Skip to main content

Human Exposure to Lead in Chile

  • Chapter

Part of the Reviews of Environmental Contamination and Toxicology book series (RECT,volume 185)

Summary

Lead is a very toxic environmental pollutant that affects people living or working in contaminated areas or ingesting this element. Since the beginning of lead use, it has left evidence of lead poisoning with dramatic effects on the destiny of ancient civilizations. It was recently proposed that this toxicity can also contribute to the decline of current societies through lead-induced impairment of intelligence, increased tendency to abuse of drugs, psychological and behavioral changes, and increase in delinquent behavior.

The effects of chronic exposure to lead in adolescents or adults may be reversed, at least in part, after a decrease in the blood lead levels. In contrast, in children, especially at earlier ages, the effects are irreversible, may persist through life, and some of them may be induced by the mechanism of imprinting. Exposure to lead during the perinatal period of life may occur in mothers previously exposed to the metal, presenting increased concentration of lead in bones; fetuses and newborns are most vulnerable to the toxic effects of lead because the damage persists throughout life.

The various sources of lead exposure in Chile as well as the evolution of regulations and mitigation measures are reviewed. An important source of contamination with lead was the existence of paints with high lead content, used to paint house walls, children’s furniture, and toys, among other objects. The highest content of lead in paints was not in those bearing Chilean trademark names, but from a foreign trademark with formulas licensed to produce in Chile, although the same products in the country of origin (U.S.) did not present measurable lead levels. From 1997 on, new legislation regulated lead content in paints. Many houses, furniture, children’s toys, and other objects painted before 1997 are still an important source of exposure to lead, mainly for children.

Formerly, the widest source of lead contamination in Chile was the use of leaded gasoline, mainly in greatly populated cities. There has been a progressive decrease in lead content in leaded gasoline, which was banned in April 2001. Lead pollution still persists in highly populated cities as city soil, home soil, and as soil contamination near highways.

Clusters of different magnitude originated from point sources, of which the most relevant in magnitude was that which occurred in Ñuble with the use of wheat flour contaminated with lead, caused by the use of a mill whose stone was repaired by lead welding. Several other clusters of smaller magnitude are frequently caused by the widespread practice of battery repair and recovery by small enterprises or as a familial productive activity, affecting all the family group and occasionally persons living in the vicinity.

Two special cases of very important environmental contamination occurred, affecting the population of two major cities. The most dramatic case was the storage of powdered lead mineral concentrates at the ports or the railroad terminals within the cities of Arica and Antofagasta, where it usually remained until shipped to other countries. Lead from this source is the most relevant source of exposure in the cities of Arica and Antofagasta. Another source of lead, which affected the population of Arica, originated from toxic wastes imported by Promel from the Swedish company Boliden Metal, stored without protection in Arica suburbs, where a few years later new dwellings were constructed and residents were exposed for more than 10 years.

Occupational exposure frequently occurs in painters, welders, and mining or smelting workers. Various degrees of food lead contamination may increase exposure to the metal. Vegetables grown in or near highly populated areas, lead pipes in old dwellings or copper pipes welded with lead, and formerly lead from canned food, especially those that had been accidentally deformed or were opened and the food stored in those cans.

Little information exists on lead content in soil. There are sites where lead concentrations are increased from anthropogenic sources. In regions known to have abundant lead minerals, soil is not contaminated in the vicinity of rivers, suggesting that raw lead minerals do not dissolve in water and do not affect the soil.

Keywords

  • Lead Concentration
  • Lead Level
  • Delinquent Behavior
  • Lead Exposure
  • Blood Lead Level

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/0-387-30638-2_4
  • Chapter length: 47 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-30638-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Hakkak ZS, Hamamy HA, Murad AMB, Hussain AF (1986) Chromosome aberrations in workers at a storage battery plant in Iraq. Mutat Res 171:53–60.

    PubMed  CAS  Google Scholar 

  • Alonso P, Castro H, Davis ME, Goza J, Hargous J, Rivera L, Tassara E (1997) Intoxicación por plomo: estudio epidemiológico Ñuble, Chile 1996. EPI Visión, Ministerio de Salud, Chile, pp 10–15.

