Skip to main content

Physical Mechanisms of Branching Morphogenesis in Animals

From Viscous Fingering to Cartilage Rings

  • Chapter
Branching Morphogenesis

Abstract

From a physicist“s point of view, and regardless of the genetic controls, the branching mechanisms of many organs and glands look similar. Most generally, an epithelium forms a pouch-like sheet which elongates and branches repeatedly. During the final steps of organogenesis, the mesenchyme is vascularized in a pattern greatly influenced by the branched epithelium so that main vessels go down (arteries) and up (veins) the main ducts towards distal branches where exchange with capillaries is performed over a very large total surface area. This principle of construction can produce a secretory or filtering or breathing organ and most glands and organs are built in this way. There is either a common phylogeny to all branching organs (see Chapter 1), or there is some simple building principle which impUes easy construction and hence straightforward evolutionary convergence (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kitaoka1 H, Takaki R, Suki B. A three-dimensional model of the human airway tree. J Appl Physiol 1999; 6:2207–2217.

    Google Scholar 

  2. Mandelbrot B. The fractal geometry of nature. San Francisco: Freeman & Co, 1983.

    Google Scholar 

  3. Srinivas S, Goldberg MR, Watanabe T et al. Expression of green fluorescent protein in the ureteric bud of transgenic mice: a new tool for the analysis of ureteric bud morphogenesis. Dev Genetics 1999; 24:241–251.

    Article  CAS  Google Scholar 

  4. Pelcé P. Dynamics of curved fronts. London: Academic Press, 1991.

    Google Scholar 

  5. Saffman PG, Taylor G. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc R Soc London Ser A 1958; 245:312–329.

    Article  CAS  Google Scholar 

  6. Homsy G. Viscous fingering in porous media. Ann Rev Fluid Mech 1987; 19:271–311.

    Article  Google Scholar 

  7. Howison SD, Ockendon JR. Singularity development in moving boundary problems. J Mech Appl Math 1985; 38(3):342–360.

    Google Scholar 

  8. Howison SD. Cusp development in Hele-Shaw flow with a free surface. SIAM J Appli Math 1986; 46(1):20–26.

    Article  Google Scholar 

  9. Howison SD. Fingering in Hele-Shaw cells. J Fluid Mech 1986; 16:439–453.

    Article  Google Scholar 

  10. Bensimon D, Pelcé P. Tip-splitting solutions to a Stefan problem. Phys Rev A 1986; 33(6):44774478.

    Article  Google Scholar 

  11. Mineev-Weinstein MB, Ponce-Dawson S. Class of non-singular exact solutions for Laplacian pattern formation. Phys Rev E 1994; 50(1):R24–R27.

    Article  Google Scholar 

  12. Scheuchzer JJ. Herbarium Diluvianum. litt D Gesneri 23, Zürich, 1709, 1711.

    Google Scholar 

  13. Fleury V, Arbres de Pierre. la croissance fractale de la matière. Paris: Flammarion, 1998.

    Google Scholar 

  14. Vicsek T. Fractal Growth Phenomena, Second Edition. Singapore: World Scientific, 1992.

    Google Scholar 

  15. Fleury V, Gouyet JF, Leonetti M, eds. Branching in Nature. Paris: Springer/EDP Sciences, Berlin, 2001.

    Google Scholar 

  16. Ben Jacob E, Shochet O, Tenenbaum A et al. Evolution of complexity during growth of bacteria colonies. In: Cladis PE, Palffy-Muhoray, eds. Spatio-temporalpPatterns in non-equilibrium complex systems, Santa Fe Institute studies in the sciences of complexity. Addison Weseley Publishing Company, 1995:619–634.

    Google Scholar 

  17. Marcus Dejmek, Thesis. Palaiseau: Press of the Ecole Polytechnique, 2002.

    Google Scholar 

  18. Witten TA, Sander LM. Diffusion Limited Aggregation as a critical phenomenon. Phys Rev lett 1981; 47:1400–1403.

    Article  CAS  Google Scholar 

  19. Combescot R, Dombre T, Hakim V et al. Shape selection of Saffman-Taylor fingers, Phys Rev Lett 1986; 56(19):2036–2039.

    Article  PubMed  Google Scholar 

  20. Gilbert SF. Developmental Biology. Sunderland: Sinauer Associates Publishers, 1994:Chapter 18.

    Google Scholar 

  21. Bard J. Morphogenesis. Cambridge Cambridge: University Press 1992.

    Google Scholar 

  22. Fleury V, Watanabe T. How collagen and fibroblasts break the symmetry of growing biological tissue, CR Acad Sci Biologies 2002; 325:571–583.

    Google Scholar 

  23. From reference 21, itself from Elsdale TR, Wasoff FL, Whilh. Roux’ Arch dev Biol 1976; 180:121–47.

    Article  Google Scholar 

  24. Gray H. Anatomy of the human body. Philadelphia: Lea & Febiger, 1918.

    Google Scholar 

  25. Weibel E, The pathway for oxygen, Structure and function in the mammalian respiratory system, Massachussets and London: Harvard University Press Cambridge, 1984.

    Google Scholar 

  26. Pozrikidis C. The deformation of a liquid drop moving normal to a plane wall. J Fluid Mech 1990; 215:331–363.

    Article  CAS  Google Scholar 

  27. Van Damme H. Flow and interfacial instabilities in Newtonian and colloidal fluids, in The fractal approaches to heterogeneous chemistry. Avnir D, John Wiley and sons limited, 1989.

