Skip to main content

Humans: Roles in Space

  • Chapter
  • 870 Accesses

Abstract

Traditionally, “Space exploration” has implied both human and robotic exploration of the Moon, planets, and asteroids — that is, exploration of deep space. This is in contrast to other space activities that take advantage of both the weightless environment found in Earth orbit and the special benefits of observing the Earth and stars from that vantage point. Human activities in Earth orbit now have less to do with exploration and more to do with international responsibilities and commitments, as in the case of the International Space Station, and prestige and technological development, as in the case of certain efforts by the United States, Europe, China, India, and Russia. Unique and unexploited research opportunities, however, still exist in near-Earth space, but these have not been fully recognized even after half a century of repetitive access. For example, research initiatives in biomedicine and weightless manufacturing have yet to be undertaken in comprehensive ways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. Heiken, G. H., D. T. Vaniman, and B. M. French, 1991, Lunar Sourcebook, Cambridge University Press, 736 pp.; Canup, R. M. and K. Righter, editors, 2000, Origin of the Earth and Moon, Arizona University Press, 555 pp.; Taylor, S. R., 2001, Solar System Evolution: A New Perspective, Second Edition, Cambridge University Press, 460 pp.; Schmitt, H. H., 2003, Apollo 17 and the Moon, Chapter 1, in H. Mark, Encyclopedia of Space and Space Technology, Wiley, New York.

    Google Scholar 

  2. Schmitt, H. H., 2003, Apollo 17 and the Moon, Chapter 1, in H. Mark, editor, Encyclopedia of Space and Space Technology, Wiley, New York.

    Google Scholar 

  3. Jennings, R. T., C. F. Sawinb, and M. R. Barratt, 2002, Space operations, in R. L. DeHart and J. R. Davis, editors, Fundamentals of Aerospace Medicine, Third Edition, Lippincott, Philadelphia, pp. 596–609.

    Google Scholar 

  4. See also Fazio, G. G., 1977, The space environment, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 3–10.

    Google Scholar 

  5. A “rem” is a measure of radiation “dose equivalent” that includes a quality factor related to energy loss rate in the radiated material. The rem equals 0.01 Sievert or 100 erg/g. See Letaw, J. R., 1997, Radiation biology, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 13–14.

    Google Scholar 

  6. See Letaw, J. R., 1997, Radiation biology, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 11–20.

    Google Scholar 

  7. Compare NASA, 2002, Understanding space radiation, NASA Facts, FS-2002-10-080-JSC and Lawrence Berkeley National Laboratory, 2005, Integrated Safety Management, http//:www.lbl.gov/ehs/pub811/hazards/radia-tion.html.

    Google Scholar 

  8. Bliokh, P. V., A. P. Nikolaenko, and Y. F. Filippov, 1980, Schumann Resonances in the Earth-Ionosphere Cavity, Peter Perigrinus, London.

    Google Scholar 

  9. See Letaw, J. R., 1997, Radiation biology, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, p. 14.

    Google Scholar 

  10. See, Beall, C. M. and others, Pulmonary nitric oxide in mountain dwellers, Brief Communication, Nature, 414, pp. 411–412.

    Google Scholar 

  11. S. Churchill, 1997, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 3–134.

    Google Scholar 

  12. Glennan, T. K., 1993, The Birth of NASA, NASA SP-4105, The NASA History Series, 398 pp.

    Google Scholar 

  13. Swenson, L. S. Jr, J. M. Grimwood, and C. C. Alexander, 1966, This New Ocean: A History of Project Mercury, NASA SP-4201, pp. 433, 501.

    Google Scholar 

  14. Johnston, R. S. and L. R. Dietlein, 1977, Biomedical Results from Skylab, NASA SP-377, 491 pp.

    Google Scholar 

  15. Johnston, R. S. and L. R. Dietlein, 1977, Biomedical Results from Skylab, NASA SP-377, 491 pp.

    Google Scholar 

  16. Pierson, D. L., 2002, In Sickness and in Health: Immunity and the Stressed Astronaut, NASA report, http//:www.spaceresearch.nasa.gov/research_projects/immune_12_2002.html.

