Skip to main content

Critical Periods

  • Chapter
Visual Development
  • 737 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsson, M., Andersson, A. K., & Sjostrand, J. (1990). A longitudinal study of a population based sample of astigmatic children I. Refraction and amblyopia II. The changeability of anisometropia (Fabian). Acta Ophthalmologica Copenhagen, 68, 428–434.

    Article  CAS  Google Scholar 

  • Albus, K., & Wolf, W. (1984). Early postnatal development of neuronal function in the kitten’s visual cortex: a laminar analysis. Journal of Physiology, 348, 153–185.

    PubMed  CAS  Google Scholar 

  • Awaya, S., Sugawara, M., & Miyake, S. (1979). Observations in patients with occlusion amblyopia. Transactions of the Ophthalmological Society (UK), 99, 447–454.

    CAS  Google Scholar 

  • Banks, M. S., Aslin, R. N., & Letson, R. D. (1975). Sensitive period for the development of human binocular vision. Science, 190, 675–677.

    PubMed  CAS  Google Scholar 

  • Beaver, C. J., Ji, Q.-H., & Daw, N. W. (2001). Layer differences in the effect of monocular vision in light-and dark-reared kittens. Visual Neuroscience, 18, 811–820.

    Article  PubMed  CAS  Google Scholar 

  • Birch, E. E. (1993). Stereopsis in infants and its developmental relation to visual acuity. In K. Simons (Ed.), Early visual development, normal and abnormal (pp. 224–236). New York: Oxford University Press.

    Google Scholar 

  • Birch, E. E., Fawcett, S., & Stager, D. R. (2000a). Why does early surgical alignment improve stereoacuity outcomes in infantile esotropia? Journal American Association of Pediatric Ophthalmology and Strabismus, 4, 10–14.

    Article  CAS  Google Scholar 

  • Birch, E. E., Fawcett, S., & Stager, D. R. (2000b). Co-development of VEP motion response and binocular vision in normal infants and infantile esotropes. Investigative Ophthalmology and Visual Science, 41, 1719–1723.

    PubMed  CAS  Google Scholar 

  • Birch, E. E., Shimojo, S., & Held, R. (1985). Preferential-looking assessment of fusion and stereopsis in infants aged 1–6 months. Investigative Ophthalmology, 26, 366–370.

    CAS  Google Scholar 

  • Birch, E. E., Stager, D. R., Leffler, J., & Weakley, D. R. (1998). Early treatment of congenital unilateral cataract minimizes unequal competition. Investigative Ophthalmology and Visual Science, 39, 1560–1566.

    PubMed  CAS  Google Scholar 

  • Birnbaum, M. H., Koslowe, K., & Sanet, R. (1977). Success in amblyopia therapy as a function of age: a literature survey. American Journal of Optometry and Physiological Optics, 54, 269–275.

    PubMed  CAS  Google Scholar 

  • Blakemore, C., & Van Sluyters, R. C. (1974). Reversal of the physiological effects of monocular deprivation in kittens: further evidence for a sensitive period. Journal of Physiology, 237, 195–216.

    PubMed  CAS  Google Scholar 

  • Bourron-Madignier, M., Cypres, C., & Vettard, S. (1987). Study of optokinetic nystagmus in children. Bulletin des Societes d’Ophtalmologie de France, 87, 1269–1272.

    PubMed  CAS  Google Scholar 

  • Brosnahan, D., Norcia, A. M., Schor, C., & Taylor, D. G. (1998). OKN, perceptual and VEP direction biases in strabismus. Vision Research, 38, 2833–2840.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, B., & Stryker, M. P. (1993). Development of orientation selectivity in ferret visual cortex and effects of deprivation. Journal of Neuroscience, 13, 5251–5262.

    PubMed  CAS  Google Scholar 

  • Cleland, B. G., Mitchell, D. E., Crewther, S. G., & Crewther, D. P. (1980). Visual resolution of retinal ganglion cells in monocularly deprived cats. Brain Research, 192, 261–266.

