Skip to main content

The Differentiation of Hair Cells

  • Chapter

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 26))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler PN (2002) Planar signaling and morphogenesis in Drosophila. Dev Cell 2:525–535.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed ZM, Riazuddin S, Bernstein SL, Ahmed Z, Khan S, Griffith AJ, Morell RJ, Friedman TB, Riazuddin S, Wilcox ER (2001) Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. Am J Hum Genet 69:25–34.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed ZM, Riazuddin S, Ahmad J, Bernstein SL, Guo Y, Sabar MF, Sieving P, Riazuddin S, Griffith AJ, Friedman TB, Belyantseva IA, Wilcox ER (2003) PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23. Hum Mol Genet 12:3215–3223.

    Article  CAS  PubMed  Google Scholar 

  • Alagramam KN, Murcia CL, Kwon HY, Pawlowski KS, Wright CG, Woychik RP (2001) The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene. Nat Genet 27:99–102.

    CAS  PubMed  Google Scholar 

  • Anderson DW, Probst FJ, Belyantseva IA, Fridell RA, Beyer L, Martin DM, Wu D, Kachar B, Friedman TB, Raphael Y, Camper SA (2000) The motor and tail regions of myosin XV are critical for normal structure and function of auditory and vestibular hair cells. Hum Mol Genet 9:1729–1738.

    Article  CAS  PubMed  Google Scholar 

  • Angst BD, Marcozzi C, Magee AI (2001) The cadherin superfamily. J Cell Sci 114:625–626.

    CAS  PubMed  Google Scholar 

  • Anniko M (1983) Postnatal maturation of cochlear sensory hairs in the mouse. Anat Embryol 166:355–368.

    Article  CAS  PubMed  Google Scholar 

  • Aschenbrenner L, Lee T, Hasson T (2003) Myo6 facilitates the translocation of endocytic vesicles from cell peripheries. Mol Biol Cell 14:2728–2743.

    Article  CAS  PubMed  Google Scholar 

  • Ashmore J (2002) Biophysics of the cochlea—biomechanics and ion channelopathies. Br Med Bull 63:59–72.

    CAS  PubMed  Google Scholar 

  • Avraham KB, Hasson T, Steel KP, Kingsley DM, Russell LB, Mooseker MS, Copeland NG, Jenkins NA (1995) The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 11:369–375.

    Article  CAS  PubMed  Google Scholar 

  • Bagger-Sjoback D, Anniko M (1984) Development of intercellular junctions in the vestibular end-organ. A freeze-fracture study in the mouse. Ann Otol Rhinol Laryngol 93:89–95.

    CAS  PubMed  Google Scholar 

  • Bagger-Sjoback D, Takumida M (1988) Geometrical array of the vestibular sensory hair bundle. Acta Otolaryngol 106:393–403.

    CAS  PubMed  Google Scholar 

  • Bartles JR, Zheng L, Li A, Wierda A, Chen B (1996) Small espin: a third actin-bundling protein and potential forked protein ortholog in brush border microvilli. J Cell Biol 143:107–119.

    Google Scholar 

  • Bartolami S, Goodyear R, Richardson G (1991) Appearance and distribution of the 275 kD hair-cell antigen during development of the avian inner ear. J Comp Neurol 314:777–788.

    Article  CAS  PubMed  Google Scholar 

  • Belyantseva IA, Adler HJ, Curi R, Frolenkov GI, Kachar B (2000) Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells. J Neurosci 20:RC116.

    CAS  PubMed  Google Scholar 

  • Belyantseva IA, Boger ET, Friedman TB (2003a) Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci USA 100:13958–13963.

    Article  CAS  PubMed  Google Scholar 

  • Belyantseva IA, Labay V, Boger ET, Griffith AJ, Friedman TB (2003b) Stereocilia: the long and the short of it. Trends Mol Med 9:458–461.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto K, Van Itallie CM, Beyer LA, Halsey K, Gardner DJ, Wilcox ER, Rasmussen J, Anderson JM, Dolan DF, Forge A, Raphael Y, Camper SA, Friedman TB (2003) Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet 12:2049–2061.

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom B, Engstrom H (1973) The vestibular sensory cells and their innervation. Int J Equilib Res 3:27–32.

    CAS  PubMed  Google Scholar 

  • Beyer LA, Odeh H, Probst FJ, Lambert EH, Dolan DF, Camper SA, Kohrman DC, Raphael Y (2000) Hair cells in the inner ear of the pirouette and shaker 2 mutant mice. J Neurocytol 29:227–240.

    Article  CAS  PubMed  Google Scholar 

  • Boeda B, El-Amraoui A, Bahloul A, Goodyear R, Daviet L, Blanchard S, Perfettini I, Fath KR, Shorte S, Reiners J, Houdusse A, Legrain P, Wolfrum U, Richardson G, Petit C (2002) Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J 21:6689–6699.

    Article  CAS  PubMed  Google Scholar 

  • Bork JM, Peters LM, Riazuddin S, Bernstein SL, Ahmed ZM, Ness SL, Polomeno R, Ramesh A, Schloss M, Srisailpathy CR, Wayne S, Bellman S, Desmukh D, Ahmed Z, Khan SN, Kaloustian VM, Li XC, Lalwani A, Riazuddin S, Bitner-Glindzicz M, Nance WE, Liu XZ, Wistow G, Smith RJ, Griffith AJ, Wilcox ER, Friedman TB, Morell RJ (2001) Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am J Hum Genet 68:26–37.

