Skip to main content

Protein Translocation in Archaea

  • Chapter
Protein Movement Across Membranes

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 634 Accesses

Abstract

While the process of protein translocation has been extensively addressed in Bacteria and Eukarya, little is known of how proteins cross the membranes of Archaea, the third domain of Life. Analysis thus far suggests the hybrid-like nature of the archaeal protein translocation system, combining selected aspects of the bacterial and eukaryal processes together with Archaea-specific features. The archaeal translocation apparatus simultaneously incorporates homologues of system components found either in Bacteria or Eukarya but not in both, yet seemingly does not include other important elements of these two systems. Moreover, certain facets of the archaeal protein translocation process appear specific to this domain, possibly reflecting adaptations to the extreme environments in which Archaea exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576–4579.

    PubMed  CAS  Google Scholar 

  2. Graham DE, Overbeek R, Olsen GJ et al. An archaeal genomic signature. Proc Natl Acad Sci USA 2000; 97:3304–3308.

    PubMed  CAS  Google Scholar 

  3. DeLong EF. Everything in moderation: archaea as ‘non-extremophiles’. Curr Opin Genet Dev 1998; 8:649–654.

    PubMed  CAS  Google Scholar 

  4. Rothschild LJ, Manicinelli RL. Life in extreme environments. Nature 2001; 409:1092–1101.

    PubMed  CAS  Google Scholar 

  5. Rapoport TA, Jungnickel B, Kutay U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membrane. Annu Rev Biochem 1996; 65:271–303.

    PubMed  CAS  Google Scholar 

  6. Johnson AE, van Waes MA. The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol 1999; 15:799–842.

    PubMed  Google Scholar 

  7. Manting EK, Driessen AJM. Escherichia coli translocase: the unravelling of a molecular machine. Mol. Microbiol. 2000; 37:226–238.

    PubMed  CAS  Google Scholar 

  8. Ring G, Eichler J. Extreme secretion: Protein translocation across the archaeal plasma membrane. J Bioenerg Biomembr 2004; 36:35–45.

    PubMed  CAS  Google Scholar 

  9. Pohlschroder M, Dilks K, Hand N et al. Translocation of proteins across archaeal cytoplasmic membranes. FEMS Microbiol Rev 2004; 28:3–24.

    PubMed  CAS  Google Scholar 

  10. Eichler J. Archaeal protein translocation crossing membranes in the third domain of life. Eur J Biochem 2000; 267:3402–3412.

    PubMed  CAS  Google Scholar 

  11. Jorgensen S, Vorgias CE, Antranikian G. Cloning, sequencing, characterization, and expression of an extracellular alpha-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis. J Biol Chem 1997; 272:16335–16342.

    PubMed  CAS  Google Scholar 

  12. Horlacher R, Xavier KB, Santos H et al. Archaeal binding protein-dependent ABC transporter: molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. J Bacteriol 1998; 180:680–689.

    PubMed  CAS  Google Scholar 

  13. Duffner F, Bertoldo C, Andersen JT et al. A new thermoactive pullulanase from Desulfurococcus mucosus: cloning, sequencing, purification, and characterization of the recombinant enzyme after expression in Bacillus subtilis. J Bacteriol 2000; 182:6331–6338.

    PubMed  CAS  Google Scholar 

  14. Smith JD, Robinson AS. Overexpression of an archaeal protein in yeast: secretion bottleneck at the ER. Biotechnol Bioeng 2002; 79:713–723.

    PubMed  CAS  Google Scholar 

  15. Eichler J. Archaeal signal peptidases from the genus Thermoplasma: structural and mechanistic hybrids of the bacterial and eukaryal enzymes. J Mol Evol 2002; 54:411–415.

    PubMed  CAS  Google Scholar 

  16. Ng SY, Jarrell KF. Cloning and characterization of archaeal type I signal peptidase from Methanococcus voltae. J Bacteriol 2003; 185:5936–5942.

    PubMed  CAS  Google Scholar 

  17. Saleh MT, Fillon M, Brennan PJ et al. Identification of putative exported/secreted proteins in prokaryotic proteomes. Gene 2001; 269:195–204.

    PubMed  CAS  Google Scholar 

  18. Nielsen H, Engelbrecht J, Brunak S et al. Identification of prokaryotic and eukaryotic signal pep-tides and prediction of their cleavage sites. Protein Eng 1997; 10: 1–6.

    PubMed  CAS  Google Scholar 

  19. Albers SV, Driessen AJM. Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus: a genomic survey. Arch Microbiol 2002; 177:209–216.

