Skip to main content

Membrane Protein Insertion in Bacteria from a Structural Perspective

  • Chapter
  • 612 Accesses

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Membrane proteins are inserted into the lipid bilayer in Bacteria by two pathways. The Sec machinery is responsible for the insertion of the majority of the membrane proteins after targeting by the SRP/FtsY components. However, there is also a class of membrane proteins that insert independent of the Sec machinery. These proteins require a novel protein called YidC. Recently, the structural details of the Sec machinery have come to light via X-ray crystallography. There are now structures of the membrane-embedded Secprotein-conducting channel, the SecA ATPase motor, and the targeting components. Structural information gives clues to how a polypeptide is translocated across the membrane and how the transmembrane segments of a membrane protein are released from the Sec complex. Additionally, the structures of the targeting components shed light on how substrates are selected for transport and delivered to the membrane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. von Heijne G. Recent advances in the understanding of membrane protein assembly and structure. Q Rev Biophys 1999; 32:285–307.

    Article  Google Scholar 

  2. Aridor M, Hannan LA. Traffic jam: A compendium of human diseases that affect intracellular transport processes. Traffic 2000; 1:836–851.

    Article  PubMed  CAS  Google Scholar 

  3. Aridor M, Hannan LA. Traffic jams II: An update of diseases of intracellular transport. Traffic 2002; 3:781–790.

    Article  PubMed  CAS  Google Scholar 

  4. Koch HG, Moser M, Muller M. Signal recognition particle-dependent protein targeting, universal to all kingdoms of life. Rev Physiol Biochem Pharmacol 2003; 146:55–94.

    PubMed  CAS  Google Scholar 

  5. Keenan RJ, Freymann DM, Stroud RM et al. The signal recognition particle. Annu Rev Biochem 2001; 70:755–775.

    Article  PubMed  CAS  Google Scholar 

  6. Driessen AJ, Manting EH, van der Does C. The structural basis of protein targeting and translocation in bacteria. Nat Struct Biol 2001; 8:492–498.

    Article  PubMed  CAS  Google Scholar 

  7. Scotti PA, Urbanus ML, Brunner J et al. YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J 2000; 19:542–549.

    Article  PubMed  CAS  Google Scholar 

  8. Kuhn A. Alterations in the extracellular domain of M13 procoat protein make its membrane insertion dependent on secA and secY. Eur J Biochem 1988; 177:267–271.

    Article  PubMed  CAS  Google Scholar 

  9. Andersson H, von Heijne G. Sec dependent and sec independent assembly of E. coli inner membrane proteins: The topological rules depend on chain length. EMBO J 1993; 12:683–691.

    PubMed  CAS  Google Scholar 

  10. Neumann-Haefelin C, Schafer U, Muller M et al. SRP-dependent cotranslational targeting and SecA-dependent translocation analyzed as individual steps in the export of a bacterial protein. EMBO J 2000; 19:6419–6426.

    Article  PubMed  CAS  Google Scholar 

  11. Romisch K, Webb J, Herz J et al. Homology of 54K protein of signal-recognition particle, docking protein and two E. coli proteins with putative GTP-binding domains. Nature 1989; 340:478–482.

    Article  PubMed  CAS  Google Scholar 

  12. Lee HC, Bernstein HD. The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. Proc Natl Acad Sci USA 2001; 98:3471–3476.

    Article  PubMed  CAS  Google Scholar 

  13. Phillips GJ, Silhavy TJ. The E. coli ffh gene is necessary for viability and efficient protein export. Nature 1992; 359:744–746.

    Article  PubMed  CAS  Google Scholar 

  14. Luirink J, ten Hagen-Jongman CM, van der Weijden CC et al. An alternative protein targeting pathway in Escherichia coli: Studies on the role of FtsY. EMBO J 1994; 13:2289–2296.

    PubMed  CAS  Google Scholar 

  15. Miller JD, Bernstein HD, Walter P. Interaction of E. coli Ffh/4.5S ribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor. Nature 1994; 367:657–659.

    Article  PubMed  CAS  Google Scholar 

  16. Rosendal KR, Wild K, Montoya G et al. Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication. Proc Natl Acad Sci USA 2003; 100:14701–14706.