    Article  CAS  PubMed  Google Scholar 

  • Buss F, Luzio JP, Kendrick-Jones J (2002) Myosin VI, an actin motor for membrane traffic and cell migration. Traffic 3:851–858.

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Johnson JE, Zoghbi HY, Segil N (2002) The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129:2495–2505.

    Article  CAS  PubMed  Google Scholar 

  • Colegio OR, Van Itallie CM, McCrea HJ, Rahner C, Anderson JM (2002) Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol 283:C142–147.

    CAS  PubMed  Google Scholar 

  • Corwin JT, Cotanche DA (1989) Development of location-specific hair cell stereocilia in de-enervated embryonic ears. J Comp Neurol 288:529–537.

    Article  CAS  PubMed  Google Scholar 

  • Cotanche DA (1987) Development of hair cell stereocilia in the avian cochlea. Hear Res 28:35–44.

    Article  CAS  PubMed  Google Scholar 

  • Cotanche DA (1999) Structural recovery from sound and aminoglycoside damage in the avian cochlea. Audiol Neurootol 4:271–285.

    Article  CAS  PubMed  Google Scholar 

  • Cotanche DA, Corwin JT (1991) Stereociliary bundles reorient during hair cell development and regeneration in the chick cochlea. Hear Res 52:379–402.

    Article  CAS  PubMed  Google Scholar 

  • Cotanche DA, Sulik KK (1983) Early differentiation of hair cells in the embryonic chick basilar papilla. Arch Otorhinolaryngol 237:191–195.

    Article  CAS  PubMed  Google Scholar 

  • Cotanche DA, Sulik KK (1984) The development of stereociliary bundles in the cochlear duct of chick embryos. Brain Res 318:181–193.

    CAS  PubMed  Google Scholar 

  • Cotanche DA, Lee KH, Stone JS, Picard DA (1994) Hair cell regeneration in the bird cochlea following noise damage or ototoxic drug damage. Anat Embryol (Berl) 189:1–18.

    Article  CAS  PubMed  Google Scholar 

  • Cramer LP (2000) Myosin VI: roles for a minus end-directed actin motor in cells. J Cell Biol 150:F121–126.

    Article  CAS  PubMed  Google Scholar 

  • Curtin JA, Quint E, Tsipouri V, Arkell RM, Cattanach B, Copp AJ, Henderson DJ, Spurr N, Stanier P, Fisher EM, Nolan PM, Steel KP, Brown SD, Gray IC, Murdoch JN (2003) Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol 13:1129–1133.

    Article  CAS  PubMed  Google Scholar 

  • Dabdoub A, Donohue MJ, Brennan A, Wolf V, Montcouquiol M, Sassoon DA, Hseih JC, Rubin JS, Salinas PC, Kelley MW (2003) Wnt signaling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea. Development 130:2375–2384.

    Article  CAS  PubMed  Google Scholar 

  • Dallos P, Fakler B (2002) Prestin, a new type of motor protein. Nat Rev Mol Cell Biol 3:104–111.

    Article  CAS  PubMed  Google Scholar 

  • Dannhof BJ, Roth B, Bruns V (1991) Length of hair cells as a measure of frequency representation in the mammalian inner ear? Naturwissenschaften 78:570–573.

    Article  CAS  PubMed  Google Scholar 

  • D’Atri F, Citi S (2002) Molecular complexity of vertebrate tight junctions (review). Mol Membr Biol 19:103–112.

    CAS  PubMed  Google Scholar 

  • Daudet N, Lebart MC (2002) Transient expression of the t-isoform of plastins/fimbrin in the stereocilia of developing auditory hair cells. Cell Motil Cytoskeleton 53:326–336.

    Article  CAS  PubMed  Google Scholar 

  • Denman-Johnson K, Forge A (1999) Establishment of hair bundle polarity and orientation in the developing vestibular system of the mouse. J Neurocytol 28:821–835.

    Article  CAS  PubMed  Google Scholar 

  • DeRosier DJ and Tilney LG (1989) The structure of the cuticular plate, an in vivo actin gel. J Cell Biol 109:2853–2867.

    Article  CAS  PubMed  Google Scholar 

  • Di Palma F, Holme RH, Bryda EC, Belyantseva IA, Pellegrino R, Kachar B, Steel KP, Noben-Trauth K (2001) Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nat Genet 27:103–107.

    PubMed  Google Scholar 

  • Duncan RK, Fuchs PA (2003) Variation in large-conductance, calcium-activated potassium channels from hair cells along the chicken basilar papilla. J Physiol 547:357–371.

    Article  CAS  PubMed  Google Scholar 

  • Eatock RA, Rusch A (1997) Developmental changes in the physiology of hair cells. Semin Cell Dev Biol 8:265–275.

    Article  CAS  PubMed  Google Scholar 

  • Erven A, Skynner MJ, Okumura K, Takebayashi S, Brown SD, Steel KP, Allen ND (2002) A novel stereocilia defect in sensory hair cells of the deaf mouse mutant Tasmanian devil. Eur J Neurosci 16:1433–1441.

    Article  PubMed  Google Scholar 

  • Evangelista M, Blundell K, Longtine MS, Chow CJ, Adames N, Pringle JR, Peter M, Boone C (1997) Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276:118–122.

    Article  CAS  PubMed  Google Scholar 

  • Flock A, Bretscher A, Weber K (1982) Immunohistochemical localization of several cytoskeletal proteins in inner ear sensory and supporting cells. Hear Res 7:75–89.