    PubMed  CAS  Google Scholar 

  20. Bardy SL, Eichler J, Jarrell KF. Archaeal signal peptides—a comparative survey at the genome level. Protein Sci 2003; 12:1833–1843.

    PubMed  CAS  Google Scholar 

  21. Faguy DM, Jarrell KF, Kuzio J et al. Molecular analysis of archaeal flagellins: similarity to the type IV pilin-transport superfamily widespread in bacteria. Can J Microbiol 1994; 40:67–71.

    PubMed  CAS  Google Scholar 

  22. Rose RW, Bruser T, Kissinger JC et al. Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 2002; 45:943–950.

    PubMed  CAS  Google Scholar 

  23. Dilks K, Rose RW, Hartmann E et al. Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 2003; 185:1478–1483.

    PubMed  CAS  Google Scholar 

  24. Bolhuis A. Protein transport in the halophilic archaeon Halobacterium sp. NRC-1: a major role for the twin-arginine translocation pathway? Microbiology 2002; 148:3335–3346.

    PubMed  CAS  Google Scholar 

  25. Gropp R, Gropp F, Betlach MC. Association of the halobacterial 7S RNA to the polysome correlates with expression of the membrane protein bacterioopsin. Proc Natl Acad Sci USA 1992; 89:1204–1208.

    PubMed  CAS  Google Scholar 

  26. Dale H, Angevine CM, Krebs MP. Ordered membrane insertion of an archaeal opsin in vivo. Proc Natl Acad Sci USA 2000; 97:7847–7852.

    PubMed  CAS  Google Scholar 

  27. Dale H, Krebs MP. Membrane insertion kinetics of a protein domain in vivo. The bacterioopsin n terminus inserts co-translationally. J Biol Chem 1999; 274:22693–22698.

    PubMed  CAS  Google Scholar 

  28. Ortenberg R, Mevarech M. Evidence for post-translational membrane insertion of the integral membrane protein bacterioopsin expressed in the heterologous halophilic archaeon Haloferax volcanii. J Biol Chem 2000; 275:22839–22846.

    PubMed  CAS  Google Scholar 

  29. Irihimovitch V, Eichler J. Post-translational secretion of fusion proteins in the halophilic archaeon Haloferax volcanii. J Biol Chem 2003; 278:12881–12887.

    PubMed  CAS  Google Scholar 

  30. Herskovits AA, Bibi E. Association of Escherichia coli ribosomes with the inner membrane re quires the signal recognition particle receptor but is independent of the signal recognition particle. Proc Natl Acad Sci USA 2000; 97:4621–4626.

    PubMed  CAS  Google Scholar 

  31. Keenan RJ, Freymann DM, Stroud RM et al. The signal recognition particle. Annu Rev Biochem 2001; 70:755–775.

    PubMed  CAS  Google Scholar 

  32. Zwieb C, Eichler J. Getting on target: The archaeal signal recognition particle. Archaea 2001; 1:27–34.

    Google Scholar 

  33. Bhuiyan SH, Gowda K, Hotokezaka H et al. Assembly of archaeal signal recognition particle from recombinant components. Nucleic Acids Res. 2000; 28:1365–1373.

    PubMed  CAS  Google Scholar 

  34. Diener JL, Wilson C. Role of SRP19 in assembly of the Archaeoglobus fulgidus signal recognition particle. Biochemistry 2000; 39:12862–12874.

    PubMed  CAS  Google Scholar 

  35. Maeshima H, Okuno E, Aimi T et al. An archaeal protein homologous to mammalian SRP54 and bacterial Ffh recognizes a highly conserved region of SRP RNA. FEBS Lett 2001; 507:336–340.

    PubMed  CAS  Google Scholar 

  36. Hainzl T, Huang S, Sauer-Eriksson AE. Structure of the SRP 19 RNA complex and implications for signal recognition particle assembly. Nature 2002; 417:767–771.

    PubMed  CAS  Google Scholar 

  37. Oubridge C, Kuglstatter A, Jovine L et al. Crystal structure of SRP 19 in complex with the S domain of SRP RNA and its implication for the assembly of the signal recognition particle. Mol Cell 2002; 9:1251–1261.

    PubMed  CAS  Google Scholar 

  38. Tozik I, Huang Q, Zweib C et al. Reconstitution of the signal recognition particle of the halophilic archaeaon Haloferax volcanii. Nucleic Acids Res. 2002; 30:4166–4175.

    PubMed  CAS  Google Scholar 

  39. Moll R, Schmidtke S, Schäfer G. Domain structure, GTP-hydrolyzing activity and 7S RNA binding of Acidianus ambivalens Ffh-homologous protein suggest an SRP-like complex in archaea. Eur J Biochem 1999; 259:441–448.

