Skip to main content

Extracellular Matrix Remodeling in Mammary Gland Branching Morphogenesis and Breast Cancer

The Double-Edged Sword

  • Chapter
Branching Morphogenesis

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

That dififerentiation and malignancy are different faces of the same coin is now almost a cliche. Although widely accepted as fact, exactly what are the points of similarity and differences that contribute to normal morphogenesis on the one hand and to neoplastic progression on the other? How can mechanisms that permit, guide and determine differentiation also contribute to malignancy? More specifically, what are the molecules that guide nor-mal morphogenesis yet contribute to neoplastic transformation and progression? These pro-cesses probably involve arrays of genetic programs. For the purpose of this review, we will focus on the roles of several genes that appear to fill these contradictory functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pierce GB. Relationship between differentiation and carcinogenesis. J Toxicol Environ Health 1977; 2(6):1335–42.

    PubMed  CAS  Google Scholar 

  2. Fata JWZ, Bissell MJ. Branching morphogenesis. 2003; in press.

    Google Scholar 

  3. Hu MC, Rosenblum ND. Genetic regulation of branching morphogenesis: Lessons learned from loss-of-function phenotypes. Pediatr Res 2003; 54(4):433–8.

    PubMed  Google Scholar 

  4. Radisky DC, H.Y, Bissell MJ. Delivering the message: Epimorphin and mammary epithelial morphogenesis. Trends Cell Biol 2003; 13(8):426–434.

    PubMed  CAS  Google Scholar 

  5. Affolter M et al. Tube or not tube: Remodeling epithelial tissues by branching morphogenesis. Dev Cell 2003; 4(1):11–8.

    PubMed  CAS  Google Scholar 

  6. Davies JA. Do different branching epithelia use a conserved developmental mechanism? Bioessays 2002; 24(10):937–48.

    PubMed  CAS  Google Scholar 

  7. Hovey RC, Trott JF, Vonderhaar BK. Establishing a framework for the functional mammary gland: From endocrinology to morphology. J Mammary Gland Biol Neoplasia 2002; 7(1):17–38.

    PubMed  Google Scholar 

  8. Silberstein GB. Postnatal mammary gland morphogenesis. Microsc Res Tech 2001; 52(2):155–62.

    PubMed  CAS  Google Scholar 

  9. Petersen OW et al. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion. Breast Cancer Res 2001; 3(4):213–7.

    PubMed  CAS  Google Scholar 

  10. Lochter A. Plasticity of mammary epithelia during normal development and neoplastic progression. Biochem Cell Biol 1998; 76(6):997–1008.

    PubMed  CAS  Google Scholar 

  11. Fleury V, Watanabe T. Morphogenesis of fingers and branched organs: How collagen and fibroblasts break the symmetry of growing biological tissue. C R Biol 2002; 325(5):571–83.

    PubMed  Google Scholar 

  12. Smith GH, Chepko G. Mammary epithelial stem cells. Microsc Res Tech 2001; 52(2):190–203.

    PubMed  CAS  Google Scholar 

  13. Metzger RJ, Krasnow MA. Genetic control of branching morphogenesis. Science 1999; 284(5420):1635–9.

    PubMed  CAS  Google Scholar 

  14. Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci USA 2003; 100(7):3547–9.

    PubMed  CAS  Google Scholar 

  15. Al-Hajj M et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7):3983–8.

    PubMed  CAS  Google Scholar 

  16. Chang CC et al. A human breast epithelial cell type with stem cell characteristics as target cells for carcinogenesis. Radiat Res 2001; 155(1 Pt 2):201–207.

    PubMed  CAS  Google Scholar 

  17. Medina D. Biological and molecular characteristics of the premalignant mouse mammary gland. Biochim Biophys Acta 2002; 1603(1):1–9.