    Google Scholar 

  • Banks EC, Ferretti LE, Shucard DW (1997) Effects of low level lead exposure on cognitive function in children: a review of behavioral, neuropsychological and biological evidence. Neurotoxicology 18:237–282.

    PubMed  CAS  Google Scholar 

  • Baker EL, Landrigan PJ, Barbour AG, Cox DH, Folland DS, Ligo RN, Throckmorton J (1979) Occupational lead poisoning in the United States: clinical and biochemical findings related to blood lead levels. Br J Ind Med 36:314–322.

    PubMed  CAS  Google Scholar 

  • Bastías JM, Muñoz O, Moreno I, Rubilar C (2004) Evaluación del contenido de arsénico y plomo en raciones de desayuno y almuerzos entregados a escolares de la VII región, Chile. CD Abstracts, XIII Latin American and Caribean Seminar on Food Science and Technology, Montevideo, Uruguay.

    Google Scholar 

  • Bornschein RL, Grote J, Mitchell T, Succop PA, Dietrich KN, Krafft KM, Hammond PB (1989) Effects of prenatal lead exposure on infant size at birth. In: Smith MA, Grant LD, Sors AI (eds) Lead Exposure and Child Development. An International Assessment. Kluwer, Dordrecht, pp 307–319.

    Google Scholar 

  • Briones MJ, Vera PA (2002) Prospección y caracterización de los metales pesados en Chile, un caso particular: plomo en hortalizas cultivadas en la Provincia de San Antonio, V Región. Thesis, UTEM, Santiago, Chile.

    Google Scholar 

  • Byers RK, Lord E (1943) Late effects of lead poisoning on mental development. Am J Dis Child 66:471–494.

    CAS  Google Scholar 

  • Cardenas A, Roels H, Bernard AM, Barbon R, Buchet JP, Lauwerys RR, Rosello J, Ramis I, Mutti A, Franchini I, Fels LM, Stolte H, de Broe ME, Nuyts GD, Taylor SA, Price RG (1993) Markers of early renal changes induced by industrial pollutants. II. Application to workers exposed to lead. Br J Ind Med 50:28–36.

    PubMed  CAS  Google Scholar 

  • Cisternas R, Sáez M (1980) Liberación de delta-ala en orina de niños: un indicador de contaminación por plomo en Santiago. Rev Chil Pediatr 51:13–18.

    PubMed  CAS  Google Scholar 

  • Cohen N, Modai D, Golik A, Weissgarten J, Peller S, Katz A, Averbukh Z, Shaked U (1989) Increased concanavalin A-induced suppressor cell activity in humans with occupational lead exposure. Environ Res 48:1–6.

    PubMed  CrossRef  CAS  Google Scholar 

  • Comité Mixto FAO/OMS de Expertos en Aditivos Alimentarios (1999) Evaluación de ciertos aditivos alimentarios y contaminantes de alimentos. 538 Informe de JECFA. N8896, Ginebra.

    Google Scholar 

  • CONAMA Chile (1994) Perfil Ambiental de Chile. Comisión Nacional de Medio Ambiente (CONAMA), Chile.

    Google Scholar 

  • Cooper WC (1988) Deaths from chronic renal disease in US battery and lead production workers. Environ Health Perspect 78:61–63.

    PubMed  CAS  Google Scholar 

  • Csaba G (1980) Phylogeny and ontogeny of hormone receptors: the selection theory of receptor formation and hormonal imprinting. Biol Rev 55:47–63.

    PubMed  CAS  Google Scholar 

  • Csaba G, Inczefi-Gonda A, Dobozy O (1986) Hormonal imprinting by steroids: a single neonatal treatment with diethylstilbestrol or allylestrenol gives a rise to a lasting decrease in the number of rat uterine receptors. Acta Physiol Hung 67:207–212.

    PubMed  Google Scholar 

  • Davis JM, Grant LD (1992) The sensitivity of children to lead. In: Guzelian PS, Henry CJ, Olin S (eds) Similarities and Differences Between Children and Adults: Implications for Risk Assessment. ILSI Press, Washington, DC, pp 15–27.