    PubMed  CAS  Google Scholar 

  40. Moll RG. Protein-protein, protein-RNA and protein-lipid interactions of signal-recognition particle components in the hyperthermoacidophilic archaeon Acidianus ambivalens. Biochem J 2003; 374:247–254.

    PubMed  CAS  Google Scholar 

  41. Luirink, J, ten Hagen-Jongman CM, van der Weijden CC et al. An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J 1994; 13:2289–2296.

    PubMed  CAS  Google Scholar 

  42. Lichi T, Ring G, Eichler J. Membrane binding of SRP pathway components in the halophilic archaea Haloferax volcanii. Eur J Biochem, 2004; 271:1382–1390.

    PubMed  CAS  Google Scholar 

  43. Zelazny A, Seluanov A, Cooper A et al. The NG domain of the prokaryotic signal recognition particle receptor, FtsY, is fully functional when fused to an unrelated integral membrane polypeptide. Proc Natl Acad Sci USA 1997; 94:6025–6029.

    PubMed  CAS  Google Scholar 

  44. de Leeuw E, Poland D, Mol O et al. Membrane association of FtsY, the E. coli SRP receptor. FEBS Lett 1997; 416:225–229.

    PubMed  Google Scholar 

  45. Powers T, Walter P. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J 1997; 16:4880–4886.

    PubMed  CAS  Google Scholar 

  46. Connolly T, Gilmore R. GTP hydrolysis by complexes of the signal recognition particle and the signal recognition particle receptor. J Cell Biol 1993; 123:799–807.

    PubMed  CAS  Google Scholar 

  47. Miller JD, Wilhelm H, Gierasch L et al. GTP binding and hydrolysis by the signal recognition particle during initiation of protein translocation. Nature 1993; 366:351–354.

    PubMed  CAS  Google Scholar 

  48. Görlich D, Prehn S, Hartmann E et al. A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 1994; 71:489–503.

    Google Scholar 

  49. Kalies KU, Görlich D, Rapoport TA et al. Binding of ribosomes to the rough endoplasmic reticulum mediated by the Sec61 p-complex. J Cell Biol 1994; 126:925–934.

    PubMed  CAS  Google Scholar 

  50. Prinz A, Behrens C, Rapoport TA et al. Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal RNA. EMBO J 2000; 19:1900–1906.

    PubMed  CAS  Google Scholar 

  51. Zito CR, Oliver D. Two-stage binding of SecA to the bacterial translocon regulates ribosome-translocon interaction. J Biol Chem 2003; 278:40640–40646.

    PubMed  CAS  Google Scholar 

  52. Ring G, Eichler J. Membrane binding of ribosomes occurs at SecYE-based sites in the Archaea Haloferax volcanii. J Mol Biol 2004; 336:997–1010.

    PubMed  CAS  Google Scholar 

  53. Borgese N, Mok W, Kreibich G et al. Ribosomal-membrane interaction: in vitro binding of ribosomes to microsomal membranes. J Mol Biol 1974; 88:559–580.

    PubMed  CAS  Google Scholar 

  54. Christian JHB, Waltho JA. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochem Biophys Acta 1962; 65:506–508.

    PubMed  CAS  Google Scholar 

  55. Ginzburg M, Sachs L, Ginzburg BZ. Ion metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations. J Gen Physiol 1970; 55:187–207.

    PubMed  CAS  Google Scholar 

  56. Gorlich D, Rapoport TA. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 1993; 75:615–630.

    PubMed  CAS  Google Scholar 

  57. Brundage L, Hendrick JP, Schiebel E et al. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 1990; 62:649–657.

    PubMed  CAS  Google Scholar 

  58. Auer J, Spicker G, Bock A. Presence of a gene in the archaebacterium Methanococcus vannielii homologous to secY of eubacteria. Biochimie 1991; 73:683–688.

    PubMed  CAS  Google Scholar 

  59. Kath T, Schäfer G. A secY homologous gene in the crenarchaeon Sulfolobus acidocaldarius. Biochim Biophys Acta 1995; 1264:155–158.

    PubMed  Google Scholar 

  60. Cao TB, Saier MH Jr. The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim. Biophys. Acta 2003; 1609:115–125.

    PubMed  CAS  Google Scholar 

  61. Irihimovitch V, Ring G, Elkayam T et al. Isolation of fusion proteins containing SecY and SecE components of the protein translocation complex from the halophilic archaeon Haloferax volcanii. Extremophiles 2003; 7:71–77.

    PubMed  CAS  Google Scholar 

  62. Van den Berg B, Clemons WM Jr, Collinson I et al. X-ray structure of a protein-conducting channel. Nature 2004; 427:36–44.