    PubMed  CAS  Google Scholar 

  18. Li P et al. Stem cells in breast epithelia. Int J Exp Pathol 1998; 79(4):193–206.

    PubMed  CAS  Google Scholar 

  19. Dontu G et al. Stem cells in normal breast development and breast cancer. Cell Prolif 2003; 36(Suppl 1):59–72.

    PubMed  CAS  Google Scholar 

  20. Wiseman BS, Werb Z. Stromal effects on mammary gland development and breast cancer. Science 2002; 296(5570):1046–9.

    PubMed  CAS  Google Scholar 

  21. Wiseman BS et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol 2003; 162(6):1123–33.

    PubMed  CAS  Google Scholar 

  22. Werb Z et al. Extracellular matrix remodeling and the regulation of epithelial-stromal interactions during differentiation and involution. Kidney Int Suppl 1996; 54:S68–74.

    PubMed  CAS  Google Scholar 

  23. Roskelley CD, Bissell MJ. The dominance of the microenvironment in breast and ovarian cancer. Semin Cancer Biol 2002; 12(2):97–104.

    PubMed  Google Scholar 

  24. Zhang YW, Vande Woude GF. HGF/SF-met signaling in the control of branching morphogenesis and invasion. J Cell Biochem 2003; 88(2):408–17.

    PubMed  CAS  Google Scholar 

  25. Rosario M, Birchmeier W. How to make tubes: Signaling by the Met receptor tyrosine kinase. Trends Cell Biol 2003; 13(6):328–35.

    PubMed  CAS  Google Scholar 

  26. Soriano JV et al. Roles of hepatocyte growth factor/scatter factor and transforming growth factor-beta1 in mammary gland ductal morphogenesis. J Mammary Gland Biol Neoplasia 1998; 3(2):133–50.

    PubMed  CAS  Google Scholar 

  27. van Tuyl M, Post M. From fruitflies to mammals: Mechanisms of signalling via the Sonic hedgehog pathway in lung development. Respir Res 2000; 1(1):30–5.

    PubMed  Google Scholar 

  28. Deugnier MA, T.J, Faraldo MM et al. The important of being a myoepithelial cell. Breast Cancer Res 2002; 4(6):224–230.

    PubMed  CAS  Google Scholar 

  29. Bartley JC, Emerman JT, Bissell MJ. Metabolic cooperativity between mammary epithelial cells and adipocytes of mice. Am J Physio 1981; 241:C240–248.

    Google Scholar 

  30. Gouon-Evans V, Lin EY, Pollard JW. Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res 2002; 4(4):155–64.

    PubMed  Google Scholar 

  31. Chilliard Y et al. Leptin in ruminants. Gene expression in adipose tissue and mammary gland, and regulation of plasma concentration. Domest Anim Endocrinol 2001; 21(4):271–95.

    PubMed  CAS  Google Scholar 

  32. Weaver VM, L. S, Lakins JN et al. beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2002; 2(3):205–216.

    PubMed  CAS  Google Scholar 

  33. Thomasset N et al. Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early development. Am J Pathol 1998; 153(2):457–67.

    PubMed  CAS  Google Scholar 

  34. Bissell MJ et al. The organizing principle: Microenvironmental influences in the normal and malignant breast. Differentiation 2002; 70(9–10):537–46.

    PubMed  Google Scholar 

  35. Earp 3rd HS, Calvo BF, Sartor CI. The EGF receptor family—multiple roles in proliferation, differentiation, and neoplasia with an emphasis on HER4. Trans Am Clin Climatol Assoc 2003; 114:315–33, discussion 333–4.