    Article  CAS  PubMed  Google Scholar 

  • Flock A, Flock B, Ulfendahl M (1986) Mechanisms of movement in outer hair cells and a possible structural basis. Arch Otorhinolaryngol 243:83–90.

    Article  CAS  PubMed  Google Scholar 

  • Forge A (1987) Specialisations of the lateral membrane of inner hair cells. Hear Res 31:99–109.

    CAS  PubMed  Google Scholar 

  • Forge A (1991) Structural features of the lateral walls in mammalian cochlear outer hair cells. Cell Tissue Res 265:473–483.

    Article  CAS  PubMed  Google Scholar 

  • Forge A, Richardson G (1993) Freeze fracture analysis of apical membranes in cochlear cultures: differences between basal and apical-coil outer hair cells and effects of neomycin. J Neurocytol 22:854–867.

    Article  CAS  PubMed  Google Scholar 

  • Forge A, Davies S, Zajic G (1991) Assessment of ultrastructure in isolated cochlear hair cells using a procedure for rapid freezing before freeze-fracture and deep-etching. J Neurocytol 20:471–484.

    Article  CAS  PubMed  Google Scholar 

  • Forge A, Zajic G, Li L, Nevill G, Schacht J (1993) Structural variability of the subsurface cisternae in intact, isolated outer hair cells shown by fluorescent labelling of intracellular membranes and freeze-fracture. Hear Res 64:175–183.

    Article  CAS  PubMed  Google Scholar 

  • Forge A, Souter M, Denman-Johnson K (1997) Structural development of sensory cells in the ear. Semin Cell Dev Biol 8:225–237.

    Article  PubMed  Google Scholar 

  • Forge A, Becker D, Casalotti S, Edwards J, Marziano N, Nevill G (2003a) Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals. J Comp Neurol 467:207–231.

    Article  PubMed  Google Scholar 

  • Furness DN, Richardson GP, Russell IJ (1989) Stereociliary bundle morphology in organotypic cultures of the mouse cochlea. Hear Res 38:95–109.

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788.

    Article  CAS  PubMed  Google Scholar 

  • Gale JE, Marcotti W, Kennedy HJ, Kros CJ, Richardson GP (2001) FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci 21:7013–7025.

    CAS  PubMed  Google Scholar 

  • Geleoc GS, Holt JR (2003) Developmental acquisition of sensory transduction in hair cells of the mouse inner ear. Nat Neurosci 6:1019–1020.

    CAS  PubMed  Google Scholar 

  • Ginzberg RD, Gilula NB (1979) Modulation of cell junctions during differentiation of the chicken otocyst sensory epithelium. Dev Biol 68:110–129.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JM (1991) The vestibular end organs: morphological and physiological diversity of afferents. Curr Opin Neurobiol 1:229–235.

    Article  CAS  PubMed  Google Scholar 

  • Goodyear RJ, Richardson GP (1992) Distribution of the 275 kD hair cell antigen and cell surface specialisations on auditory and vestibular hair bundles in the chicken inner ear. J Comp Neurol 325:243–256.

    Article  CAS  PubMed  Google Scholar 

  • Goodyear R, Richardson G (1997) Pattern formation in the basilar papilla: evidence for cell rearrangement. J Neurosci 17:6289–6301.

    CAS  PubMed  Google Scholar 

  • Goodyear R, Richardson G (1999) The ankle-link antigen: an epitope sensitive to calcium chelation associated with the hair-cell surface and the calycal processes of photoreceptors. J Neurosci 19:3761–3772.

    CAS  PubMed  Google Scholar 

  • Goodyear RJ, Richardson GP (2003) A novel antigen sensitive to calcium chelation that is associated with the tip links and kinocilial links of sensory hair bundles. J Neurosci 23:4878–4887.

    CAS  PubMed  Google Scholar 

  • Goodyear RJ, Legan PK, Wright MB, Marcotti W, Oganesian A, Coats SA, Booth CJ, Kros CJ, Seifert RA, Bowen-Pope DF, Richardson GP (2003) A receptor-like inositol lipid phosphatase is required for the maturation of developing cochlear hair bundles. J Neurosci 23:9208–9219.

    CAS  PubMed  Google Scholar 

  • Goodyear RJ, Marcotti W, Kros CJ, Richardson GP (2005) Development and properties of stereociliary link types in hair cells of the mouse cochlea. J Comp Neurol 485:75–85.

    Article  PubMed  Google Scholar 

  • Gulley RL, Reese TS (1977) Regional specialization of the hair cell plasmalemma in the organ of corti. Anat Rec 189:109–123.

    Article  CAS  PubMed  Google Scholar 

  • Gumbiner B (1990) Generation and maintenance of epithelial cell polarity. Curr Opin Cell Biol 2:881–887.

    Article  CAS  PubMed  Google Scholar 

  • Gumbiner B, Stevenson B, Grimaldi A (1988) The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J Cell Biol 107:1575–1587.

    Article  CAS  PubMed  Google Scholar 

  • Hackett L, Davies D, Helyer R, Kennedy H, Kros C, Lawlor P, Rivolta MN, Holley M (2002) E-cadherin and the differentiation of mammalian vestibular hair cells. Exp Cell Res 278:19–30.

    Article  CAS  PubMed  Google Scholar 

  • Hanein D, Matsudaira P, DeRosier DJ (1997) Evidence for a conformational change in actin induced by fimbrin (N375) binding. J Cell Biol 139:387–396.

