, D. R., Phillips, E. J. P., Gorby, Y. A., Landa, E. R. Microbial reduction of uranium. Nature, 1991; 350:413–416.CrossRefGoogle Scholar
  41. 41.
    Liu, C. X., Gorby, Y. A., Zachara, J. M, Fredrickson, J. K., Brown, C. F. Reduction kineitcs of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol. Bioeng., 2002; 80:637–649.CrossRefGoogle Scholar
  42. 42.
    Gu, B., Chen, J. Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions. Geochim. Cosmochim. Acta, 2003; 67:3575–3582.CrossRefGoogle Scholar
  43. 43.
    Fredrickson, J. K., Kostandarithes, H. M., Li, S. W., Plymale, A. E., Daly, M. J. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl. Environ. Microbiol., 2000; 66:2006–2011.CrossRefGoogle Scholar
  44. 44.
    Bissen, M., Gremm, T., Koklu, U., Frimmel, F. H. Use of the anion-exchange resin amberlite IRA-93 for the separation of arsenite and arsenate in aqueous samples. Acta Hydrochim. Hydrobiol., 2000; 28:41–46.CrossRefGoogle Scholar
  45. 45.
    Kim, J., Benjamin, M. M., Kwan, P., Chang, Y. J. A novel ion exchange process for As removal. J. AWWA, 2003; 95:77–85.Google Scholar
  46. 46.
    Venkatesh, K. R. Removal of perchlorate and other contaminants from groundwater at JPL, a pilot study. Final report to Jet Propulsion Laboratory, Pasadena, CA, 1999:NAS7.000218, SSIC No. 009661.Google Scholar
  47. 47.
    Calgon Carbon Corporation. Full-scale ISEP(R) groundwater treatment plant. 2000: Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Baohua Gu
    • 1
  • Gilbert M. Brown
    • 1
  1. 1.Environmental Sciences and Chemical Sciences DivisionsOak Ridge National LaboratoryOak Ridge

Personalised recommendations