    PubMed  Google Scholar 

  36. Roberts AB, Wakefield LM. The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA 2003; 100(15):8621–3.

    PubMed  CAS  Google Scholar 

  37. Turley EA, Noble PW, Bourguignon LY. Signaling properties of hyaluronan receptors. J Biol Chem 2002; 277(7):4589–92.

    PubMed  CAS  Google Scholar 

  38. Ponta H, S. L, Herrlich PA. CD44: From adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003; 4(1):33–45.

    PubMed  CAS  Google Scholar 

  39. Naor D et al. CD44 in cancer. Crit Rev Clin Lab Sci 2002; 39(6):527–79.

    PubMed  CAS  Google Scholar 

  40. Yasuda M et al. CD44: Functional relevance to inflammation and malignancy. Histol Histopathol 2002; 17(3):945–50.

    PubMed  CAS  Google Scholar 

  41. Ponta H, Sherman L, Herrlich PA. CD44: From adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003; 4(1):33–45.

    PubMed  CAS  Google Scholar 

  42. Rooney P et al. The role of hyaluronan in tumor neovascularization (review). Int J Cancer 1995; 60(5):632–6.

    PubMed  CAS  Google Scholar 

  43. Tammi MI, Day AJ, Turley EA. Hyaluronan and homeostasis: A balancing act. J Biol Chem 2002; 277(7):4581–4.

    PubMed  CAS  Google Scholar 

  44. Day AJ, Prestwich GD. Hyaluronan-binding proteins: Tying up the giant. J Biol Chem 2002; 277(7):4585–8.

    PubMed  CAS  Google Scholar 

  45. Bissell MJ, Radisky D. Putting tumors in context. Nat Rev Cancer 2001; 1(1):46–54.

    PubMed  CAS  Google Scholar 

  46. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001; 17:463–516.

    PubMed  CAS  Google Scholar 

  47. de Launoit Y et al. The PEA3 group of ETS-related transcription factors. Role in breast cancer metastasis. Adv Exp Med Biol 2000; 480:107–16.

    PubMed  Google Scholar 

  48. Benaud C, Dickson RB, Thompson EW. Roles of the matrix metalloproteinases in mammary gland development and cancer. Breast Cancer Res Treat 1998; 50(2):97–116.

    PubMed  CAS  Google Scholar 

  49. Rudolph-Owen LA et al. The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis. Cancer Res 1998; 58(23):5500–6.

    PubMed  CAS  Google Scholar 

  50. Yu WH et al. CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev 2002; 16(3):307–23.

    PubMed  CAS  Google Scholar 

  51. Delehedde M et al. Proteoglycans: Pericellular and cell surface multireceptors that integrate external stimuli in the mammary gland. J Mammary Gland Biol Neoplasia 2001; 6(3):253–73.

    PubMed  CAS  Google Scholar 

  52. Bateman KL et al. Heparan sulphate. Regulation of growth factors in the mammary gland. Adv Exp Med Biol 2000; 480:65–9.

    PubMed  CAS  Google Scholar 

  53. Bourhis XL et al. Autocrine and paracrine growth inhibitors of breast cancer cells. Breast Cancer Res Treat 2000; 60(3):251–8.

    PubMed  CAS  Google Scholar 

  54. McDonald JA, Camenisch TD. Hyaluronan: Genetic insights into the complex biology of a simple polysaccharide. Glycoconj J 2002; 19(4–5):331–9.

    PubMed  CAS  Google Scholar 

  55. Weigel PH. Functional characteristics and catalytic mechanisms of the bacterial hyaluronan synthases. IUBMB Life 2002; 54(4):201–11.

    PubMed  CAS  Google Scholar 

  56. Itano N, Kimata K. Mammalian hyaluronan synthases. IUBMB Life 2002; 54(4):195–9.

    PubMed  CAS  Google Scholar 

  57. DeAngelis PL. Hyaluronan synthases: Fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses. Cell Mol Life Sci 1999; 56(7–8):670–82.