    Article  PubMed  CAS  Google Scholar 

  • Crowley, J. C., & Katz, L. C. (2000). Early development of ocular dominance columns. Science, 290, 1321–1325.

    Article  PubMed  CAS  Google Scholar 

  • Cynader, M. S., & Mitchell, D. E. (1980). Prolonged sensitivity to monocular deprivation in darkreared cats. Journal of Neurophysiology, 43, 1026–1040.

    PubMed  CAS  Google Scholar 

  • Darian-Smith, C., & Gilbert, C. D. (1994). Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature, 368, 737–740.

    Article  PubMed  CAS  Google Scholar 

  • Daw, N. W. (1994). Mechanisms of plasticity in the visual cortex. Investigative Ophthalmology, 35, 4168–4179.

    CAS  Google Scholar 

  • Daw, N. W. (2003). Critical periods in the visual system. In B. Hopkins & S. P. Johnson (Eds.), Neurobiology of infant vision (pp. 43–103). Westport, CT: Praeger.

    Google Scholar 

  • Daw, N. W., & Wyatt, H. J. (1976). Kittens reared in a unidirectional environment: evidence for a critical period. Journal of Physiology, 257, 155–170.

    PubMed  CAS  Google Scholar 

  • Daw, N.W., Baysinger, K. J., & Parkinson, D. (1987). Increased levels of testosterone have little effect on visual cortical plasticity in the kitten. Journal of Neurobiology, 18, 141–154.

    Article  PubMed  CAS  Google Scholar 

  • Daw, N. W., Berman, N. J., & Ariel, M. (1978). Interaction of critical periods in the visual cortex of kittens. Science, 199, 565–567.

    PubMed  CAS  Google Scholar 

  • Daw, N. W., Fox, K. D., Sato, H., & Czepita, D. (1992). Critical period for monocular deprivation in the cat visual cortex. Journal of Neurophysiology, 67, 197–202.

    PubMed  CAS  Google Scholar 

  • Daw, N. W., Sato, H., Fox, K. D., Carmichael, T., & Gingerich, R. (1991). Cortisol reduces plasticity in the kitten visual cortex. Journal of Neurobiology, 22, 158–168.

    Article  PubMed  CAS  Google Scholar 

  • Demer, J. L., & Von Noorden, G. K. (1988). Optokinetic asymmetry in esotropia. Journal of Pediatric Ophthalmology and Strabismus, 25, 286–292.

    Google Scholar 

  • Derrington, A. M., & Hawken, M. J. (1981). Spatial and temporal properties of cat geniculate neurones after prolonged deprivation. Journal of Physiology, 316, 1–10.

    PubMed  CAS  Google Scholar 

  • Dobson, V., & Sebris, S. L. (1989). Longitudinal study of acuity and stereopsis in infants with or at-risk for esotropia. Investigative Ophthalmology, 30, 1146–1158.

    CAS  Google Scholar 

  • Eizenman, M., Westfall, C. A., Geer, I., Smith, K., Chatterjee, S., Panton, C. M., Kraft, S. P., & Skarf, B. (1999). Electrophysiological evidence of cortical fusion in children with early-onset esotropia. Investigative Ophthalmology and Visual Science, 40, 354–362.

    PubMed  CAS  Google Scholar 

  • El Mallah, M. K., Chakravarthy, U., & Hart, P. M. (2000). Amblyopia: is visual loss permanent? British Journal of Ophthalmology, 84, 952–956.

    Article  PubMed  Google Scholar 

  • Epelbaum, M., Milleret, C., Buisseret, P., & Dufier, J. L. (1993). The sensitive period for strabismic amblyopia in humans. Ophthalmology, 100, 323–327.

    PubMed  CAS  Google Scholar 

  • Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L., & Maffei, L. (1994). Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Research, 34, 709–720.

    Article  PubMed  CAS  Google Scholar 

  • Fawcett, S., & Birch, E. E. (2000). Motion VEPs, stereopsis, and bifoveal fusion in children with strabismus. Investigative Ophthalmology and Visual Science, 41, 411–416.