    Article  CAS  PubMed  Google Scholar 

  • Hasson T, Heintzelman MB, Santos-Sacchi J, Corey DP, Mooseker MS (1995) Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1B. Proc Natl Acad Sci USA 92:9815–9819.

    CAS  PubMed  Google Scholar 

  • Hasson T, Gillespie PG, Garcia JA, MacDonald RB, Zhao Y, Yee AG, Mooseker MS, Corey DP (1997) Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 137:1287–1307.

    Article  CAS  PubMed  Google Scholar 

  • He DZ, Evans BN, Dallos P (1994) First appearance and development of electromotility in neonatal gerbil outer hair cells. Hear Res 78:77–90.

    Article  CAS  PubMed  Google Scholar 

  • Heisenberg CP, Tada M (2002) Wnt signalling: a moving picture emerges from van gogh. Curr Biol 12:R126–128.

    CAS  PubMed  Google Scholar 

  • Hirokawa N (1977) Disappearance of afferent and efferent nerve terminals in the inner ear of the chick embryo after chronic treatment with beta-bungarotoxin. J Cell Biol 73:27–46.

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N, Tilney LG (1982) Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear. J Cell Biol 95:249–261.

    Article  CAS  PubMed  Google Scholar 

  • Holley MC, Ashmore JF (1990) Spectrin, actin and the structure of the cortical lattice in mammalian cochlear outer hair cells. J Cell Sci 96:283–291.

    CAS  PubMed  Google Scholar 

  • Holley MC, Kalinec F, Kachar B (1992) Structure of the cortical cytoskeleton in mammalian outer hair cells. J Cell Sci 102:569–580.

    PubMed  Google Scholar 

  • Holme RH, Kiernan BW, Brown SD, Steel KP (2002) Elongation of hair cell stereocilia is defective in the mouse mutant whirler. J Comp Neurol 450:94–102.

    Article  PubMed  Google Scholar 

  • Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404.

    Article  CAS  PubMed  Google Scholar 

  • Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S (1999) Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 147:1351–1363.

    Article  CAS  PubMed  Google Scholar 

  • Jagger DJ, Ashmore JF (1998) A potassium current in guinea-pig outer hair cells activated by ion channel blocker DCDPC. NeuroReport 9:3887–3891.

    CAS  PubMed  Google Scholar 

  • Kachar B, Battaglia A, Fex J (1997) Compartmentalized vesicular traffic around the hair cell cuticular plate. Hear Res 107:102–112.

    Article  CAS  PubMed  Google Scholar 

  • Kalinec F, Holley MC, Iwasa KH, Lim DJ, Kachar B (1992) A membrane-based force generation mechanism in auditory sensory cells. Proc Natl Acad Sci USA 89:8671–8675.

    CAS  PubMed  Google Scholar 

  • Kaltenbach JA, Falzarano PR, Simpson TH (1994) Postnatal development of the hamster cochlea. II. Growth and differentiation of stereocilia bundles. J Comp Neurol 350:187–198.

    Article  CAS  PubMed  Google Scholar 

  • Katayama A, Corwin JT (1989) Cell production in the chicken cochlea. J Comp Neurol 281:129–135.

    Article  CAS  PubMed  Google Scholar 

  • Katayama A, Corwin JT (1993) Cochlear cytogenesis visualized through pulse labeling of chick embryos in culture. J Comp Neurol 333:28–40.

    Article  CAS  PubMed  Google Scholar 

  • Kibar Z, Vogan KJ, Groulx N, Justice MJ, Underhill DA, Gros P (2001) Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat Genet 28:251–255.

    Article  CAS  PubMed  Google Scholar 

  • Kikkawa Y, Shitara H, Wakana S, Kohara Y, Takada T, Okamoto M, Taya C, Kamiya K, Yoshikawa Y, Tokano H, Kitamura K, Shimizu K, Wakabayashi Y, Shiroishi T, Kominami R, Yonekawa H (2003) Mutations in a new scaffold protein Sans cause deafness in Jackson shaker mice. Hum Mol Genet 12:453–461.

    Article  CAS  PubMed  Google Scholar 

  • Kitajiri SI, Furuse M, Morita K, Saishin-Kiuchi Y, Kido H, Ito J, Tsukita S (2004) Expression patterns of claudins, tight junction adhesion molecules, in the inner ear. Hear Res 187:25–34.

    Article  CAS  PubMed  Google Scholar 

  • Kros CJ, Marcotti W, van Netten SM, Self TJ, Libby RT, Brown SD, Richardson GP, Steel KP (2002) Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat Neurosci 5:41–47.

    Article  CAS  PubMed  Google Scholar 

  • Kuijpers W, Tonnaer EL, Peters TA, Ramaekers FC (1991) Expression of intermediate filament proteins in the mature inner ear of the rat and guinea pig. Hear Res 52(1):133–46.

    Article  CAS  PubMed  Google Scholar 

  • Küssel-Andermann P, El-Amraoui A, Safieddine S, Nouaille S, Perfettini I, Lecuit M, Cossart P, Wolfrum U, Petit C (2000) Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherins—catenins complex. EMBO J 19:6020–6029.

    PubMed  Google Scholar 

  • Lavigne-Rebillard M, Pujol R (1986) Development of the auditory hair cell surface in human fetuses. A scanning electron microscopy study. Anat Embryol 174:369–377.