    PubMed  CAS  Google Scholar 

  58. Weigel PH, Hascall VC, Tammi M. Hyaluronan synthases. J Biol Chem 1997; 272(22):13997–4000.

    PubMed  CAS  Google Scholar 

  59. Silbert JE, Sugumaran G. Biosynthesis of chondroitin/dermatan sulfate. IUBMB Life 2002; 54(4):177–86.

    PubMed  CAS  Google Scholar 

  60. Prydz K, Dalen KT. Synthesis and sorting of proteoglycans. J Cell Sci 2000; 113 (Pt 2):193–205.

    PubMed  CAS  Google Scholar 

  61. Hall CL, Wang FS, Turley E. Src-/-fibroblasts are defective in their ability to disassemble focal adhesions in response to phorbol ester/hyaluronan treatment. Cell Commun Adhes 2002; 9(5–6):273–83.

    PubMed  CAS  Google Scholar 

  62. Slevin M, Kumar S, Gaffney J. Angiogenic oligosaccharides of hyaluronan induce multiple signaling pathways affecting vascular endothelial cell mitogenic and wound healing responses. J Biol Chem 2002; 277(43):41046–59.

    PubMed  CAS  Google Scholar 

  63. Ghatak S, Misra S, Toole BP. Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway. J Biol Chem 2002; 277(41):38013–20.

    PubMed  CAS  Google Scholar 

  64. Fujita Y et al. CD44 signaling through focal adhesion kinase and its anti-apoptotic effect. FEBS Lett 2002; 528(1–3):101–8.

    PubMed  CAS  Google Scholar 

  65. Bourguignon LY et al. Hyaluronan-mediated CD44 interaction with RhoGEF and Rho kinase promotes Grb2-associated binder-1 phosphorylation and phosphatidylinositol 3-kinase signaling leading to cytokine (macrophage-colony stimulating factor) production and breast tumor progression. J Biol Chem 2003; 278(32):29420–34.

    PubMed  CAS  Google Scholar 

  66. Toole BP, Wight TN, Tammi MI. Hyaluronan-cell interactions in cancer and vascular disease. J Biol Chem 2002; 277(7):4593–6.

    PubMed  CAS  Google Scholar 

  67. Zoltan-Jones A et al. Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells. J Biol Chem 2003.

    Google Scholar 

  68. Auvinen P et al. Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am J Pathol 2000; 156(2):529–36.

    PubMed  CAS  Google Scholar 

  69. Hirano S et al. Effect of growth factors on hyaluronan production by canine vocal fold fibroblasts. Ann Otol Rhinol Laryngol 2003; 112(7):617–24.

    PubMed  Google Scholar 

  70. Russell DL et al. Hormone-regulated expression and localization of versican in the rodent ovary. Endocrinology 2003; 144(3):1020–31.

    PubMed  CAS  Google Scholar 

  71. Pohl M et al. Role of hyaluronan and CD44 in vitro branching morphogenesis of ureteric bud cells. Dev Biol 2000; 224(2):312–25.

    PubMed  CAS  Google Scholar 

  72. Gakunga P et al. Hyaluronan is a prerequisite for ductal branching morphogenesis. Development 1997; 124(20):3987–97.

    PubMed  CAS  Google Scholar 

  73. Xu YYQ. E-cadherin negatively regulates CD44-hyalruonan interaction and CD44-mediated tumor invasion and branching moprhogenesis. J Biol Chem 2003; 278(mar 7):8661–8.

    PubMed  CAS  Google Scholar 

  74. Lee JY, Spicer AP. Hyaluronan: A multifunctional, megaDalton, stealth molecule. Curr Opin Cell Biol 2000; 12(5):581–6.

    PubMed  CAS  Google Scholar 

  75. Turley EA. The control of adrenocortical cytodifferentiation by extracellular matrix. Differentiation 1980; 17(2):93–103.

    PubMed  CAS  Google Scholar 

  76. Saad S et al. Induction of matrix metalloproteinases MMP-1 and MMP-2 by coculture of breast cancer cells and bone marrow fibroblasts. Breast Cancer Res Treat 2000; 63(2):105–15.

    PubMed  CAS  Google Scholar 

  77. Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 2000; 14(2):163–76.