    Google Scholar 

  • Davis JM, Svendsgaard DJ (1990) Nerve conduction velocity and led: a critical review and meta-analysis. In: Johnson BL, Anger WK, Durao A, Xinteras C (eds) Advances in Neurobehavioural Toxicology: Applications in Environmental and Occupational Health. Lewis, Chelsea, MI, pp 353–376.

    Google Scholar 

  • Deknudt G, Leonard A, Ivanov B (1973) Chromosome aberrations observed in male workers occupationally exposed to lead. Environ Physiol Biochem 3:132–138.

    Google Scholar 

  • Díaz O, García M (2003) Avances en Toxicología de Contaminantes Químicos en Alimentos. Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Santiago, Chile.

    Google Scholar 

  • Dietrich KN, Succop PA, Berger OG, Keith RW (1992) Lead exposure and the central auditory processing abilities and cognitive development of urban children: the Cincinnati lead study cohort at age 5 years. Neurotoxicol Teratol 14:51–56

    PubMed  CrossRef  CAS  Google Scholar 

  • Dobozy O, Csaba G, Hetényi G, Shahin M (1985) Investigation of gonadotropin thyrotropin overlapping and hormonal imprinting in the rat testis. Acta Physiol Hung 66:169–175.

    PubMed  CAS  Google Scholar 

  • D 374/97 Ministry of Health, Chile (1997) Establece norma sobre contenido de plomo en pinturas. Ministry of Health, Republic of Chile.

    Google Scholar 

  • D 594/99 Ministry of Health, Chile (1999) Reglamento sobre condiciones sanitarias y ambientales básicas en los lugares de trabajo. Ministry of Health, Republic of Chile, art 113.

    Google Scholar 

  • D 201/2001, Ministry of Health, Chile (2001) Modifica reglamento sobre condiciones sanitarias y ambientales básicas en los lugares de trabajo. Ministry of Health, Republic of Chile, art 17.

    Google Scholar 

  • D 745/92 Ministry of Health, Chile (1992) Reglamento sobre condiciones sanitarias y ambientales básicas en los lugares de trabajo. Ministry of Health, Republic of Chile, art 101.

    Google Scholar 

  • D 977/96 Ministry of Health, Chile (1996) Reglamento sanitario de los alimentos. Ministry of Health, Republic of Chile.

    Google Scholar 

  • D 475/99 Ministry of Health, Chile (1999) Modificación del reglamento sanitario de los alimentos. Ministry of Health, Republic of Chile.

    Google Scholar 

  • D 238/2000 Ministry of Health, Chile (2000) Modificación del reglamento sanitario de los alimentos. Ministry of Health, Republic of Chile.

    Google Scholar 

  • DS 136/00 Chile (2000) Establece norma de calidad primaria para plomo en el aire. Ministry of the General Secretariat of the Presidency, Republic of Chile.

    Google Scholar 

  • DS 058/03 Chile (2003) Reformula y actualiza plan de prevención y descontaminación atmosférica para la Región Metropolitana, Ministry of the General Secretariat of the Presidency, Republic of Chile.

    Google Scholar 

  • Ewers U, Stiller-Winkler R, Idel H (1982) Serum immunoglobulin, complement C3, and salivary IgA level in lead workers. Environ Res 29:351–357.

    PubMed  CrossRef  CAS  Google Scholar 

  • Frenz P, Vega J, Marchetti N, Torres J, Kopplin E, Delgado I, Vega F (1997) Exposición crónica a plomo ambiental en lactantes chilenos. Rev Méd Chile 125:1137–1144.

    PubMed  CAS  Google Scholar 

  • Gallardo L, Olivares G, Aguayo A, Langner J, Aarhus B, Engardt M, Gidhagen L (2000) Regional dispersion of oxidized sulfur over Central Chile using the HIRLAM-MATCH system. Comision Nacional de Medio Ambiente (CONAMA), Chile.

    Google Scholar 

  • Gilfillan SC (1965) Lead poisoning and the fall of Rome. J Occup Med 7:53–60.