    Article  CAS  PubMed  Google Scholar 

  • Lenoir M, Puel JL, Pujol R (1987) Stereocilia and tectorial membrane development in the rat cochlea. A SEM study. Anat Embryol 175:477–487.

    Article  CAS  PubMed  Google Scholar 

  • Lewis J, Davies A (2002) Planar cell polarity in the inner ear: how do hair cells acquire their oriented structure? J Neurobiol 53:190–201.

    Article  CAS  PubMed  Google Scholar 

  • Li H, Liu H, Balt S, Mann S, Corrales CE, Heller S (2004) Correlation of expression of the actin filament-bundling protein espin with stereociliary bundle formation in the developing inner ear. J Comp Neurol 468:125–134.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Forge A (1997) Morphological evidence for supporting cell to hair cell conversion in the mammalian utricular macula. Int J Dev Neurosci 15:433–446.

    CAS  PubMed  Google Scholar 

  • Liberman MC, Gao J, He DZ, Wu X, Jia S, Zuo J (2002) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419:300–304.

    Article  CAS  PubMed  Google Scholar 

  • Lim DJ (1980) Cochlear anatomy related to cochlear micromechanics. A review. J Acoust Soc Am 67:1686–1695.

    Article  CAS  PubMed  Google Scholar 

  • Lim DJ, Rueda J (1990) Distribution of glycoconjugates during cochlea development. A histochemical study. Acta Otolaryngol 110:224–1233.

    CAS  PubMed  Google Scholar 

  • Lin CS, Shen W, Chen ZP, Tu YH, Matsudaira P (1994) Identification of I-plastin, a human fimbrin isoform expressed in intestine and kidney. Mol Cell Biol 14:2457–2467.

    CAS  PubMed  Google Scholar 

  • Littlewood-Evans A, Muller U (2000) Stereocilia defects in the sensory hair cells of the inner ear in mice deficient in integrin alpha8beta1. Nat Genet 24:424–428.

    CAS  PubMed  Google Scholar 

  • Liu XZ, Walsh J, Tamagawa Y, Kitamura K, Nishizawa M, Steel KP, Brown SD (1997) Autosomal dominant non-syndromic deafness caused by a mutation in the myosin VIIA gene. Nat Genet 17:268–269.

    CAS  PubMed  Google Scholar 

  • Loomis PA, Zheng L, Sekerkova G, Changyaleket B, Mugnaini E, Bartles JR (2003) Espin cross-links cause the elongation of microvillus-type parallel actin bundles in vivo. J Cell Biol 163:1045–1055.

    Article  CAS  PubMed  Google Scholar 

  • Lynch ED, Lee MK, Morrow JE, Welcsh PL, Leon PE, King MC (1997) Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278:1315–1318.

    Article  CAS  PubMed  Google Scholar 

  • Markin VS, Hudspeth AJ (1995) Gating-spring models of mechanoelectrical transduction by hair cells of the internal ear. Annu Rev Biophys Biomol Struct 24:59–83.

    Article  CAS  PubMed  Google Scholar 

  • Marowitz WF, Shugar JM (1976) Single mitotic center for rodent cochlear duct. Ann Otol Rhinol Laryngol 85:225–233.

    Google Scholar 

  • Mbiene JP, Sans A (1986) Differentiation and maturation of the sensory hair bundles in the fetal and postnatal vestibular receptors of the mouse: a scanning electron microscopy study. J Comp Neurol 254:271–278.

    Article  CAS  PubMed  Google Scholar 

  • Mbiene JP, Favre D, Sans A (1988) Early innervation and differentiation of hair cells in the vestibular epithelia of mouse embryos: SEM and TEM study. Anat Embryol (Berl) 177:331–340.

    Article  CAS  PubMed  Google Scholar 

  • Mburu P, Mustapha M, Varela A, Weil D, El-Amraoui A, Holme RH, Rump A, Hardisty RE, Blanchard S, Coimbra RS, Perfettini I, Parkinson N, Mallon AM, Glenister P, Rogers MJ, Paige AJ, Moir L, Clay J, Rosenthal A, Liu XZ, Blanco G, Steel KP, Petit C, Brown SD (2003) Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nat Genet 34:421–428.

    Article  CAS  PubMed  Google Scholar 

  • Montcouquiol M, Rachel RA, Lanford PJ, Copeland NG, Jenkins NA, Kelley MW(2003) Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423:173–177.

    Article  CAS  PubMed  Google Scholar 

  • Muller U, Littlewood-Evans A (2001) Mechanisms that regulate mechanosensory hair cell differentiation. Trends Cell Biol 11:334–342.

    CAS  PubMed  Google Scholar 

  • Murdoch JN, Henderson DJ, Doudney K, Gaston-Massuet C, Phillips HM, Paternotte C, Arkell R, Stanier P, Copp AJ (2003) Disruption of scribble (Scrb1) causes severe neural tube defects in the circletail mouse. Hum Mol Genet 12:87–98.

    Article  CAS  PubMed  Google Scholar 

  • Nishida Y, Rivolta MN, Holley MC (1998) Timed markers for the differentiation of the cuticular plate and stereocilia in hair cells from the mouse inner ear. J Comp Neurol 395:18–28.

    Article  CAS  PubMed  Google Scholar 

  • Oganesian A, Poot M, Daum G, Coats SA, Wright MB, Seifert RA, Bowen-Pope DF (2003) Protein tyrosine phosphatase RQ is a phosphatidylinositol phosphatase that can regulate cell survival and proliferation. Proc Natl Acad Sci USA 100:7563–7568.