    PubMed  Google Scholar 

  78. Spessotto P et al. Hyaluronan-CD44 interaction hampers migration of osteodast-like cells by down-regulating MMP-9. J Cell Biol 2002; 158(6):1133–44.

    PubMed  CAS  Google Scholar 

  79. Mori H et al. CD44 directs membrane-type 1 matrix metalloproteinase to lamellipodia by associating with its hemopexin-like domain. Embo J 2002; 21(15):3949–59.

    PubMed  CAS  Google Scholar 

  80. Kajita M, I. Y, Chiba T et al. Membrane type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 2001; 153(5):893–904.

    PubMed  CAS  Google Scholar 

  81. Yu QSI. Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 1999; 13(1):35–38.

    PubMed  CAS  Google Scholar 

  82. Imai K et al. Membrane-type matrix metalloproteinase 1 is a gelatinolytic enzyme and is secreted in a complex with tissue inhibitor of metalloproteinases 2. Cancer Res 1996; 56(12):2707–10.

    PubMed  CAS  Google Scholar 

  83. Deryugina EI et al. Tumor cell invasion through matrigel is regulated by activated matrix metalloproteinase-2. Anticancer Res 1997; 17(5A):3201–10.

    PubMed  CAS  Google Scholar 

  84. Vincent T et al. Hyaluronic acid induces survival and proliferation of human myeloma cells through an interleukin-6-mediated pathway involving the phosphorylation of retinoblastoma protein. J Biol Chem 2001; 276(18):14728–36.

    PubMed  CAS  Google Scholar 

  85. Pellegrini L. Role of heparan sulfate in fibroblast growth factor signalling: A structural view. Curr Opin Struct Biol 2001; 11(5):629–34.

    PubMed  CAS  Google Scholar 

  86. Boyd NF et al. Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev 1998; 7(12):1133–44.

    PubMed  CAS  Google Scholar 

  87. Rowley DR. What might a stromal response mean to prostate cancer progression? Cancer Metastasis Rev 1998; 17(4):411–9.

    PubMed  CAS  Google Scholar 

  88. Sternlicht MD et al. The stromal proteinase MMP3/stromelysin-l promotes mammary carcinogenesis. Cell 1999; 98(2):137–46.

    PubMed  CAS  Google Scholar 

  89. Bullard KM, Longaker MT, Lorenz HP. Fetal wound healing: Current biology. World J Surg 2003; 27(1):54–61.

    PubMed  Google Scholar 

  90. Turino GM, Cantor JO. Hyaluronan in respiratory injury and repair. Am J Respir Crit Care Med 2003; 167(9):1169–75.

    PubMed  Google Scholar 

  91. Neal MS. Angiogenesis: Is it the key to controlling the healing process? J Wound Care 2001; 10(7):281–7.

    PubMed  CAS  Google Scholar 

  92. Park MJ et al. PTEN suppresses hyaluronic acid-induced matrix metalloproteinase-9 expression in U87MG glioblastoma cells through focal adhesion kinase dephosphorylation. Cancer Res 2002; 62(21):6318–22.

    PubMed  CAS  Google Scholar 

  93. Han F et al. Effects of sodium hyaluronate on experimental osteoarthritis in rabbit knee joints. Nagoya J Med Sci 1999; 62(3–4):115–26.

    PubMed  CAS  Google Scholar 

  94. Takahashi K et al. The effects of hyaluronan on matrix metalloproteinase-3 (MMP-3), interleukin-lbeta(IL-lbeta), and tissue inhibitor of metalloproteinase-1 (TIMP-1) gene expression during the development of osteoarthritis. Osteoarthritis Cartilage 1999; 7(2):182–90.

    PubMed  CAS  Google Scholar 

  95. Bourguignon LY. CD44-mediated oncogenic signaling and cytoskeleton activation during mammary tumor progression. J Mammary Gland Biol Neoplasia 2001; 6(3):287–97.