    Article  PubMed  CAS  Google Scholar 

  17. Keenan RJ, Freymann DM, Walter P et al. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 1998; 94:181–191.

    Article  PubMed  CAS  Google Scholar 

  18. Batey RT, Rambo RP, Lucast L et al. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 2000; 287:1232–1239.

    Article  PubMed  CAS  Google Scholar 

  19. Montoya G, Svensson C, Luirink J et al. Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature 1997; 385:365–368.

    Article  PubMed  CAS  Google Scholar 

  20. Focia PJ, Shepotinovskaya IV, Seidler JA et al. Heterodimeric GTPase core of the SRP targeting complex. Science 2004; 303:373–377.

    Article  PubMed  CAS  Google Scholar 

  21. Egea PF, Shan SO, Napetschnig J et al. Substrate twinning activates the signal recognition particle and its receptor. Nature 2004; 427:215–221.

    Article  PubMed  CAS  Google Scholar 

  22. Shan SO, Walter P. Induced nucleotide specificity in a GTPase. Proc Natl Acad Sci USA 2003; 100:4480–4485.

    Article  PubMed  CAS  Google Scholar 

  23. Moore M, Goforth RL, Mori H et al. Functional interaction of chloroplast SRP/FtsY with the ALB3 translocase in thylakoids: Substrate not required. J Cell Biol 2003; 162:1245–1254.

    Article  PubMed  CAS  Google Scholar 

  24. Akimaru J, Matsuyama S, Tokuda H et al. Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli. Proc Natl Acad Sci USA 1991; 88:6545–6549.

    Article  PubMed  CAS  Google Scholar 

  25. van der Laan M, Nouwen N, Driessen AJ. SecYEG proteoliposomes catalyze the Deltaphi-dependent membrane insertion of FtsQ. J Biol Chem 2004; 279:1659–1664.

    Article  PubMed  Google Scholar 

  26. Duong F, Wickner W. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J 1997; 16:2756–2768.

    Article  PubMed  CAS  Google Scholar 

  27. Nishiyama K, Suzuki T, Tokuda H. Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 1996; 85:71–81.

    Article  PubMed  CAS  Google Scholar 

  28. Matsumoto G, Mori H, Ito K. Roles of SecG in ATP-and SecA-dependent protein translocation. Proc Natl Acad Sci USA 1998; 95:13567–13572.

    Article  PubMed  CAS  Google Scholar 

  29. Economou A, Wickner W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 1994; 78:835–843.

    Article  PubMed  CAS  Google Scholar 

  30. Vrontou E, Karamanou S, Baud C et al. Global coordination of protein translocation by the SecA IRA1 switch. J Biol Chem 2004; 279:22490–22497.

    Article  PubMed  CAS  Google Scholar 

  31. Subramanya HS, Bird LE, Brannigan JA et al. Crystal structure of a DExx box DNA helicase. Nature 1996; 384:379–383.

    Article  PubMed  CAS  Google Scholar 

  32. Kim JL, Morgenstern KA, Griffith JP et al. Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: The crystal structure provides insights into the mode of unwinding. Structure 1998; 6:89–100.

    Article  PubMed  CAS  Google Scholar 

  33. Hunt JF, Weinkauf S, Henry L et al. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 2002; 297:2018–2026.

    Article  PubMed  CAS  Google Scholar 

  34. Sharma V, Arockiasamy A, Ronning DR et al. Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase. Proc Natl Acad Sci USA 2003; 100:2243–2248.

    Article  PubMed  CAS  Google Scholar 

  35. Osborne AR, Clemons Jr WM, Rapoport TA. A large conformational change of the translocation ATPase SecA. Proc Natl Acad Sci USA 2004; 101:10937–10942.

    Article  PubMed  CAS  Google Scholar 

  36. Or E, Navon A, Rapoport T. Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane. EMBO J 2002; 21:4470–4479.

    Article  PubMed  CAS  Google Scholar 

  37. Dempsey BR, Wrona M, Moulin JM et al. Solution NMR structure and X-ray absorption analysis of the C-terminal zinc-binding domain of the SecA ATPase. Biochemistry 2004; 43:9361–9371.

    Article  PubMed  CAS  Google Scholar 

  38. Matousek WM, Alexandrescu AT. NMR structure of the C-terminal domain of SecA in the free state. Biochim Biophys Acta 2004; 1702:163–171.