    Article  CAS  PubMed  Google Scholar 

  • Oliver D, He DZ, Klocker N, Ludwig J, Schulte U, Waldegger S, Ruppersberg JP, Dallos P, Fakler B (2001) Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science 292:2340–2343.

    Article  CAS  PubMed  Google Scholar 

  • Otterstedde CR, Spandau U, Blankenagel A, Kimberling WJ, Reisser C (2001) A new clinical classification for Usher’s syndrome based on a new subtype of Usher’s syndrome type I. Laryngoscope 111:84–86.

    CAS  PubMed  Google Scholar 

  • Pack AK, Slepecky NB (1995) Cytoskeletal and calcium-binding proteins in the mammalian organ of Corti: cell type-specific proteins displaying longitudinal and radial gradients. Hear Res 91:119–135.

    CAS  PubMed  Google Scholar 

  • Pantelias AA, Monsivais P, Rubel EW (2001) Tonotopic map of potassium currents in chick auditory hair cells using an intact basilar papilla. Hear Res 156:81–94.

    Article  CAS  PubMed  Google Scholar 

  • Pickles JO, Comis SD, Osborne MP (1984) Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15:103–112.

    Article  CAS  PubMed  Google Scholar 

  • Pickles JO, von Perger M, Rouse GW, Brix J (1991) The development of links between stereocilia in hair cells of the chick basilar papilla. Hear Res 54:153–63.

    Article  CAS  PubMed  Google Scholar 

  • Pujol R, Lavigne-Rebillard M, Lenoir M (1998) Development of the sensory and neural structures in the mammalian cochlea. In: Rubel EW, Popper AN, Fay RR (eds), Development of the Auditory System. New York: Springer-Verlag, pp. 146–193.

    Google Scholar 

  • Ramanathan K, Fuchs PA (2002) Modeling hair cell tuning by expression gradients of potassium channel beta subunits. Biophys J 82:64–75.

    CAS  PubMed  Google Scholar 

  • Raphael Y, Volk T, Crossin KL, Edelman GM, Geiger B (1988) The modulation of cell adhesion molecule expression and intercellular junction formation in the developing avian inner ear. Dev Biol 128:222–235.

    Article  CAS  PubMed  Google Scholar 

  • Raphael Y, Kobayashi KN, Dootz GA, Beyer LA, Dolan DF, Burmeister M (2001) Severe vestibular and auditory impairment in three alleles of Ames waltzer (av) mice. Hear Res 151:237–249.

    Article  CAS  PubMed  Google Scholar 

  • Richardson GP, Crossin KL, Chuong CM, Edelman GM (1987) Expression of cell adhesion molecules during embryonic induction. III. Development of the otic placode. Dev Biol 119:217–230.

    Article  CAS  PubMed  Google Scholar 

  • Richardson GP, Forge A, Kros CJ, Fleming J, Brown SD, Steel KP (1997) Myosin VIIA is required for aminoglycoside accumulation in cochlear hair cells. J Neurosci 17:9506–9519.

    CAS  PubMed  Google Scholar 

  • Richardson GP, Forge A, Kros CJ, Marcotti W, Becker D, Williams DS, Thorpe J, Fleming J, Brown SD, Steel KP (1999) A missense mutation in myosin VIIA prevents aminoglycoside accumulation in early postnatal cochlear hair cells. Ann N Y Acad Sci 884:110–124.

    CAS  PubMed  Google Scholar 

  • Rosenblatt KP, Sun ZP, Heller S, Hudspeth AJ (1997) Distribution of Ca2+-activated K+ channel isoforms along the tonotopic gradient of the chicken’s cochlea. Neuron 19:1061–1075.

    Article  CAS  PubMed  Google Scholar 

  • Rubel EW, Oesterle EC, Weisleder P (1991) Hair cell regeneration in the avian inner ear. Ciba Found Symp 160:77–96; discussion 96–102.

    CAS  PubMed  Google Scholar 

  • Ruben RJ (1967) Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol Suppl 220:1–44.

    Google Scholar 

  • Rüsch A, Lysakowski A, Eatock RA (1998) Postnatal development of type I and type II hair cells in the mouse utricle: acquisition of voltage-gated conductances and differentiated morphology. J Neurosci 18:7487–7501.

    PubMed  Google Scholar 

  • Rzadzinska AK, Schneider ME, Davies C, Riordan GP, Kachar B (2004) An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewa. J Cell Biol 164:887–897.

    Article  CAS  PubMed  Google Scholar 

  • Sans A, Chat M (1982) Analysis of temporal and spatial patterns of rat vestibular hair cell differentiation by tritiated thymidine radioautography. J Comp Neurol 206:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Scarfone E, Dememes D, Perrin D, Aunis D, Sans A (1988) Alpha-fodrin (brain spectrin) immunocytochemical localization in rat vestibular hair cells. Neurosci Lett 93:13–18.

    Article  CAS  PubMed  Google Scholar 

  • Schneider ME, Belyantseva IA, Azevedo RB, Kachar B (2002) Rapid renewal of auditory hair bundles. Nature 418:837–838.

    Article  CAS  PubMed  Google Scholar 

  • Schulte BA (1993) Immunohistochemical localization of intracellular Ca-ATPase in outer hair cells, neurons and fibrocytes in the adult and developing inner ear. Hear Res 65:262–273.