    PubMed  CAS  Google Scholar 

  96. Henke CA, T.U, Mickelson DJ et al. CD44-related chondroitin sulfate proteoglycan, a cell surface receptor implicated with tumor cell invasion, mediates endothelial cell migration on fibrinogen and invasion into a fibrin matrix. J Clin Invest 1996; 97(11):2541–2552.

    PubMed  CAS  Google Scholar 

  97. Hayes GM et al. Identification of sequence motifs responsible for the adhesive interaction between exon v10-containing CD44 isoforms. J Biol Chem 2002; 277(52):50529–34.

    PubMed  CAS  Google Scholar 

  98. Hebbard L et al. CD44 expression and regulation during mammary gland development and function. J Cell Sci 2000; 113 (Pt 14):2619–30.

    PubMed  CAS  Google Scholar 

  99. Alpaugh ML et al. Myoepithelial-specific CD44 shedding contributes to the anti-invasive and antiangiogenic phenotype of myoepithelial cells. Exp Cell Res 2000; 261(1):150–8.

    PubMed  CAS  Google Scholar 

  100. Lee MC et al. Myoepithelial-specific CD44 shedding is mediated by a putative chymotrypsin-like sheddase. Biochem Biophys Res Commun 2000; 279(1):116–23.

    PubMed  CAS  Google Scholar 

  101. Jones FE et al. ErbB4 signaling in the mammary gland is required for lobuloalveolar development and Stat5 activation during lactation. J Cell Biol 1999; 147(1):77–88.

    PubMed  CAS  Google Scholar 

  102. Rudolph-Owen LA et al. Coordinate expression of matrix metalloproteinase family members in the uterus of normal, matrilysin-deficient, and stromelysin-1-deficient mice. Endocrinology 1997; 138(11):4902–11.

    PubMed  CAS  Google Scholar 

  103. Toelg C, B.M, Turley EA. Unpublished data 2003.

    Google Scholar 

  104. Nagase H, Woessner Jr JF. Matrix metalloproteinases. J Biol Chem 1999; 274(31):21491–4.

    PubMed  CAS  Google Scholar 

  105. Egeblad M, Werb Z New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2(3):161–74.

    PubMed  CAS  Google Scholar 

  106. Chang C, Werb Z. The many faces of metalloproteases: Cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 2001; 11(11):S37–43.

    PubMed  CAS  Google Scholar 

  107. Lochter A et al. The significance of matrix metalloproteinases during early stages of tumor progression. Ann N Y Acad Sci 1998; 857:180–93.

    PubMed  CAS  Google Scholar 

  108. Van den Steen PE et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 2002; 37(6):375–536.

    PubMed  Google Scholar 

  109. Mueller MM, Fusenig NE. Tumor-stroma interactions directing phenotype and progression of epithelial skin tumor cells. Differentiation 2002; 70(9–10):486–97.

    PubMed  Google Scholar 

  110. Fillmore HL, VanMeter TE, Broaddus WC. Membrane-type matrix metalloproteinases (MT-MMPs): Expression and function during glioma invasion. J Neurooncol 2001; 53(2):187–202.

    PubMed  CAS  Google Scholar 

  111. Schenk S et al. Binding to EGF receptor of a laminin-5 EGF-like fragment liberated during MMP-dependent mammary gland involution. J Cell Biol 2003; 161(1):197–209.

    PubMed  CAS  Google Scholar 

  112. Seiki M. The cell surface: The stage for matrix metalloproteinase regulation of migration. Curr Opin Cell Biol 2002; 14(5):624–32.

    PubMed  CAS  Google Scholar 

  113. Noe V et al. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 2001; 114(Pt 1):111–118.

    PubMed  CAS  Google Scholar 

  114. Tester AM et al. MMP-9 secretion and MMP-2 activation distinguish invasive and metastatic sublines of a mouse mammary carcinoma system showing epithelial-mesenchymal transition traits. Clin Exp Metastasis 2000; 18(7):553–60.