    Google Scholar 

  17. Logan, J. S., 1997, Operational medicine and health care delivery, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 151–152; Diamandis, P. H., 1997, Countermeasures and artificial gravity, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 159–175.

    Google Scholar 

  18. Committee on Space Biology and Medicine, 2000, Review of NASA’s Biomedical Research Program, Space Science Board, National Academy of Sciences; Committee on Space Biology and Medicine, 1998, A Strategy for Research in Space Biology and Medicine, Space Science Board, National Academy of Sciences.

    Google Scholar 

  19. Schmitt, H. H. and D. J. Reid, 1985, Anecdotal Information on Space Adaptation Syndrome, Lovelace Medical Foundation, Albuquerque, and Space Biomedical Research Institute, Universities Space Research Asociation, Houston, 21 pp.

    Google Scholar 

  20. Davis, J. R., J. M. Vanderploeg, P. A. Santy, R. T. Jennings, and D. F. Stewart, 1988, Space motion sickness during 24 flights of the space shuttle, Aviation and Space Environmental Medicine, 59, pp. 1185–1189; Lathan, C. E. and G. Clement, 1997, Response of the neurovestibular system to spaceflight, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 65–82; Jennings, R. T., 1998, Managing space motion sickness, Journal of Vestibular Research, 8, pp. 67–70; Davis, J. R., J. M. Vanderploeg, P. A. Santy, R. T.Jennings, and D. F. Stewart, 1988, Space motion sickness during 24 flights of the space shuttle, Aviation and Space Environmental Medicine, 59, pp. 1185–1189; Jennings, R. T., C. R. Sawin, and M. R. Barratt, 2002, Space operations, in R. L. DeHart and J. R. Davis, editors, Fundamentals of Aerospace Medicine, Third Edition, Lippincott, Philidelphia, pp. 599–602; Buckey, J. C. Jr, and J. L. Homick, 2002, editors, The Neurolab Spacelab Mission: Neuroscience Research in Space, NASA SP-2003-535, 333 pp.

    Google Scholar 

  21. Tipton, C. M., J. E. Greenleaf, and C. G. R. Jackson, 1996, Medicine and Science in Sports and Exercise, 28, pp. 988–998; Churchill, S. and M. W. Bungo, 1997, Response of the cardiovascular system to spaceflight, in S. Churchill, 1997, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 41–64; Jennings, R. T., C. R. Sawin, and M. R. Barratt, 2002, Space operations, in R. L. DeHart and J. R. Davis, editors, Fundamentals of Aerospace Medicine, Third Edition, Lippincott, Philidelphia, pp. 604–605.

    Google Scholar 

  22. Churchill, S. E. and M. W. Bungo, 1997, Response of the cardiovascular system to spaceflight, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 41–64.

    Google Scholar 

  23. Tipton, C. M. and A. Hargens, 1996, Physiological adaptations and countermeasures associated with long-duration spaceflights, Medicine and Science in Sports and Exercise, 28, pp. 974–976; Cann, C. E., 1997, Response of the skeletal system to spaceflight, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 83–104; Churchill, S. E. and M. W. Bungo, 1997, Response of the cardiovascular system to spaceflight, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 52–54; Jennings, R. T., C. R. Sawin, and M. R. Barratt, 2002, Space Operations, in R. L. DeHart andj. R. Davis, editors, Fundamentals of Aerospace Medicine, Third Edition, Lippincott, Philidelphia, pp. 602–603; Lang, T., A. Leblanc, H. Evans, et al., 2004, Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight, Journal of Bone and Mineral Research, pp. 1006–1012.

    Google Scholar 

  24. Baldwin, K. M., 1996, Effect of spaceflight on the functional, biochemical, and metabolic properties of skeletal muscle, Medicine and Science in Sports and Exercise, 28, pp. 983–987; Edgerton, V. R., 1997, Response of skeletal muscle to spaceflight, S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 105–120; Jennings, R. T., C. R. Sawin, and M. R. Barratt, 2002, Space operations, in R. L. DeHart and J. R. Davis, editors, Fundamentals of Aerospace Medicine, Third Edition, Lippincott, Philidelphia, pp. 603–604.