    Article  CAS  PubMed  Google Scholar 

  • Self T, Mahony M, Fleming J, Walsh J, Brown SD, Steel KP (1998) Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 125:557–566.

    CAS  PubMed  Google Scholar 

  • Self T, Sobe T, Copeland NG, Jenkins NA, Avraham KB, Steel KP (1999) Role of myosin VI in the differentiation of cochlear hair cells. Dev Biol 214:331–341.

    Article  CAS  PubMed  Google Scholar 

  • Si F, Brodie H, Gillespie PG, Vasquez AE, Yamoah EN (2003) Developmental assembly of transduction apparatus in chick basilar papilla. J Neurosci 23:10815–10826.

    CAS  PubMed  Google Scholar 

  • Siemens J, Kazmierczak P, Reynolds A, Sticker M, Littlewood-Evans A, Muller U (2002) The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions. Proc Natl Acad Sci USA 99:14946–14951.

    Article  CAS  PubMed  Google Scholar 

  • Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, Muller U (2004) Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428:950–955.

    Article  CAS  PubMed  Google Scholar 

  • Simonneau L, Gallego M, Pujol R (2003) Comparative expression patterns of T-, N-, E-cadherins, beta-catenin, and polysialic acid neural cell adhesion molecule in rat cochlea during development: implications for the nature of Kolliker’s organ. J Comp Neurol 459:113–126.

    Article  CAS  PubMed  Google Scholar 

  • Slepecky N, Chamberlain SC (1985) Immunoelectron microscopic and immunofluorescent localization of cytoskeletal and muscle-like contractile proteins in inner ear sensory hair cells. Hear Res 20:245–260.

    Article  CAS  PubMed  Google Scholar 

  • Slepecky NB (1996) Structure of the mammalian cochlea. In: Dallos P, Popper AN, Fay RR (eds), The Cochlea. New York: Springer-Verlag, pp. 44–129.

    Google Scholar 

  • Smith CA, Konishi M, Schuff N (1985) Structure of the barn owl’s (Tyto alba) inner ear. Hear Res 17:237–247.

    Article  CAS  PubMed  Google Scholar 

  • Smolders JW (1999) Functional recovery in the avian ear after hair cell regeneration. Audiol Neurootol 4:286–302.

    Article  CAS  PubMed  Google Scholar 

  • Sobin A, Flock A (1983) Immunohistochemical identification and localization of actin and fimbrin in vestibular hair cells in the normal guinea pig and in a strain of the waltzing guinea pig. Acta Otolaryngol 96:407–412.

    CAS  PubMed  Google Scholar 

  • Sollner C, Rauch GJ, Siemens J, Geisler R, Schuster SC, Muller U, Nicolson T (2004) Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 428:955–959.

    PubMed  Google Scholar 

  • Souter M, Nevill G, Forge A (1995) Postnatal development of membrane specializations of gerbil outer hair cells. Hear Res 91:43–62.

    CAS  PubMed  Google Scholar 

  • Souter M, Nevill G, Forge A (1997) Postnatal maturation of the organ of Corti in gerbils: morphology and physiological responses. J Comp Neurol 386:635–651.

    Article  CAS  PubMed  Google Scholar 

  • Steel KP, Brown SD (1996) Genetics of deafness. Curr Opin Neurobiol 6:520–525.

    Article  CAS  PubMed  Google Scholar 

  • Stone JS, Rubel EW (2000b) Temporal, spatial, and morphologic features of hair cell regeneration in the avian basilar papilla. J Comp Neurol 417:1–16.

    Article  CAS  PubMed  Google Scholar 

  • Strutt DI, Weber U, Mlodzik M (1997) The role of RhoA in tissue polarity and Frizzled signalling. Nature 387:292–295.

    Article  CAS  PubMed  Google Scholar 

  • Strutt D, Johnson R, Cooper K, Bray S (2002) Asymmetric localization of frizzled and the determination of notch-dependent cell fate in the Drosophila eye. Curr Biol 12:813–824.

    Article  CAS  PubMed  Google Scholar 

  • Swanson GJ, Howard M, Lewis J (1990) Epithelial autonomy in the development of the inner ear of a bird embryo. Dev Biol 137:243–257.

    Article  CAS  PubMed  Google Scholar 

  • Takeichi M (1995) Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 7:619–627.

    Article  CAS  PubMed  Google Scholar 

  • Tilney LG, DeRosier DJ (1986) Actin filaments, stereocilia, and hair cells of the bird cochlea. IV. How the actin filaments become organized in developing stereocilia and in the cuticular plate. Dev Biol 116:119–129.

    CAS  PubMed  Google Scholar 

  • Tilney LG, Tilney MS, Saunders JS, DeRosier DJ (1986) Actin filaments, stereocilia, and hair cells of the bird cochlea. III. The development and differentiation of hair cells and stereocilia. Dev Biol 116:100–118.

    CAS  PubMed  Google Scholar 

  • Tilney MS, Tilney LG, DeRosier DJ (1987) The distribution of hair cell bundle lengths and orientations suggests an unexpected pattern of hair cell stimulation in the chick cochlea. Hear Res 25:141–151.

    Article  CAS  PubMed  Google Scholar 

  • Tilney LG, Tilney MS, Cotanche DA (1988a) New observations on the stereocilia of hair cells of the chick cochlea. Hear Res 37:71–82.

    Article  CAS  PubMed  Google Scholar 

  • Tilney LG, Tilney MS, Cotanche DA (1988b) Actin filaments, stereocilia, and hair cells of the bird cochlea. V. How the staircase pattern of stereociliary lengths is generated. J Cell Biol 106:355–365.