    CAS  PubMed  Google Scholar 

  • González S (1994) Geoquímica demetales pesados en Chile. In: Impacto Ambiental de Metales Pesados en Chile. Simposio sobre Contaminación Ambiental, Santiago, Chile, pp 10–29.

    Google Scholar 

  • Grandjean P, Jensen BM, Sando SH, Jorgensen PJ, Antonsen S (1989) Delayed blood regeneration in lead exposure: an effect on reserve capacity. Am J Public Health 79:1385–1388.

    PubMed  CAS  CrossRef  Google Scholar 

  • Graziano JH, Slavkovic V, Factor-Litvak P, Popovac D, Ahmedi X, Mehmeti A (1991) Depressed serum erythropoietin in pregnant women with elevated blood lead. Arch Environ Health 46:347–350.

    PubMed  CAS  CrossRef  Google Scholar 

  • Jaremin B (1983) Blast lymphocyte transformation (LTT), rosette (E-RFC) and leukocyte migration inhibition (MIF) tests in persons exposed to the action of lead during work. Report II Bull Inst Marit Trop Med (Gdynia) 34:187–197.

    Google Scholar 

  • Koller LD (1990) The immunotoxic effects of lead in lead-exposed laboratory animals. Ann NY Acad Sci 587:160–167.

    PubMed  CAS  Google Scholar 

  • Lang DS, Meier KL, Luster MI (1993) Comparative effects of immunotoxic chemicals on in vitro proliferative responses of human and rodent lymphocytes. Fundam Appl Toxicol 21:535–545.

    PubMed  CrossRef  CAS  Google Scholar 

  • Long GJ, Rosen JF (1994) Lead perturbs 1,25-dihydroxyvitamin D3 modulation of intracellular calcium metabolism in clonal rat osteoblastic (ROS 17/2.8) cells. Life Sci 54:1395–1402.

    PubMed  CrossRef  CAS  Google Scholar 

  • Mahaffey KR, Rosen JP, Chesney RW, Peeler JT, Smith CM, DeLuca HF (1982) Association between age, blood lead concentration, and serum 1,25-dihydrocalciferol levels in children. Am J Clin Nutr 35:1327–1331.

    PubMed  CAS  Google Scholar 

  • Ministry of Health, Chile (1993) Blood lead means and percent ≤10 mg/dl maternal, umbilical cord, 6m, 12m and 18 m, Santiago and San Felipe 1992 cohorts. Ministry of Health, Chile.

    Google Scholar 

  • NAS-NRC (1972) Airborne Lead in Perspective. National Academy of Science, Washington, DC.

    Google Scholar 

  • Needleman H, Gunnoe C, Leviton A, Reed M, Peresie H, Maher C, Barrett P (1979) Deficits in psychological and classroom performance of children with elevated dentine lead levels. N Engl J Med 300:689–695.

    PubMed  CAS  CrossRef  Google Scholar 

  • Needleman HL, Rabinowithz M, Leviton A, Linn S, Schoenbaum S (1984) The relationship between prenatal exposure and congenital anomalies. JAMA 251:2956–2959.

    PubMed  CrossRef  CAS  Google Scholar 

  • Needleman HL, Riess JA, Tobin MJ, Biesecker GE, Greenhouse JB (1996) Bone lead levels and delinquent behavior. JAMA 275:363–369.

    PubMed  CrossRef  CAS  Google Scholar 

  • Ong CN, Endo G, Chia KS (1987) Evaluation of renal function in workers with low blood lead levels. In: Occupational and Environmental Chemical Hazards: Cellular and Biochemical Indices for Monitoring Toxicity. Horwood, Chicester, pp 327–333.

    Google Scholar 

  • Pagliuca A, Mufti GJ, Baldwin D, Lestas AN, Wallis RM, Bellingham AJ (1990) Lead poisoning: clinical, biochemical, and haematological aspects of a recent outbreak. J Clin Pathol 43:277–281.

    PubMed  CAS  Google Scholar 

  • Regional Public Health Service of Antofagasta (2000) Informe evaluación Playa Carboncillo, Antofagasta, Chile.