    Google Scholar 

  28. Lindner A, Coussot P, Meunier J. Phys Fluids 2000; 12:256.

    Article  CAS  Google Scholar 

  29. Lindner A Coussot P, Bonn D. Phys Rev Lett 2000; 85:314–317.

    Article  PubMed  CAS  Google Scholar 

  30. From reference 27, itself from Daccord G, Nittmann J, Stanley HE. Phys Rev Lett, 1986; 56:336.

    Article  PubMed  Google Scholar 

  31. Goriely A, Tabor M. Self-similar tip growth in filamentary organisms. Phys Rev Lett 2003; 90(10) 108101:1–4, and references therein.

    Article  PubMed  CAS  Google Scholar 

  32. Turing AM, The chemical basis of morphogenesis AM. Phil Trans Roy Soc B 1952; 237:32–72.

    Article  Google Scholar 

  33. Koch AJ and Meinhardt H, Biological pattern formation: from basic mechanisms to complex structures, Reviews of Modern Physics 1994; 66(4):1481–1507.

    Article  Google Scholar 

  34. Warburton D, Bellusci B, Del Moral PM et al. Growth factor signaling in lung morphogenetic centers: automaticity, stereotypy and symmetry, Respir Res 2003; 4(1):5—Biomed central article http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=185249.

    Article  PubMed  Google Scholar 

  35. Meinhardt H. The morphogenesis of lines and nets. Differentiation 1976; 5:117.

    Article  Google Scholar 

  36. Fleury V. Branching morphogenesis in a reaction diffusion model. Phys Rev E 2000; 6(4) 4158–4156.

    Google Scholar 

  37. le Noble F, Eichmann A, Nguyen TH et al. Engineering vascular architecture, submitted.

    Google Scholar 

  38. Chai H. Buckling and post-buckling behavior of elliptical plates, Part I-analysis, J Appl Mech 1990; 57:981–994.

    Google Scholar 

  39. Zhang Y, Hobbs BE, Ord A et al. Computer simulation of single layer buckling. J Struct geol 1996; 18(5):643–655.

    Article  Google Scholar 

  40. Caviness VR. Mechanical model of brain convolutional development. Science 1975; 189:18–25.

    Article  PubMed  Google Scholar 

  41. Fleury V. Des pieds et des mains. Flammarion, Paris 2003.

    Google Scholar 

  42. Green PB, Pattern formation in shoots, a likely role of minimal energy configurations of the tunica. Int J Plant Sci 1992; 153(3):S59–75.

    Article  Google Scholar 

  43. Dumais J, Kwiatowska D. Analysis of surface growth in shoot apices, Plant J 2001; 31(2):229–241.

    Article  Google Scholar 

  44. Schwabe WW, Clewer AG. Phyllotaxis, a simple computer model based on the theory of a polarly translocated inhibitor. J Theor Biol 1984; 109:595–619.

    Article  CAS  Google Scholar 

  45. Douady S, Couder Y. Phyllotaxis as a physical self-organized growth process. Phys Rev Lett 1992; 68:32098–2100.

    Article  Google Scholar 

  46. Nakanishi Y, Sugiura F, Kishi JI et al. Scanning electron microscopy observation of mouse embryonic submandibular glands during initial branching: preferential localization of fibrillar structures at the mesenchyme ridges participating in cleft formation. J Embryol Exp Morph 1986; 96:65–77.

    PubMed  CAS  Google Scholar 

  47. De Gennes PG, Prost A. The physics of liquid crystals. Oxford: Clarendon, 1993.

    Google Scholar 

  48. Godrèche C, Solids far from equilibrium, coll. Alèa Saclay, Cambridge University Press, 1992.

    Google Scholar 

  49. Nguyen MB, Fleury V, Gouyet JFG. Epidermal ridges: Positional information coded in an orientational field. In: Noval M, ed. Fractals and complex systems. Singapore: to be published World Scientific, 2004.

    Google Scholar 

  50. May S, Yardena B, Avinoam BS. Molecular theory of bending elasticity and branching of cylindrical micelles. J Phys Chem B 1997; 101:8648–8657.

    Article  CAS  Google Scholar 

  51. Fleury V, Schwartz L. Numerical investigation of the influence of cell polarity on cancer morphology and invasiveness. Fractals to appear, 2003.

    Google Scholar 

  52. Igarashi P, Somlo S. Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol 2002; 13:2384–2398.

    Article  PubMed  CAS  Google Scholar 

  53. Lubarsky B, Krasnow M. Tube morphogenesis, making and shaping biological tubes. Cell 2003; 112:19–28.

    Article  PubMed  CAS  Google Scholar 

  54. Taber LA. Biomechanics of growth, remodeling and morphogenesis. Applied Rev Mech 1995; 48(8):487–545.

    Article  Google Scholar 

  55. Odell GM, Oster G, Alberch P et al. The mechanical basis of morphogenesis. Dev Biol 1981; 85:446–462.

    Article  PubMed  CAS  Google Scholar 

  56. Nye JF, Lean HW, Wright AN. Interfaces and falling drops in a Hele-Shaw cells. Eur J Phys 1984; 5:73–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Fleury, V. et al. (2005). Physical Mechanisms of Branching Morphogenesis in Animals. In: Branching Morphogenesis. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-30873-3_12

Download citation

Publish with us

Policies and ethics