    PubMed  Google Scholar 

  63. Rensing SA, Maier U-G. The SecY protein family: comparative analysis and phylogenetic relationships. Mol Phylogen Evol 1994; 3:187–191.

    CAS  Google Scholar 

  64. Hartmann E, Sommer T, Prehn S et al. Evolutionary conservation of components of the protein translocation complex. Nature 1994; 367:654–657.

    PubMed  CAS  Google Scholar 

  65. Brundage L, Fimmel CJ, Mizushima S et al. SecY, SecE, and band 1 form the membrane-embedded domain of Escherichia coli preprotein translocase. J Biol Chem 1992; 267:4166–4170.

    PubMed  CAS  Google Scholar 

  66. Nishiyama K, Mizushima S, Tokuda H. A novel membrane protein involved in protein translocation across the cytoplasmic membrane of Escherichia coli. EMBO J 1993; 12:3409–3415.

    PubMed  CAS  Google Scholar 

  67. Douville K, Leonard M, Brundage L et al. Band 1 subunit of Escherichia coli preportein translocase and integral membrane export factor P12 are the same protein. J Biol Chem 1994; 269:18705–18707.

    PubMed  CAS  Google Scholar 

  68. Matlack KE, Mothes W, Rapoport TA. Protein translocation: tunnel vision. Cell 1998; 92:381–390.

    PubMed  CAS  Google Scholar 

  69. Hanada M, Nishiyama KI, Mizushima S et al. Reconstitution of an efficient protein translocation machinery comprising SecA and the three membrane proteins, SecY, SecE, and SecG (p12). J Biol Chem 1994; 269:23625–23631.

    PubMed  CAS  Google Scholar 

  70. Nishiyama K, Hanada M, Tokuda H. Disruption of the gene encoding p12 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of Escherichia coli at low temperature. EMBO J 1994; 13:3272–3277.

    PubMed  CAS  Google Scholar 

  71. Duong F, Wickner W. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J 1997; 16:2756–2768.

    PubMed  CAS  Google Scholar 

  72. Kalies KU, Rapoport TA, Hartmann E. The beta subunit of the Sec61 complex facilitates cotranslational protein transport and interacts with the signal peptidase during translocation. J Cell Biol 1998; 141:887–894.

    PubMed  CAS  Google Scholar 

  73. Kinch LN, Saier Jr MH, Grishin NV. Sec61beta-a component of the archaeal protein secretory system. Trends Biochem Sci 2002; 27:170–171.

    PubMed  CAS  Google Scholar 

  74. Kates M. Membrane lipids of archaea. In: Kates M, Kushner DJ, Matheson AT, eds. The Biochemisty of Archaea (archaebacteria) NY: Elsevier, 1993:261–296.

    Google Scholar 

  75. Tseng TT, Gratwick KS, Kollman J. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1999; 1:107–125.

    PubMed  CAS  Google Scholar 

  76. Eichler J. Evolution of the prokaryotic protein translocation complex: a comparison of archaeal and bacterial versions of SecDF. Mol Phylogenet Evol 2003; 27:504–509.

    PubMed  CAS  Google Scholar 

  77. Economou A, Pogliano JA, Beckwith J et al. SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 1995; 83:1171–1181.

    PubMed  CAS  Google Scholar 

  78. Duong F, Wickner W. The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. EMBO J 1997; 16:4781–4879.

    Google Scholar 

  79. Scotti PA, Urbanus ML, Brunner J et al. YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J 2000; 19:542–549.

    PubMed  CAS  Google Scholar 

  80. Moore M, Harrison MS, Peterson EC et al. Chloroplast Oxalp homolog albino3 is required for post-translational integration of the light harvesting chlorophyll-binding protein into thylakoid membranes. J Biol Chem 2000; 275:1529–1532.

    PubMed  CAS  Google Scholar 

  81. Hell K, Neupert W, Stuart RA. Oxalp, an essential component of the N-tail protein export machinery in mitochondria. EMBO J 2001; 20:1281–1288.

    PubMed  CAS  Google Scholar 

  82. Samuelson JC, Chen M, Jiang, F et al. YidC mediates membrane protein insertion in bacteria. Nature 2000; 406:637–641.

    PubMed  CAS  Google Scholar 

  83. Chen M, Samuelson JC, Jiang F et al. Direct interaction of YidC with the Sec-independent PS coat protein during its membrane protein insertion. J Biol Chem 2002; 277:7670–7675.

    PubMed  CAS  Google Scholar 

  84. Luirink J, Samuelsson T, de Gier JW. YidC/Oxalp/Alb3: evolutionarily conserved mediators of membrane protein assembly. FEBS Lett 20001; 501:1–5.