    Google Scholar 

  • Ronis MJJ, Badger TM, Shema SJ, Roberson PK, Shaikh F (1996) Reproductive toxicity and growth effects in rats exposed to lead at different periods during development. Toxicol Appl Pharmacol 136:361–371.

    PubMed  CrossRef  CAS  Google Scholar 

  • Ruthllant J, Garreaud R (1995) Meteorological air pollution potential for Santiago, Chile: towards an objective episode forecasting. Environ Monit Assess 34:223–244.

    Google Scholar 

  • Schmid E, Bauchinger M, Pietruk S, Hall G (1972) Cytogenic action of lead in human peripheral lymphocytes in vitro and in vivo (in German). Mutat Res 16:401–406.

    PubMed  CAS  Google Scholar 

  • Schwartz J, Otto D (1991) Lead and minor hearing impairment. Arch Environ Health 46:300–305.

    PubMed  CAS  CrossRef  Google Scholar 

  • Schwartz J, Angle C, Pitcher H (1986) Relationship between childhood blood lead levels and stature. Pediatrics 77:281–288.

    PubMed  CAS  Google Scholar 

  • Schwartz J, Landrigan PL, Baker EL (1990) Lead-induced anemia: dose-response relationships and evidence for a threshold. Am J Public Health 80:165–168.

    PubMed  CAS  Google Scholar 

  • Sepúlveda V, Vega J, Delgado I (2000) Exposición severa a plomo ambiental en una población infantil de Antofagasta, Chile. Rev Méd Chile 128:221–232.

    PubMed  Google Scholar 

  • Servicio de Salud de Arica (2000) Resultados exámenes en Población Villa Santa María. Plomo en Sangre. Ministerio de Salud, Chile, Servicio de Salud Arica, Subdirección Médica, Unidad de Epidemiología.

    Google Scholar 

  • Servicio de Salud de Arica (2001) Nómina de personas con muestras de plomo en sangre con niveles >10 µg/dl confirmada por I.S.P. Muestreo realizado en año 2000 y controles en 2001. Población industriales II, III y IV. Pob. Co. Chuño. Ministerio de Salud, Chile, Servicio de Salud Arica, Subdirección Médica, Unidad de Epidemiología.

    Google Scholar 

  • Servicio Municipal de Salud Arica (2001) Informe Julio 2001. Campaña de Salud Niños de Arica Libres de Plomo. Municipalidad de Arica, República de Chile.

    Google Scholar 

  • SESMA Chile (2001) Determinación de niveles de exposición a plomo en el aire de la Región Metropolitana entre 1997 y 2000, Servicio de Salud del Ambiente de la Región Metropolitana SESMA, Gobierno de Chile.

    Google Scholar 

  • SESMA Chile (2002) Caracterización de elementos inorgánicos presentes en el aire de la Región Metropolitana 1997–2000, Servicio de Salud del Ambiente de la Región Metropolitana SESMA, Gobierno de Chile.

    Google Scholar 

  • Silva H, Tchernitchin AN, Aguilera L (1999) Tiempo de reacción ante estímulos visuales y su relación con los accidentes del tránsito. In: IV Congreso Latinoamericano de Epidemiología, Santiago, Chile, p 131.

    Google Scholar 

  • Staessen JA, Christopher JB, Fagard R, Lauwerys RR, Roels H, Thijs L, Amery A (1994) Hypertension caused by low-level lead exposure: myth or fact? J Cardiovasc Risk 1: 87–97.

    PubMed  CAS  Google Scholar 

  • Tchernitchin AN (2001) Efectos diferidos de la exposición prenatal, neonatal o durante el desarrollo infantil a contaminantes ambientales. Visión Médica Regional (Concepción, Chile) 6(5):76–83.

    Google Scholar 

  • Tchernitchin AN, Castro JL (2001) Oficio de Presidencia Colegio Médico, N80994, a Ministra de Salud.

    Google Scholar 

  • Tchernitchin AN, Castro JL (2002) Carta al Editor, Respuesta al Gerente Técnico Sherwin Williams Chile SA. Visión Médica Regional (Concepción, Chile) 6(7):93–97.

