Skip to main content

Embryonic Salivary Gland Branching Morphogenesis

  • Chapter
Branching Morphogenesis

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Salivary submandibular gland (SMG) morphogenesis is regulated by the functional integration of stage-specific growth factor-, cytokine- and transcription factor-mediated signaling which mediates specific patterns of cell proliferation, cell quiescence, apoptosis, and histodifferentiation. We describe the stage-specific distribution of protein components of key signaling pathways during embryonic SMG development and correlate their protein expression patterns with cell proliferation and apoptosis. We then review the critical role of the Fibroblast Growth Factor (FGF), Hedgehog (Hh) and Ectodysplasin (Eda) signaling pathways and discuss how they may interact within the context of a nonlinear genetic network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Melnick M, Chen H, Zhou Y et al. The functional genomic response of developing embryonic submandibular glands to NF-κB inhibition. BMC Developmental Biology 2001; 1:15.

    Article  PubMed  CAS  Google Scholar 

  2. Davidson EH, Rast JP, Oliveri P et al. A genomic regulatory network for development. Science 2002; 295:1669–1678.

    Article  PubMed  CAS  Google Scholar 

  3. Davidson EH, McClay DR, Hood L. Regulatory gene networks and the properties of the development process. Proc Natl Acad Sci USA 2003; 100:1475–1480.

    Article  PubMed  CAS  Google Scholar 

  4. Gardner TS, Bernardo DD, Lorenz D et al. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003; 301:102–105.

    Article  PubMed  CAS  Google Scholar 

  5. Kashimata MW, Sakagami HW, Gresik EW. Intracellular signaling cascades activated by the EGF receptor and/or integrins, with potential relevance for branching morphogenesis of the fetal mouse submandibular gland. Eur J Morphol 2000b; 38:269–275.

    Article  PubMed  CAS  Google Scholar 

  6. Koyama N, Kashimata M, Sakagami H et al. EGF-stimulated signaling by means of P13K, PLCγ1, and PKC isozymes regulates branching morphogenesis of the fetal mouse submandibular gland. Devel Dyn 2003; 227:216–226.

    Article  CAS  Google Scholar 

  7. Melnick M, Jaskoll T. Mouse submandibular gland morphogenesis: A paradigm for embryonic signal processing. Crit Rev Oral Biol 2000; 11:199–215.

    CAS  Google Scholar 

  8. Jaskoll T, Zhou Y-M, Trump G et al. Ectodysplasin receptor-mediated signaling is essential for embryonic submandibular salivary gland development. Anat Rec 2003; 271A:322–331.

    Article  CAS  Google Scholar 

  9. Jaskoll T, Leo T, Witcher D et al. Sonic Hedgehog Signaling plays an essential role during embryonic salivary gland epithelial branching morphogenesis. Devel Dynam 2004; (in press).

    Google Scholar 

  10. Jaskoll T, Witcher D, Leo T et al. FGF8 dose-dependent regulation of embryonic submandibular salivary gland morphogenesis. Devel Biol 2004; (in press).

    Google Scholar 

  11. Larsen M, Hoffman MP, Sakai T et al. Role of PI3-kinase and PIP3 in submandibular gland branching morphogenesis. Devel Biol 2003; 255:178–191.

    Article  CAS  Google Scholar 

  12. Jaskoll T, Melnick M. Submandibular gland morphogenesis: Stage-specific expression of TGF-alpha, EGF, IGF, TGF-beta, TNF and IL-6 signal transduction in normal mice and the phenotypic effects of TGF-beta2, TGF-beta3, and EGF-R null mutations. Anat Rec 1999; 256:252–268.

    Article  PubMed  CAS  Google Scholar 

  13. Melnick M, Chen H, Zhou Y-M et al. Embryonic mouse submandibular salivary gland morphogenesis and the TNF/TNF-R1 signal transduction pathway. Anat Rec 2001; 262:318–320.

    Article  PubMed  CAS  Google Scholar 

  14. Melnick M, Chen H, Zhou Y et al. Interleukin-6 signaling and embryonic mouse submandibular salivary gland morphogenesis. Cells Tiss Org 2001; 168:233–245.

    Article  CAS  Google Scholar 

  15. Jaskoll T, Chen H, Zhou Y-M et al. Developmental expression of survivin during embryonic submandibular salivary gland development. BMC Developmental Biol 2001; 1:5.

    Article  CAS  Google Scholar 

  16. Jaskoll T, Zhou Y-M, Chai Y et al. Embryonic submandibular gland morphogenesis: Stage-specific protein localization of FGFs, BMPs, Pax 6 and Pax 9 and abnormal SMG phenotypes in Fgf/R2-IIIc+/Δ, BMP7-/- and Pax6-/- mice. Cells Tiss Org 2002; 270:83–98.