    Article  CAS  PubMed  Google Scholar 

  • Tilney MS, Tilney LG, Stephens RE, Merte C, Drenckhahn D, Cotanche DA, Bretscher A (1989) Preliminary biochemical characterization of the stereocilia and cuticular plate of hair cells of the chick cochlea. J Cell Biol 109:1711–1723.

    CAS  PubMed  Google Scholar 

  • Tilney LG, Tilney MS, DeRosier DJ (1992) Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu Rev Cell Biol 8:257–274.

    Article  CAS  PubMed  Google Scholar 

  • Troutt LL, van Heumen WR, Pickles JO (1994) The changing microtubule arrangements in developing hair cells of the chick cochlea. Hear Res 81:100–108.

    Article  CAS  PubMed  Google Scholar 

  • Tsukita S, Furuse M (2000a) Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J Cell Biol 149:13–16.

    Article  CAS  PubMed  Google Scholar 

  • Tsukita S, Furuse M (2000b) The structure and function of claudins, cell adhesion molecules at tight junctions. Ann NY Acad Sci 915:129–135.

    CAS  PubMed  Google Scholar 

  • Verpy E, Leibovici M, Zwaenepoel I, Liu XZ, Gal A, Salem N, Mansour A, Blanchard S, Kobayashi I, Keats BJ, Slim R, Petit C (2000) A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat Genet 26:51–55.

    CAS  PubMed  Google Scholar 

  • Warchol ME, Corwin JT (1996) Regenerative proliferation in organ cultures of the avian cochlea: identification of the initial progenitors and determination of the latency of the proliferative response. J Neurosci 16:5466–5477.

    CAS  PubMed  Google Scholar 

  • Weaver SP, Hoffpauir J, Schweitzer L (1994) Distribution of actin in developing outer hair cells in the gerbil. Hear Res 72:181–188.

    CAS  PubMed  Google Scholar 

  • Weil D, El-Amraoui A, Masmoudi S, Mustapha M, Kikkawa Y, Laine S, Delmaghani S, Adato A, Nadifi S, Zina ZB, Hamel C, Gal A, Ayadi H, Yonekawa H, Petit C (2003) Usher syndrome type I G (USH1G) is caused by mutations in the gene encoding SANS, a protein that associates with the USH1C protein, harmonin. Hum Mol Genet 12:463–471.

    Article  CAS  PubMed  Google Scholar 

  • Wells AL, Lin AW, Chen LQ, Safer D, Cain SM, Hasson T, Carragher BO, Milligan RA, Sweeney HL (1999) Myosin VI is an actin-based motor that moves backwards. Nature 401:505–508.

    CAS  PubMed  Google Scholar 

  • Whitlon DS (1993) E-cadherin in the mature and developing organ of Corti of the mouse. J Neurocytol 22:1030–1038.

    Article  CAS  PubMed  Google Scholar 

  • Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN, Ploplis B, Belyantseva I, Ben-Yosef T, Liburd NA, Morell RJ, Kachar B, Wu DK, Griffith AJ, Friedman TB (2001) Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104:165–172.

    Article  CAS  PubMed  Google Scholar 

  • Wright A, Davis A, Bredberg G, Ulehlova L, Spencer H (1987) Hair cell distributions in the normal human cochlea. Acta Otolaryngol Suppl 444:1–48.

    CAS  PubMed  Google Scholar 

  • Wright MB, Hugo C, Seifert R, Disteche CM, Bowen-Pope DF (1998) Proliferating and migrating mesangial cells responding to injury express a novel receptor proteintyrosine phosphatase in experimental mesangial proliferative glomerulonephritis. J Biol Chem 273:23929–23937.

    Article  CAS  PubMed  Google Scholar 

  • Xiang M, Gao WQ, Hasson T, Shin JJ (1998) Requirement for Brn-3c in maturation and survival, but not in fate determination of inner ear hair cells. Development 125:3935–3946.

    CAS  PubMed  Google Scholar 

  • Ylikoski J, Pirvola U, Narvanen O, Virtanen I (1990) Nonerythroid spectrin (fodrin) is a prominent component of the cochlear hair cells. Hear Res 43:199–203.

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155.

    Article  CAS  PubMed  Google Scholar 

  • Zheng JL, Gao WQ (1997) Analysis of rat vestibular hair cell development and regeneration using calretinin as an early marker. J Neurosci 17:8270–8282.

    CAS  PubMed  Google Scholar 

  • Zheng L, Sekerkova G, Vranich K, Tilney LG, Mugnaini E, Bartles JR (2000) The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 102:377–385.

    CAS  PubMed  Google Scholar 

  • Zine A, Romand R (1996) Development of the auditory receptors of the rat: a SEM study. Brain Res 721:49–58.

    CAS  PubMed  Google Scholar 

  • Zine A, Hafidi A, Romand R (1995) Fimbrin expression in the developing rat cochlea. Hear Res 87:165–169.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Bryant, J.E., Forge, A., Richardson, G.P. (2005). The Differentiation of Hair Cells. In: Kelley, M.W., Wu, D.K., Popper, A.N., Fay, R.R. (eds) Development of the Inner Ear. Springer Handbook of Auditory Research, vol 26. Springer, New York, NY. https://doi.org/10.1007/0-387-30678-1_6

Download citation

Publish with us

Policies and ethics