Skip to main content

Parallel Triangulated Partitioning for Black Box Optimization

  • Chapter
Global Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 85))

  • 1733 Accesses

Abstract

We propose a parallel triangulation based partitioning algorithm (TRIOPT) for solving low dimensional bound-constrained black box global optimization problems. Black box optimization problems are important in engineering design where restricted numbers of input-output pairs are provided as data. Optimization is carried out over sparse data in the absence of a formal mathematical relationship among inputs and outputs. In such settings, function evaluations become expensive, because system performance assessment might be conducted via simulation studies or physical experiments. Thus, the optimal solution should be found in a minimal number of function evaluations. In TRIOPT, input-output pairs are treated as samples located in the search domain and search space coverage is obtained over these samples by triangulation. This produces an initial partition of the domain. Thereafter, each simplex is assessed for re-partitioning in parallel. In this assessment, performance values at the vertices are transformed and mapped to [0,1] interval using a non-linear transformation function with dynamic parameters. Transformed values are then aggregated into a group measure upon which the decision for re-partitioning is taken. Simplices whose group measures overcome a given threshold value are re-partitioned in parallel. Here, the performance of TRIOPT is measured on several applications from different fields and compared with powerful partitioning techniques such as LGO, DIRECT, and MCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. (1996). The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4):469–483.

    Article  MATH  MathSciNet  Google Scholar 

  • Clausen, J. and Ĺ˝ilinskas, A. (2002). Subdivision, sampling, and initialization strategies for simplical branch and bound in global optimization. Computers and Mathematics with Applications, 44:943–955.

    Article  MATH  MathSciNet  Google Scholar 

  • CUTEr. CUTEr: A constrained and unconstrained testing environment, revisited. http://cuter.rl.ac.uk/cuter-www/problems.html.

    Google Scholar 

  • Demirhan, M. and Ă–zdamar, L. (1999). A note on the use of a fuzzy approach in adaptive partitioning algorithms for global optimization. IEEE Transactions on Fuzzy Systems, 7:468–475.

    Article  Google Scholar 

  • Gourdin, E., Hansen, P., and Jaumard, B. (1994). Global optimization of multivariate Lipschitz functions: a survey and computational comparison. Les Cahiers du GERAD. McGill University, Montreal.

    Google Scholar 

  • Hansen, P. and Jaumard, B. (1995). Lipschitz optimization. In Horst, R. and Pardalos, P. M., editors, Handbook of Global Optimization, pages 407–493. Kluwer Academic Pulishers, Dordrecht.

    Google Scholar 

  • Horst, R. and Tuy, H. (1996). Global Optimization. Deterministic Approaches. Springer Verlag, Berlin.

    MATH  Google Scholar 

  • Huyer, W. and Neumaier, A. (1999). Global optimization by multilevel coordinate search. Journal of Global Optimization, 14:331–355.

    Article  MATH  MathSciNet  Google Scholar 

  • Jones, D. R., Perttunen, C. D., and Stuckman, B. E. (1993). Lipschitzian optimization without the Lipschitz constant. Journal of Optimization Theory and Applications, 79:157–181.

    Article  MATH  MathSciNet  Google Scholar 

  • Kearfott, R. R. (1996). Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht.

    Google Scholar 

  • Kolda, T. G., Lewis, R. M., and Torczon, V. (2003). Optimization by direct search: new perspectives on some classical and modern methods. SIAM Review, 45(3):385–482.

    Article  MATH  MathSciNet  Google Scholar 

  • Krikanov, A. A. (2000). Composite pressure vessels with higher stiffness. Composite Structures, 48:119–127.

    Article  Google Scholar 

  • Lewis, R. M. and Torczon, V. (1999). Pattern search methods for bound constrained minimization. SIAM Journal on Optimization, 9(4): 1082–1099.

    Article  MATH  MathSciNet  Google Scholar 

  • Lewis, R. M, Torczon, V., and Trosset, M. W. (2000). Direct search methods: Then and now. Journal of Computational and Applied Mathematics, 124:191–207.

    Article  MATH  MathSciNet  Google Scholar 

  • McKinnon, K. I. M, (1998). Convergence of the Nelder-Mead simplex method to a nonstationary point. SIAM Journal on Optimization, 9(1): 148–158.

    Article  MATH  MathSciNet  Google Scholar 

  • Moore, R. E. and Ratschek, H. (1988). Inclusion functions and global optimization II. Mathematical Programming, 41:341–356.

    Article  MATH  MathSciNet  Google Scholar 

  • Nataraj, P. S. V. and Sheela, S. (2002). A new subdivision strategy for range computations. Reliable Computing, 8:83–92.

    Article  MATH  MathSciNet  Google Scholar 

  • Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. Computer Journal, 7(4):308–313.

    MATH  Google Scholar 

  • Ozdamar, L. and Demirhan, M. B. (2000). Experiments with new stochastic global optimization search techniques. Computers & Operations Research, 27:841–865.

    Article  Google Scholar 

  • Ozdamar, L. and Demirhan, M. B. (2001). Comparison of partition evaluation measures in an adaptive partitioning algorithm for global optimization. Fuzzy Sets and Systems, 117(1):47–60.

    Article  MathSciNet  Google Scholar 

  • Pal, N. R. and Pal, S. K. (1989). Object background segmentation using new definitions of entropy. IEE Proc., 136:284–295.

    Google Scholar 

  • PintĂ©r, J. (1988). Branch and bound algorithms for solving global optimization problems with lipschitzian structure. Optimization, 19:101–110.

    MATH  MathSciNet  Google Scholar 

  • PintĂ©r, J. (1996). Global Optimization in Action. Kluwer, Dordrecht.

    MATH  Google Scholar 

  • PintĂ©r, J. (1997). LGO—A program system for continuous and Lipschitz global optimization. In Bomze, I. M., Csendes, T., Horst, R., and Pardalos, P. M., editors, Developments in Global Optimization, pages 183–197. Kluwer Academic Publishers, Dordrecht / Boston / London.

    Google Scholar 

  • PintĂ©r, J. (2003). LGO: A Model Development and Solver System for Continuous Global Optimization User Guide. Pinter Consulting Services, Halifax, Nova Scotia, Canada.

    Google Scholar 

  • Pownuk, A. (2000). Optimization of mechanical structures using interval analysis. Computer Assisted Mechanics and Engineering Science, 7(4):699–705.

    MATH  MathSciNet  Google Scholar 

  • Stillinger, F. H., Head-Gordon, T., and Hirshfeld, C. L. (1993). Toy model for protein folding. Physical Review E, 48(2): 1469–1477.

    Article  Google Scholar 

  • Walters, F. H., Parker,Jr., L. R., Morgan, S. L., and Deming, S. N. (1991). Sequential Simplex Optimization. Chemometrics Series. CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  • Wood, G. (1991). Multidimensional bisection applied to global optimization. Computers and Mathematics with Applications, 21:161–172.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, B., Wood, G., and Baritompa, W. (1993). Multi-dimensional bisection: the performance and the context. Journal of Global Optimization, 3:337–358.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wu, Y., Özdamar, L., Kumar, A. (2006). Parallel Triangulated Partitioning for Black Box Optimization. In: Pintér, J.D. (eds) Global Optimization. Nonconvex Optimization and Its Applications, vol 85. Springer, Boston, MA . https://doi.org/10.1007/0-387-30927-6_20

Download citation

Publish with us

Policies and ethics