    Article  Google Scholar 

  17. Jaskoll T, Melnick M. Embryonic SMG Development. <http://www.usc.edu/hsc/dental/odg/index.htm>).

    Google Scholar 

  18. De Moerlooze L, Spencer-Dene B, Revest J-M. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signaling during mouse organogenesis. Development 2000; 127:483–492.

    PubMed  Google Scholar 

  19. Ohuchi H, Hori Y, Yamasaki M et al. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Bioch Biophys Res Com 2000; 277:643–649.

    Article  CAS  Google Scholar 

  20. McKeehan WL, Wang F, Kan M. The heparin-sulfate fibroblast growth factor family-diversity of structure and function. Prog Nucl Acid Res Mol Biol 1999; 59:135–176.

    Google Scholar 

  21. Ornitz DM. 2000. FGFs, heparan sulfate and FGFRs. Complex interactions essential for development. Bioessays 2000; 22:108–112.

    Article  PubMed  CAS  Google Scholar 

  22. Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol 2002; 5:1–12.

    Google Scholar 

  23. Szebenyi G, Fallon J. Fibroblast growth factors as multifunctional signaling factors. International Review of Cytology 1999; 185:45–106.

    Article  PubMed  CAS  Google Scholar 

  24. Brunet A, Bonni A, Zigmond MJ et al. Akt promotes cell survival by phosphorylating and inihibiting a forkhead transcription factor. Cell 1999; 96:857–868.

    Article  PubMed  CAS  Google Scholar 

  25. Chen Y, Li X, Eswarakumar VP et al. Fibroblast growth factor (FGF) signaling through PI 3 kinase and AKT/PKB is required for embryoid body differentiation. Oncogene 2000; 19:3750–3756.

    Article  PubMed  CAS  Google Scholar 

  26. Guo L, Degenstein L, Fuchs E. Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev 1996; 10:165–175.

    PubMed  CAS  Google Scholar 

  27. MacArthur CA, Lawshe A, Xu J et al. FGF-8 isoforms activate receptor splice forms that are expressed in mesenchymal regions of mouse development. Development 1995; 121:3603–3613.

    PubMed  CAS  Google Scholar 

  28. Ornitz DM, Xu J, Colvin JS. 1996. Receptor specificity of the fibroblast growth factor family. J Biol Chem 1996; 271:15292–15297.

    Article  PubMed  CAS  Google Scholar 

  29. Miller DL, Ortega S, Bashayan O et al. Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol 2000; 20:2260–2268.

    Article  PubMed  CAS  Google Scholar 

  30. Fiore F, Planche J, Gibier P et al. Apparent normal phenotype in Fgf6-/-mice. Int J Dev Biol 1997; 41:639–642.

    PubMed  CAS  Google Scholar 

  31. Colvin JS, Feldman B, Nadeau JH et al. Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene. Dev Dynam 1999; 216:72–88.

    Article  CAS  Google Scholar 

  32. Deng CX, Wynshaw-Boris A, Shen MM et al. Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev 1994; 8:3045–3057.

    PubMed  CAS  Google Scholar 

  33. Hajihosseini MK, Lalioti MD, Arthaud S et al. Skeletal development is regulated by fibroblast growth factor receptor 1 signaling. Development 2004; 131:325–335.

    Article  PubMed  CAS  Google Scholar 

  34. Hoffman MP, Kidder BL, Steinberg ZL et al. Gene expression profiles of mouse submandibular gland development:FGFRl regulates branching morphogenesis in vitro through BMP-and FGF-dependent mechanisms. Development 2002; 129:5767–5778.

    Article  PubMed  CAS  Google Scholar 

  35. Beer H-D, Vindevoghel L, Gait MJ et al. Fibroblast growth factor (FGF) receptor 1-IIIb is a naturally occurring functional receptor for FGFs that is preferentially expressed in the skin and the brain. J Biol Chem 2000; 275:16091–16097.

    Article  PubMed  CAS  Google Scholar 

  36. McMahon AP, Ingham PW, Tabin C. Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Bio 2003; 53:1–114.

    Article  CAS  Google Scholar 

  37. Kenney AM, Cole MD, Rowitch DH. N-myc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar neuron precursors. Development 2003; 130:15–26.

    Article  PubMed  CAS  Google Scholar 

  38. Lowry JA, Stewart GA, Lindey S et al. Sonic hedgehog promotes cell cycle progression in activated CD4(+) T lymphocytes. J Immunol 2002; 169:1869–1875.

    Google Scholar 

  39. Chiang C, Litingtung Y, Lee E et al. Cyclopia and defective axial patterning in mice lacking Sonic Hedgehog gene function. Nature 1996; 383:407–413.

    Article  PubMed  CAS  Google Scholar 

  40. Ahlgren SC, Thackur V, Bronner-Fraser M et al. Sonic Hedgehog rescues cranial neural crest cells from cell death induced by ethanol exposure. Proc Natl Acad Scienc 2002; 99:10476–10481.