    PubMed  CAS  Google Scholar 

  115. Hazan RB et al. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 2000; 148(4):779–90.

    PubMed  CAS  Google Scholar 

  116. Rolli M et al. Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(16):9482–7.

    PubMed  CAS  Google Scholar 

  117. Mira E et al. Insulin-like growth factor I-triggered cell migration and invasion are mediated by matrix metalloproteinase-9. Endocrinology 1999; 140(4):1657–64.

    PubMed  CAS  Google Scholar 

  118. Koshikawa N et al. Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 2000; 148(3):615–24.

    PubMed  CAS  Google Scholar 

  119. Rozanov DV et al. Mutation analysis of membrane type-1 matrix metalloproteinase (MT1-MMP). The role of the cytoplasmic tail Cys(574), the active site Glu(240), and furin cleavage motifs in oligomerization, processing, and self-proteolysis of MT1-MMP expressed in breast carcinoma cells. J Biol Chem 2001; 276(28):25705–14.

    PubMed  CAS  Google Scholar 

  120. Barcellos-Hoff MH et al. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 1989; 105(2):223–35.

    PubMed  CAS  Google Scholar 

  121. Petersen OW et al. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci USA 1992; 89(19):9064–8.

    PubMed  CAS  Google Scholar 

  122. Schmeichel KL, Bissell MJ. Modeling tissue-specific signaling and organ function in three dimensions. J Cell Sci 2003; 116(Pt 12):2377–88.

    PubMed  CAS  Google Scholar 

  123. Ha HY et al. Overexpression of membrane-type matrix metalloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer Res 2001; 61(3):984–90.

    PubMed  CAS  Google Scholar 

  124. Itoh T et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 1998; 58(5):1048–51.

    PubMed  CAS  Google Scholar 

  125. Sympson CJ et al. Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J Cell Biol 1994; 125(3):681–93.

    PubMed  CAS  Google Scholar 

  126. Vargo-Gogola T et al. Matrilysin (matrix metalloproteinase-7) selects for apoptosis-resistant mammary cells in vivo. Cancer Res 2002; 62(19):5559–63.

    PubMed  CAS  Google Scholar 

  127. Kenny PA, Bissell MJ. Tumor reversion: Correction of malignant behavior by microenvironmental cues. Int J Cancer 2003; 107(5):688–95.

    PubMed  CAS  Google Scholar 

  128. Welm B et al. Isolation and characterization of functional mammary gland stem cells. Cell Prolif 2003; 36(Suppl 1):17–32.

    PubMed  CAS  Google Scholar 

  129. Petersen OW et al. Epithelial progenitor cell lines as models of normal breast morphogenesis and neoplasia. Cell Prolif 2003; 36(Suppl 1):33–44.

    PubMed  Google Scholar 

  130. Boudreau N, Myers C. Breast cancer-induced angiogenesis: Multiple mechanisms and the role of the microenvironment. Breast Cancer Res 2003; 5(3):140–6.

    PubMed  CAS  Google Scholar 

  131. Shekhar MP, Pauley R, Heppner G. Host microenvironment in breast cancer development: Extracellular matrix-stromal cell contribution to neoplastic phenotype of epithelial cells in the breast. Breast Cancer Res 2003; 5(3):130–5.

    PubMed  CAS  Google Scholar 

  132. Radisky D, Muschler J, Bissell MJ. Order and disorder: The role of extracellular matrix in epithelial cancer. Cancer Invest 2002; 20(1):139–53.

    PubMed  Google Scholar 

  133. Werb Z et al. Extracellular matrix remodeling as a regulator of stromal-epithelial interactions during mammary gland development, involution and carcinogenesis. Braz J Med Biol Res 1996; 29(9):1087–97.