    PubMed  CAS  Google Scholar 

  39. Zhou J, Xu Z. Structural determinants of SecB recognition by SecA in bacterial protein translocation. Nat Struct Biol 2003; 10:942–947.

    Article  PubMed  CAS  Google Scholar 

  40. Manting EH, van Der Does C, Remigy H et al. SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO Journal 2000; 19:852–861.

    Article  PubMed  CAS  Google Scholar 

  41. Meyer TH, Menetret JF, Breitling R et al. The bacterial SecY/E translocation complex forms channel-like structures similar to those of the eukaryotic Sec61p complex. J Mol Biol 1999; 285:1789–1800.

    Article  PubMed  CAS  Google Scholar 

  42. Breyton C, Haase W, Rapoport TA et al. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 2002; 418:662–665.

    Article  PubMed  CAS  Google Scholar 

  43. Hanein D, Matlack KE, Jungnickel B et al. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 1996; 87:721–732.

    Article  PubMed  CAS  Google Scholar 

  44. Beckmann R, Bubeck D, Grassucci R et al. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 1997; 278:2123–2126.

    Article  PubMed  CAS  Google Scholar 

  45. Crowley KS, Liao S, Worrell VE et al. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 1994; 78:461–471.

    Article  PubMed  CAS  Google Scholar 

  46. Hamman BD, Chen JC, Johnson EE et al. The aqueous pore through the translocon has a diameter of 40–60 A during cotranslational protein translocation at the ER membrane. Cell 1997; 89:535–544.

    Article  PubMed  CAS  Google Scholar 

  47. Van den Berg B, Clemons Jr WM, Collinson I et al. X-ray structure of a protein-conducting channel. Nature 2004; 427:36–44.

    Article  PubMed  Google Scholar 

  48. Plath K, Mothes W, Wilkinson BM et al. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 1998; 94:795–807.

    Article  PubMed  CAS  Google Scholar 

  49. Chen M, Samuelson JC, Jiang F et al. Direct interaction of YidC with the Sec-independent Pf3 coat protein during its membrane protein insertion. J Biol Chem 2002; 277:7670–7675.

    Article  PubMed  CAS  Google Scholar 

  50. Beck K, Eisner G, Trescher D et al. YidC, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids. EMBO Rep 2001; 2:709–714.

    Article  PubMed  CAS  Google Scholar 

  51. Nagamori S, Smirnova IN, Kaback HR. Role of YidC in folding of polytopic membrane proteins. J Cell Biol 2004; 165:53–62.

    Article  PubMed  CAS  Google Scholar 

  52. Samuelson JC, Chen M, Jiang F et al. YidC mediates membrane protein insertion in bacteria. Nature 2000; 406:637–641.

    Article  PubMed  CAS  Google Scholar 

  53. Urbanus ML, Scotti PA, Froderberg L et al. Sec-dependent membrane protein insertion: Sequential interaction of nascent FtsQ with SecY and YidC. EMBO Rep 2001; 2:524–529.

    PubMed  CAS  Google Scholar 

  54. Yi L, Celebi N, Chen M et al. Sec/SRP requirements and energetics of membrane insertion of subunits a, b, and c of the Escherichia coli FIFO ATP synthase. J Biol Chem 2004; 279:39260–39267.

    Article  PubMed  CAS  Google Scholar 

  55. Jiang F, Chen M, Yi L et al. Defining the regions of Escherichia coli YidC that contribute to activity. J Biol Chem 2003; 278:48965–48972.

    Article  PubMed  CAS  Google Scholar 

  56. Nouwen N, Driessen AJ. SecDFyajC forms a heterotetrameric complex with YidC. Mol Microbiol 2002; 44:1397–1405.

    Article  PubMed  CAS  Google Scholar 

  57. Nargang FE, Preuss M, Neupert W et al. The Oxal protein forms a homooligomeric complex and is an essential part of the mitochondrial export translocase in Neurospora crassa. J Biol Chem 2002; 277:12846–12853.

    Article  PubMed  CAS  Google Scholar 

  58. Dalbey RE, Kuhn A. YidC family members are involved in the membrane insertion, lateral integration, folding, and assembly of membrane proteins. J Cell Biol 2004; 166:769–774.