    Article  CAS  Google Scholar 

  41. Monreal AW, Zonana J, Ferguson B. Identification of a new splice form of the EDA1 gene permits detection of nearly all X-linked hypohidrotic ectodermal dysplasia mutations. Am J Hum Genet 1998; 63:380–389.

    Article  PubMed  CAS  Google Scholar 

  42. Srivastava AK, Pispa J, Hartung AJ et al. The Tabby phenotype is caused by mutation in mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains. Proc Natl Acad Sci 1997; 94:13069–13074.

    Article  PubMed  CAS  Google Scholar 

  43. Yan M, Wang L-C, Hymowitz SG et al. Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science 2000; 290:523–526.

    Article  PubMed  CAS  Google Scholar 

  44. Kumar A, Eby MT, Sinha S et al. The ectodermal dysplasia receptor activates the nuclear factor KB, JNK, and cell death pathways and binds to ectodysplasin A. J Biol Chem 2001; 276:2668–2677.

    Article  PubMed  CAS  Google Scholar 

  45. Pinheiro M, FreireMaia N. Ectodermal dysplasias: A clinical classification and a causal review. Am J Med Genet 1994; 53:153–162.

    Article  PubMed  CAS  Google Scholar 

  46. Sundberg J. 1994. The Downless (d1) and Sleek (D1 sleek) mutations, Chromosome 10. In: Maibach H, ed. Handbook of Mouse Mutations with Skin and Hair Abnormalities. Boca Raton, FL: CRC Press.

    Google Scholar 

  47. Moon AM, Capecchi MR. Fgf8 is required for outgrowth and patterning of the limbs. Nat Genet 2000; 26:455–459.

    Article  PubMed  CAS  Google Scholar 

  48. Frank DF, Fotheringham LK, Brewer JA et al. An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development 2002; 129:4591–4601.

    PubMed  CAS  Google Scholar 

  49. Aoto K, Nishimura TEK, Motoyama J. Mouse GLI3 regulates Fgf8 expression and apoptosis in the developing neural tube, face and limb bud. Dev Biol 2002; 251:320–332.

    Article  PubMed  CAS  Google Scholar 

  50. Taya Y, O’Kane S, Ferguson MW. Pathogenesis of cleft palate in TGF-beta3 knockout mice. 1999; 126:3869–3879.

    CAS  Google Scholar 

  51. Zhao J, Chen H, Wang YL et al. Abrogation of tumor necrosis factor-alpha converting enzyme inhibits embryonic lung morphogenesis in culture. Int J Dev Biol 2001; 4:623–631.

    Google Scholar 

  52. Sarkar L, Cobourne M, Naylor S et al. Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. Proc Natl Acad Sci USA 2000; 9:4520–4524.

    Article  Google Scholar 

  53. Macatee TL, Hammond BP, Arenkial BR et al. Ablation of specific expression domains reveals discrete functions of ectoderm-and endoderm-derived FGF8 during cardiovascular and pharyngeal development. Development 2003; 130.

    Google Scholar 

  54. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999; 18:6853–686652.

    Article  PubMed  CAS  Google Scholar 

  55. Kashimata M, Sayeed S, Ka A et al. The ERK-1/2 signaling pathway is involved in the stimulation of branching morphogenesis of fetal mouse submandibular glands by EGF. Develop Biol 2000; 220:183–196.

    Article  PubMed  CAS  Google Scholar 

  56. Marin MW, Dunn A, Grail D et al. Characterization of tumor necrosis factor-deficient mice. Pro Natl Acad Sci USA 1997; 94:8093–8098.

    Article  Google Scholar 

  57. Peschon JJ, Torrance DS, Stocking KL et al. TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation. J Immunol 1998; 160:943–952.

    PubMed  CAS  Google Scholar 

  58. Rothe J, Mackay F, Bluethmann H et al. Phenotypic analysis of TNFR1-deficient mice and characterization of TNFR1-deficient fibroblasts in vitro. Cir Shock 1994; 44:51–56.

    CAS  Google Scholar 

  59. Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: Signaling pathways, biological responses and therapeutic inhibition. Trends Pharm Sci 2001; 22:201–201.

    Article  PubMed  CAS  Google Scholar 

  60. Kodaki T, Woscholski R, Hallberg B et al. The activation of phosphatidylinositol 3-kinase by Ras. Curr Biol 1994; 9:798–806.

    Article  Google Scholar 

  61. Lu H-C, Swindell EC, Sierralta WD et al. Evidence for a role of protein kinase C in FGF signal transduction in the developing chick limb bud. Development 2002; 128:2451–2460.

    Google Scholar 

  62. Klint P, Kanda S, Kloog Y et al. Contribution of Src and Ras pathways in FGF-2 induced endothelial cell differentiation. Oncogene 1999; 18:3354–3364.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Jaskoll, T., Melnick, M. (2005). Embryonic Salivary Gland Branching Morphogenesis. In: Branching Morphogenesis. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-30873-3_9

Download citation

Publish with us

Policies and ethics