    Google Scholar 

  25. Churchill, S. E. and M. W. Bungo, 1997, Response of the cardiovascular system to spaceflight, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 41–64; Jennings, R. T., C. R. Sawin, and M. R. Barratt, 2002, Space operations, in R. L. DeHart and J. R. Davis, editors, Fundamentals of Aerospace Medicine, Third Edition, Lippincott, Philidelphia, pp. 596–599.

    Google Scholar 

  26. Jennings, R. T., C. R. Sawin, and M. R. Barratt, 2002, Space operations, in R. L. DeHart and J. R. Davis, editors, Fundamentals of Aerospace Medicine, Third Edition, Lippincott, Philidelphia, pp. 605–606.

    Google Scholar 

  27. Churchill, S. E. and M. W. Bungo, 1997, Response of the cardiovascular system to spaceflight, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 52–54.

    Google Scholar 

  28. Hargens, A. R. and D. E. Watenpaugh, 1996, Cardiovascular adaptation to spaceflight, Medicine and Science in Sports and Exercise, 28, pp. 997–982; Churchill, S. E. and M. W. Bungo, 1997, Response of the cardiovascular system to spaceflight, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 41–64; Buckey, J. C. Jr, and J. L. Homick, 2002, editors, The Neurolab Spacelab Mission: Neuroscience Research in Space, NASA SP-2003-535, 333 pp.

    Google Scholar 

  29. Lewis, M. L. and M. Hughes-Fulford, 1997, Cellular responses to spaceflight, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 21–40.

    Google Scholar 

  30. Churchill, S. E. and M. W. Bungo, 1997, Response of the cardiovascular system to spaceflight, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 41–64.

    Google Scholar 

  31. Jennings, R. T., C. R. Sawin, and M. R. Barratt, 2002, Space operations, in R. L. DeHart and J. R. Davis, editors, Fundamentals of Aerospace Medicine, Third Edition, Lippincott, Philidelphia, pp. 606–608.

    Google Scholar 

  32. Sherr, D. H. and G. Sonnenfeld, 1997, Response of the immune system to spaceflight, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 121–130; Pierson, D. L., 2002, In Sickness and in Health: Immunity and the Stressed Astronaut, NASA report. http//:space-research.nasa.gov/research_projects/immune_12_2002.html.

    Google Scholar 

  33. Stampi, C., 1997, Circadian rhythms, sleep, and performance, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 2, Krieger, Malabar, pp. 203–220; Jennings, R. T., C. R. Sawin, and M. R. Barratt, 2002, Space operations, in R. L. DeHart and J. R. Davis, editors, Fundamentals of Aerospace Medicine, Third Edition, Lippincott, Philidelphia, p. 608; Buckey, J. C. Jr and J. L. Homick, 2002, editors, The Neurolab Spacelab Mission: Neuroscience Research in Space, NASA SP-2003-535, 333 pp.

    Google Scholar 

  34. Convertino, V. A., 1996, Exercise as a countermeasure for physiological adaptation to prolonged spaceflight, Medicine and Science in Sports and Exercise, 28, pp. 999–1114.

    Google Scholar 

  35. See Marx, J., 2004, Coming to grips with bone loss, Science, 305, pp. 1420–1422.

    Article  Google Scholar 

  36. Bodine, S. C., E. Latres, S. Baumhueter et al., 2001, Identification of ubiquitin ligases required for skeletal muscle atrophy, Science, 294, p. 1704.

    Article  Google Scholar 

  37. See for example, Bone remodeling and repair, Science, 289, pp. 1497–1514.

    Google Scholar 

  38. See, for example, S. Churchill, editor, 1997, Fundamentals of Space Life Sciences, Vol. 2, Krieger, Malabar, pp. 221–246 and 259–344.

    Google Scholar 

  39. Letaw, J. R., 1997, Radiation biology, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, p. 17.

    Google Scholar 

  40. Seejordon, N., J. Saleh, and D. Newman, 2005, The case for an integrated systems approach to extravehicular activity, NASA/AIAA, 1st Space Exploration Conference, 2005–2782.

    Google Scholar 

  41. See, for example, S. Churchill, 1997, editor, Fundamentals of Space Life Sciences, Vol. 2, Krieger, Melbourne, pp. 179–258.