    Article  PubMed  CAS  Google Scholar 

  59. Samuelson JC, Jiang F, Yi L et al. Function of YidC for the insertion of M13 procoat protein in E. coli: Translocation of mutants that show differences in their membrane potential dependence and Sec-requirement. J Biol Chem 2001; 16:16.

    Google Scholar 

  60. Kuhn A, Stuart R, Henry R et al. The Alb3/Oxa1/YidC protein family: Membrane-localized chaperones facilitating membrane protein insertion? Trends Cell Biol 2003; 13:510–516.

    Article  PubMed  CAS  Google Scholar 

  61. Van Der Laan M, Bechtluft P, Kol S et al. FIFO ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J Cell Biol 2004; 165:213–222.

    Article  PubMed  Google Scholar 

  62. van Bloois E, Jan Haan G, de Gier JW et al. F(1)F(O) ATP synthase subunit c is targeted by the SRP to YidC in the E. coli inner membrane. FEBS Lett 2004; 576:97–100.

    Article  PubMed  Google Scholar 

  63. Jia L, Dienhart M, Schramp M et al. Yeast Oxal interacts with mitochondrial ribosomes: The importance of the C-terminal region of Oxal. EMBO J 2003; 22:6438–6447.

    Article  PubMed  CAS  Google Scholar 

  64. Szyrach G, Ott M, Bonnefoy N et al. Ribosome binding to the Oxal complex facilitates cotranslational protein insertion in mitochondria. EMBO J 2003; 22:6448–6457.

    Article  PubMed  CAS  Google Scholar 

  65. Harms J, Schluenzen F, Zarivach R et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 2001; 107:679–688.

    Article  PubMed  CAS  Google Scholar 

  66. The PyMOL Molecular Graphics System [computer program]. Version 0.96. San Carlos, CA, USA: DeLano Scientific, 2002.

    Google Scholar 

  67. Batey RT, Sagar MB, Doudna JA. Structural and energetic analysis of RNA recognition by a universally conserved protein from the signal recognition particle. J Mol Biol 2001; 307:229–246.

    Article  PubMed  CAS  Google Scholar 

  68. Freymann DM, Keenan RJ, Stroud RM et al. Structure of the conserved GTPase domain of the signal recognition particle. Nature 1997; 385:361–364.

    Article  PubMed  CAS  Google Scholar 

  69. Freymann DM, Keenan RJ, Stroud RM et al. Functional changes in the structure of the SRP GTPase on binding GDP and Mg2+GDP. Nat Struct Biol 1999; 6:793–801.

    Article  PubMed  CAS  Google Scholar 

  70. Montoya G, Kaat K, Moll R et al. The crystal structure of the conserved GTPase of SRP54 from the archaeon Acidianus arnbivalens and its comparison with related structures suggests a model for the SRP-SRP receptor complex. Structure Fold Des 2000; 8:515–525.

    Article  PubMed  CAS  Google Scholar 

  71. Padmanabhan S, Freymann DM. The conformation of bound GMPPNP suggests a mechanism for gating the active site of the SRP GTPase. Structure (Camb) 2001; 9:859–867.

    Article  PubMed  CAS  Google Scholar 

  72. Ramirez UD, Minasov G, Focia PJ et al. Structural basis for mobility in the 1.1 A crystal structure of the NG domain of Thermus aquaticus Ffh. J Mol Biol 2002; 320:783–799.

    Article  PubMed  CAS  Google Scholar 

  73. Schmitz U, Behrens S, Freymann DM et al. Structure of the phylogenetically most conserved do main of SRP RNA. RNA 1999; 5:1419–1429.

    Article  PubMed  CAS  Google Scholar 

  74. Jovine L, Hainzl T, Oubridge C et al. Crystal structure of the ffh and EF-G binding sites in the conserved domain IV of Escherichia coli 4.5S RNA. Structure Fold Des 2000; 8:527–540.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross E. Dalbey .

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Paetzel, M., Dalbey, R.E. (2005). Membrane Protein Insertion in Bacteria from a Structural Perspective. In: Protein Movement Across Membranes. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-30871-7_5

Download citation

Publish with us

Policies and ethics