    PubMed  CAS  Google Scholar 

  134. van Golen KL. Inflammatory breast cancer: Relationship between growth factor signaling and motility in aggressive cancers. Breast Cancer Res 2003; 5(3):174–9.

    PubMed  Google Scholar 

  135. Hasebe T et al. Highly proliferative intratumoral fibroblasts and a high proliferative microvessel index are significant predictors of tumor metastasis in T3 ulcerative-type colorectal cancer. Hum Pathol 2001; 32(4):401–9.

    PubMed  CAS  Google Scholar 

  136. Cunha GR, Hom YK. Role of mesenchymal-epithelial interactions in mammary gland development. J Mammary Gland Biol Neoplasia 1996; 1(1):21–35.

    PubMed  CAS  Google Scholar 

  137. Dong LJ, Chung AE. The expression of the genes for entactin, laminin A, laminin B1 and laminin B2 in murine lens morphogenesis and eye development. Differentiation 1991; 48(3):157–72.

    PubMed  CAS  Google Scholar 

  138. Sloan EK, Anderson RL. Genes involved in breast cancer metastasis to bone. Cell Mol Life Sci 2002; 59(9):1491–502.

    PubMed  CAS  Google Scholar 

  139. Rudolph-Owen LA, Matrisian LM. Matrix metalloproteinases in remodeling of the normal and neoplastic mammary gland. J Mammary Gland Biol Neoplasia 1998; 3(2):177–89.

    PubMed  CAS  Google Scholar 

  140. Herrera-Gayol A, Jothy S. Adhesion proteins in the biology of breast cancer: Contribution of CD44. Exp Mol Pathol 1999; 66(2):149–56.

    PubMed  CAS  Google Scholar 

  141. Naot D, Sionov RV, Ish-Shalom D. CD44: Structure, function, and association with the malignant process. Adv Cancer Res 1997; 71:241–319.

    Google Scholar 

  142. Peterson RM et al. Perturbation of hyaluronan interactions by soluble CD44 inhibits growth of murine mammary carcinoma cells in ascites. Am J Pathol 2000; 156(6):2159–67.

    PubMed  CAS  Google Scholar 

  143. Wang CTZ, Moore IInd DH, Zhao Y et al. The overexpression of RHAMM, a hyaluronan-binding protein that regulates ras signaling, correlates with overexpression of mitogen-activated protein kinase and is a significant parameter in breast cancer progression. Clin Cancer Res 1998; 4(3):567–576.

    PubMed  CAS  Google Scholar 

  144. Passegue E et al. Normal and leukemic hematopoiesis: Are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 2003; 100(Suppl 1):11842–9.

    PubMed  CAS  Google Scholar 

  145. Smadja-Joffe F et al. CD44 and hyaluronan binding by human myeloid cells. Leuk Lymphoma 1996; 21(5–6):407–20, color plates following 528.

    PubMed  CAS  Google Scholar 

  146. Erickson AC, Barcellos-Hoff MH. The not-so innocent bystander: The microenvironment as a therapeutic target in cancer. Expert Opin Ther Targets 2003; 7(1):71–88.

    PubMed  CAS  Google Scholar 

  147. Sternlicht MD, W.Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001; 17:463–516.

    PubMed  CAS  Google Scholar 

  148. Macaluso M, Paggi MG, Giordano A. Genetic and epigenetic alterations as hallmarks of the intricate road to cancer. Oncogene 2003; 22(42):6472–8.

    PubMed  CAS  Google Scholar 

  149. Berx G, Van Roy F. The E-cadherin/catenin complex: An important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res 2001; 3(5):289–93.

    PubMed  CAS  Google Scholar 

  150. Elenbaas B et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 2001; 15(1):50–65.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Turley, E.A., Bissell, M.J. (2005). Extracellular Matrix Remodeling in Mammary Gland Branching Morphogenesis and Breast Cancer. In: Branching Morphogenesis. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-30873-3_7

Download citation

Publish with us

Policies and ethics