Skip to main content

Computational Experience with the Molecular Distance Geometry Problem

  • Chapter
Global Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 85))

Abstract

In this work we consider the molecular distance geometry problem, which can be defined as the determination of the three-dimensional structure of a molecule based on distances between some pairs of atoms. We address the problem as a nonconvex least-squares problem. We apply three global optimization algorithms (spatial Branch-and-Bound, Variable Neighbourhood Search, Multi Level Single Linkage) to two sets of instances, one taken from the literature and the other new.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adjiman, C.S., Dallwig, S., Floudas, C.A., and Neumaier, A. (1998). A global optimization method, αBB, for general twice-differentiable constrained NLPs: I. Theoretical Advances. Computers & Chemical Engineering, 22(9): 1137–1158.

    Article  Google Scholar 

  • An, L.T. Hoai (2003). Solving large scale molecular distance geometry problems by a smoothing technique via the Gaussian transform and d.c. programming. Journal of Global Optimization, 27:375–397.

    Article  Google Scholar 

  • Brimberg, J. and Mladenovic, N. (1996). A variable neighbourhood algorithm for solving the continuous location-allocation problem. Studies in Location Analysis, 10:1–12.

    MATH  MathSciNet  Google Scholar 

  • Crippen, G.M. and Havel, T.F. (1988). Distance Geometry and Molecular Conformation. Wiley, New York.

    MATH  Google Scholar 

  • Drazić, M, Lavor, C., Maculan, N., and Mladenović, N. (2004). A continuous vns heuristic for finding the tridimensional structure of a molecule. Le Cahiers du GERAD, G-2004-22.

    Google Scholar 

  • Gill, RE. (1999). User’s Guide for SNOPT 5.3. Systems Optimization Laboratory, Department of EESOR, Stanford University, California.

    Google Scholar 

  • Hansen, E. (1992). Global Optimization Using Interval Analysis. Marcel Dekker, Inc., New York.

    MATH  Google Scholar 

  • Hansen, P. and Mladenović, N. (2001). Variable neighbourhood search: Principles and applications. European Journal of Operations Research, 130:449–467.

    Article  MATH  Google Scholar 

  • Hendrickson, B.A. (1995). The molecule problem: exploiting structure in global optimization. SI AM Journal on Optimization, 5:835–857.

    Article  MATH  MathSciNet  Google Scholar 

  • Kucherenko, S. and Sytsko, Yu. (2005). Application of deterministic low-discrepancy sequences in global optimization. Computational Optimization and Applications, 30(3):297–318.

    Article  MATH  MathSciNet  Google Scholar 

  • Lavor, C. (to appear). On generating instances for the molecular distance geometry problem. In Maculan, N., editors (to appear). Global Optimization: from Theory to Implementation. Kluwer, Dordrecht [Liberti and Maculan].

    Google Scholar 

  • Liberti, L. (2004). Reformulation and Convex Relaxation Techniques for Global Optimization. PhD thesis, Imperial College London, UK.

    Google Scholar 

  • Liberti, L. (to appear). Writing global optimization software. In Maculan, N., editors (to appear). Global Optimization: from Theory to Implementation. Kluwer, Dordrecht. [Liberti and Maculan].

    Google Scholar 

  • Liberti, L. and Maculan, N., editors (to appear). Global Optimization: from Theory to Implementation. Kluwer, Dordrecht.

    Google Scholar 

  • Liberti, L., Tsiakis, P., Keeping, B., and Pantelides, C.C. (2001). ooOPS. Centre for Process Systems Engineering, Chemical Engineering Department, Imperial College, London, UK, 1.24 edition.

    Google Scholar 

  • Locatelli, M. and Schoen, F. (1996). Simple linkage: Analysis of a threshold-accepting global optimization method. Journal of Global Optimization, 9:95–111.

    Article  MATH  MathSciNet  Google Scholar 

  • Locatelli, M. and Schoen, F. (1999). Random linkage: a family of acceptance/rejection algorithms for global optimization. Mathematical Programming, 85(2):379–396.

    Article  MATH  MathSciNet  Google Scholar 

  • Mladenović, N., Petrović, J., Kovačević-Vujčić, V., and Čangalović, M. (2003). Solving a spread-spectrum radar polyphase code design problem by tabu search and variable neighbourhood search. European Journal of Operations Research, 151:389–399.

    Article  Google Scholar 

  • Moré, J.J. and Wu, Z. (1997). Global continuation for distance geometry problems. SI AM Journal on Optimization, 7:814–836.

    Article  MATH  Google Scholar 

  • Moré, J.J. and Wu, Z. (1999). Distance geometry optimization for protein structures. Journal of Global Optimization, 15:219–234.

    Article  MATH  Google Scholar 

  • Pardalos, P.M. and Romeijn, H.E., editors (2002). Handbook of Global Optimization, volume 2. Kluwer Academic Publishers, Dordrecht.

    MATH  Google Scholar 

  • Phillips, A.T., Rosen, J.B., and Walke, V.H. (1996). Molecular structure determination by convex underestimation of local energy minima. In Pardalos, P.M., Shalloway, D., and Xue, G., editors, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding, volume 23, pages 181–198, Providence. American Mathematical Society.

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. (1992, reprinted 1997). Numerical Recipes in C, Second Edition. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rinnooy-Kan, A.H.G. and Timmer, G.T. (1987a). Stochastic global optimization methods; part I: Clustering methods. Mathematical Programming, 39:27–56.

    MATH  MathSciNet  Google Scholar 

  • Rinnooy-Kan, A.H.G. and Timmer, G.T. (1987b). Stochastic global optimization methods; part II: Multilevel methods. Mathematical Programming, 39:57–78.

    MATH  MathSciNet  Google Scholar 

  • Ryoo, H.S. and Sahinidis, N.V. (1995). Global optimization of nonconvex NLPs and MINLPs with applications in process design. Computers & Chemical Engineering, 19(5):551–566.

    Article  Google Scholar 

  • Schoen, F. (1998). Random and quasi-random linkage methods in global optimization. Journal of Global Optimization, 13:445–454.

    Article  MATH  MathSciNet  Google Scholar 

  • Schoen, F. (1999). Global optimization methods for high-dimensional problems. European Journal of Operations Research, 119:345–352.

    Article  MATH  Google Scholar 

  • Schoen, F. (2002). Two-phase methods for global optimization. In Romeijn, H.E., editors (2002). Handbook of Global Optimization, volume 2. Kluwer Academic Publishers, Dordrecht. [Pardalos and Romeijn, 2002], pages 151–177.

    Google Scholar 

  • Smith, E.M.B. (1996). On the Optimal Design of Continuous Processes. PhD thesis, Imperial College of Science, Technology and Medicine, University of London.

    Google Scholar 

  • Smith, E.M.B. and Pantelides, C.C. (1999). A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Computers & Chemical Engineering, 23:457–478.

    Article  Google Scholar 

  • Tawarmalani, M. and Sahinidis, N.V. (2002). Exact algorithms for global optimization of mixed-integer nonlinear programs. In Romeijn, H.E., editors (2002). Handbook of Global Optimization, volume 2. Kluwer Academic Publishers, Dordrecht [Pardalos and Romeijn, 2002], pages 1–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lavor, C., Liberti, L., Maculan, N. (2006). Computational Experience with the Molecular Distance Geometry Problem. In: Pintér, J.D. (eds) Global Optimization. Nonconvex Optimization and Its Applications, vol 85. Springer, Boston, MA . https://doi.org/10.1007/0-387-30927-6_9

Download citation

Publish with us

Policies and ethics