    Google Scholar 

  • Tchernitchin AN, Tchernitchin N (1992) Imprinting of paths of heterodifferentiation by prenatal or neonatal exposure to hormones, pharmaceuticals, pollutants and other agents or conditions. Med Sci Res 20:391–397.

    CAS  Google Scholar 

  • Tchernitchin AN, Villarroel C (2002) Colegio Médico (Visiones sectoriales del CDS). CDS Chile 1:42–43.

    Google Scholar 

  • Tchernitchin AN, Villarroel C (2003) El derecho a la salud. In: Godoy Y, Carrasco D (eds) Derechos Económicos, Sociales y Culturales en Chile. Informe de la Sociedad Civil. Servimpress, Santiago, Chile, pp 45–61.

    Google Scholar 

  • Tchernitchin AN, Villagra R, Tchernitchin NN (1997) Effect of chronic exposure to lead on immature rat leukocytes. Med Sci Res 25:355–357.

    CAS  Google Scholar 

  • Tchernitchin NN, Tchernitchin AN, Mena MA, Villarroel C, Guzmán C, Poloni P (1998) Effect of subacute exposure to lead on responses to estrogen in the immature rat uterus. Bull Environ Contam Toxicol 60:759–765.

    PubMed  CrossRef  CAS  Google Scholar 

  • Tchernitchin AN, Tchernitchin NN, Mena MA, Unda C, Soto J (1999) Imprinting: perinatal exposures cause the development of diseases during the adult age. Acta Biol Hung 50:425–440.

    PubMed  CAS  Google Scholar 

  • Tchernitchin NN, Clavero A, Mena MA, Unda C, Villagra R, Cumsille M, Tchernitchin AN (2003) Effect of chronic exposure to lead on estrogen action in the prepubertal rat uterus. Environ Toxicol 18:268–277.

    PubMed  CrossRef  CAS  Google Scholar 

  • Tuppurainen M, Wagar G, Kurppa K, Sakari W, Wambugu A, Froseth B, Alho J, Nykyri E (1988) Thyroid function as assessed by routine laboratory tests of workers with longterm lead exposure. Scand J Work Environ Health 14:175–180.

    PubMed  CAS  Google Scholar 

  • USEPA (1986) Air quality criteria for lead. EPA-600/8-83/028aF-dF. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (1990) Supplement to the 1986 EPA air quality criteria for lead. Volume 1, Addendum: Relationship of blood pressure to lead exposure. EPA/600/8-89/0 49F. U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Washington, DC.

    Google Scholar 

  • Villagra R, Tchernitchin NN, Tchernitchin AN (1997) Effect of subacute exposure to lead and estrogen on immature pre-weaning rat leukocytes. Bull Environ Contam Toxicol 58:190–197.

    PubMed  CrossRef  CAS  Google Scholar 

  • Waldron HA (1973) Lead poisoning in the ancient world. Med Hist 17:391–399.

    PubMed  CAS  Google Scholar 

  • Ward NI, Watson R, Bryce-Smith D (1987) Placental element levels in relation to fetal development for obstetrically normal births. A study of 37 elements. Evidence for the effects of cadmium, lead, and zinc on fetal growth and for smoking as a source of cadmium. Int J Biosoc Res 9:63–81.

    Google Scholar 

  • Weeden RP, Maesaka JK, Weiner B, Lipat GA, Lyons MM, Vitale LF, Joselow MM (1975) Occupational lead nephropathy. Am J Med 59:630-641. Weeden RP, Mallik DK, Batuman V (1979) Detection and treatment of occupational lead nephropathy. Arch Intern Med 139:53–57.

    Google Scholar 

  • Winder C (1993) Lead, reproduction and development. Neurotoxicology 14:303–317.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Tchernitchin, A.N. et al. (2006). Human Exposure to Lead in Chile. In: Ware, G.W., Nigg, H.N., Doerge, D.R. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 185. Springer, New York, NY. https://doi.org/10.1007/0-387-30638-2_4

Download citation