    Google Scholar 

  85. Yen MR, Tseng YH, Nguyen EH et al. Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Arch Microbiol 2002; 177:441–450.

    PubMed  CAS  Google Scholar 

  86. Chung YJ, Krueger C, Metzgar D et al. Size comparisons among integral membrane transport protein homologues in bacteria, Archaea, and Eucarya. J Bacteriol 2001; 183:1012–1021.

    PubMed  CAS  Google Scholar 

  87. Yen MR, Harley KT, Tseng YH et al. Phylogenetic and structural analyses of the oxa1 family of protein translocases. FEMS Microbiol Lett 2001; 204:223–231.

    PubMed  CAS  Google Scholar 

  88. Hartmann E, Gorlich D, Kostka S et al. A tetrameric complex of membrane proteins in the endoplasmic reticulum. Eur J Biochem 1993; 214:375–381.

    PubMed  CAS  Google Scholar 

  89. Gorlich D, Hartmann E, Prehn S et al. A protein of the endoplasmic reticulum involved early in polypeptide translocation. Nature 1992; 357:47–52.

    PubMed  CAS  Google Scholar 

  90. Berks BC, Sargent F, Palmer T. The Tat protein export pathway. Mol Microbiol 2000; 35:260–274.

    PubMed  CAS  Google Scholar 

  91. Robinson C, Bolhuis A. 2001 Protein targeting by the twin-arginine translocation pathway. Nat Rev Mol Cell Biol 2001; 2:350–356.

    PubMed  CAS  Google Scholar 

  92. Dalbey RE, Lively MO, Bron S et al. The chemistry and enzymology of the type I signal peptidases. Protein Sci 1997; 6:1129–1138.

    PubMed  CAS  Google Scholar 

  93. Paetzel M, Dalbey RE, Strynadka NCJ. The structure and mechanism of bacterial type I signal peptidases. A novel antibiotic target. Pharmacol Ther 2000; 87:27–49.

    PubMed  CAS  Google Scholar 

  94. Tjalsma H, Bolhuis A, van Roosmalen ML et al. Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Develop 1998; 12:2318–2331.

    PubMed  CAS  Google Scholar 

  95. Van Valkenburgh C, Chen X, Mullins C et al. The catalytic mechanism of endoplasmic reticulum signal peptidase appears to be distinct from most eubacterial signal peptidases. J Biol Chem 1999; 274:11519–11525.

    Google Scholar 

  96. YaDeau JT, Klein C, Blobel G. Yeast signal peptidase contains a glycoprotein and the Secll gene product. Proc. Natl. Acad. Sci. USA 1991; 88:517–521.

    PubMed  CAS  Google Scholar 

  97. Correia JD, Jarrell KF. Posttranslational processing of Methanococcus voltae preflagellin by preflagellin peptidases of M. voltae and other methanogens. J Bacteriol 2000; 182:855–858.

    PubMed  CAS  Google Scholar 

  98. Mattick JS. Type IV pili and twitching motility. Annu Rev Microbiol 2002; 56:289–314.

    PubMed  CAS  Google Scholar 

  99. Macario AJ, Lange M, Ahring BK et al. Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 1999; 63:923–967.

    PubMed  CAS  Google Scholar 

  100. Wild J, Altman E, Yura T et al. DnaK and DnaJ heat shock proteins participate in protein export in Escherichia coli. Genes Dev 1992; 6:1165–1172.

    PubMed  CAS  Google Scholar 

  101. Rial DV, Arakaki AK, Ceccarelli EA. Interaction of the targeting sequence of chloroplast precursors with Hsp70 molecular chaperones. Eur J Biochem 2000; 267:6239–6248.

    PubMed  CAS  Google Scholar 

  102. Harano T, Nose S, Uezu R et al. Hsp70 regulates the interaction between the peroxisome targeting signal type 1 (PTS1)-receptor Pex5p and PTS1. Biochem J 2001; 357:157–165.

    PubMed  CAS  Google Scholar 

  103. Ngosuwan J, Wang NM, Fung KL et al. Roles of cytosolic Hsp70 and Hsp40 molecular chaperones in post-translational translocation of presecretory proteins into the endoplasmic reticulum. J Biol Chem 2003; 278:7034–7042.

    PubMed  CAS  Google Scholar 

  104. Young JC, Hoogenraad NJ, Hartl FU. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 2003; 112:41–50.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Eichler, J. (2005). Protein Translocation in Archaea. In: Protein Movement Across Membranes. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-30871-7_3

Download citation

Publish with us

Policies and ethics