    Google Scholar 

  42. Task Group on the Biological Effects of Space Radiation, 1996, Radiation Hazards to Crews of Interplanetary Missions, Space Science Board, National Academy of Sciences; Letaw, J. R., 1997, Radiation biology, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, pp. 11–18; Daglis, I. A., D. N. Baker, Y. Galperin, J. G. Kappenman, and L. J. Lanzerotti, 2001, Technological impacts of space storms: Outstanding issues, EOS, 82, 48, pp. 585, 591–592; Locke, J. P., 2002, Space environments, in R. L. DeHart and J. R. Davis, editors, Fundamentals of Aerospace Medicine, Third Edition, Lippincott, Philidelphia, pp. 247–249; in Wilson, J. W., F. A. Cucinotta, and W. Schimmerling, 2004, Emerging radiation health-risk mitigation technologies, STAIF 2004, p. 187; see also, Setlow, R. B., 2004, Mitigating hazards of space travel, March 15, 2004, Space News, p. 13.

    Google Scholar 

  43. Burch, J. L., 2001, The fury of space storms, Scientific American, April 2001, p. 89.

    Google Scholar 

  44. Perkins, S., 2004, Parting shots, Science News, 166, pp. 74–76.

    Article  Google Scholar 

  45. Science News, 2005, Proton storm erupts from the sun, February 12, p. 109.

    Google Scholar 

  46. A milliSievert (mSv) is equal to 0.1 rem. See Letaw, J. R., 1997, Radiation biology, in S. Churchill, editor, Fundamentals of Space Life Sciences, Vol. 1, Krieger, Malabar, p. 14.

    Google Scholar 

  47. National Research Council, 2000, Radiation and the International Space Station, National Academies Press, 92 pp.; NASA, 2002, Understanding space radiation, NASA Facts, FS-2002-10-080-JSC.

    Google Scholar 

  48. University Corporation for Atmospheric Research (UCAR), 2004, http://windows.ucar.edu/spaceweather/astronaut_dose.html.

    Google Scholar 

  49. MARIE Science Comments, October 2003, http://marie.jsc.nasa.gov/Documents/index.html.

    Google Scholar 

  50. See conversions in Todd, P., 2003, Space radiation health: A brief primer, Gravitational and Space Biology Bulletin, 16, Table 1, p. 1.

    Google Scholar 

  51. See summary in Heiken, G. H., D. T. Vaniman, and B. M. French, 1991, Lunar Sourcebook, Cambridge University Press, pp. 47–56.

    Google Scholar 

  52. Lawrence Berkeley National Laboratory, 2005, Integrated Safety Management, http//:www.lbl.gov/ehs/pub811/hazards/radiation.html.

    Google Scholar 

  53. See NASA, 2002, Space Radiation Risk Projections for Exploratory Missions: Uncertainty Reduction and Mitigation, NASA Technical Publication.

    Google Scholar 

  54. See, for example, Kennedy, A., 2004, Seleomethionine protects against effects induced by space radiation, Free Radical Biology and Medicine, 36, pp. 259–266.

    Article  Google Scholar 

  55. NASA, 2002, Understanding space radiation, NASA Facts, FS-2002-10-080-JSC.

    Google Scholar 

  56. See NASA, Proceedings of Annual Meetings of NASA Occupational Health Program, Occupational Health Division, NASA, Washington; Ramani, R. V. and J. M. Mutmansky, 1999, Mine health and safety at the turn of the millennium, Mining Engineering, September, pp. 25–30; Denby, B. and D. Schofield, 1999, Role of virtual reality in safety training of mine personnel, Mining Engineering, October, pp. 59–64; Sammarco, J. J., 1999, Safety framework for programmable electronics in mining, Mining Engineering, December, pp. 30–33; Steiner, L. J., P. James, and F. Turin, 2004, Partnering for successful ergonomics: A study of musculo-skeletal disorder in mining, Mining Engineering, November, pp. 39–43

    Google Scholar 

  57. Hayden, T., 2004, “The Explorers,” U.S. News and World Report, March 1, 2004, p. 86, for example.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Praxis Publishing Ltd.

About this chapter

Cite this chapter

(2006). Humans: Roles in Space. In: Return to the Moon. Springer, New York, NY. https://doi.org/10.1007/0-387-31064-9_13

Download citation

Publish with us

Policies and ethics