    PubMed  CAS  Google Scholar 

  • Fawcett, S., Leffler, J., & Birch, E. E. (2000). Factors influencing stereoacuity in accommodative esotropia. Journal American Association of Pediatric Ophthalmology and Strabismus, 4, 15–20.

    Article  CAS  Google Scholar 

  • Freeman, A. W., Nguyen, V. A., & Jolly, N. (1996). Components of visual acuity loss in strabismus. Vision Research, 36, 765–774.

    Article  PubMed  CAS  Google Scholar 

  • Giffin, F., & Mitchell, D. E. (1978). The rate of recovery of vision after early monocular deprivation in kittens. Journal of Physiology, 274, 511–537.

    PubMed  CAS  Google Scholar 

  • Gilbert, C. D., & Wiesel, T. N. (1992). Receptive field dynamics in adult primary visual cortex. Nature, 356, 150–152.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, J. A., & Stryker, M. P. (1996). Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. Journal of Neuroscience, 16, 3274–3286.

    PubMed  CAS  Google Scholar 

  • Guillery, R. W., & Stelzner, D. J. (1970). The differential effects of unilateral eye closure on the monocular and binocular segments of the dorsal lateral geniculate nucleus in the cat. Journal of Comparative Neurology, 139, 413–422.

    Article  PubMed  CAS  Google Scholar 

  • Guire, E. S., Lickey, M. E., & Gordon, B. (1999). Critical period for the monocular deprivation effect in rats: assessment with sweep visually evoked potentials. Journal of Neurophysiology, 81, 121–128.

    PubMed  CAS  Google Scholar 

  • Hamer, R. D., Norcia, A. M., Orel-Bixler, D., & Hoyt, C. S. (1993). Motion VEPs in late-onset esotropia. Clinical Vision Sciences, 8, 55–62.

    Google Scholar 

  • Hardman Lea, S. J., Loades, J., & Rubinstein, M. P. (1989). The sensitive period for anisometropic amblyopia. Eye, 3, 783–790.

    PubMed  Google Scholar 

  • Harwerth, R. S., Smith, E. L., Duncan, G. C., Crawford, M. J., & Von Noorden, G. K. (1986). Multiple sensitive periods in the development of the primate visual system. Science, 232, 235–238.

    PubMed  CAS  Google Scholar 

  • Helveston, E. M. (1993). The origins of congenital esotropia. Journal of Pediatric Ophthalmology and Strabismus, 30, 215–232.

    PubMed  CAS  Google Scholar 

  • Horton, J. C., & Hocking, D. R. (1996). An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. Journal of Neuroscience, 16, 1791–1807.

    PubMed  CAS  Google Scholar 

  • Horton, J. C., & Hocking, D. R. (1997). Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex. Journal of Neuroscience, 17, 3684–3709.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. Journal of Physiology, 206, 419–436.

    PubMed  CAS  Google Scholar 

  • Ing, M. R. (1983). Early surgical alignment for congenital esotropia. Ophthalmology, 90, 132–135.

    PubMed  CAS  Google Scholar 

  • Issa, N. P., Trachtenberg, J. T., Chapman, B., Zahs, K. R., & Stryker, M. P. (1999). The critical period for ocular dominance plasticity in the ferret’s visual cortex. Journal of Neuroscience, 19, 6965–6978.

    PubMed  CAS  Google Scholar 

  • Jones, K. R., Spear, P. D., & Tong, L. (1984). Critical periods for effects on monocular deprivation: differences between striate and extrastriate cortex. Journal of Neuroscience, 4, 2543–2552.

    PubMed  CAS  Google Scholar 

  • Keech, R. V., & Kutsche, P. J. (1995). Upper age limit for the development of amblyopia. Journal of Pediatric Ophthalmology and Strabismus, 32, 89–93.

    PubMed  CAS  Google Scholar 

  • LeVay, S., Wiesel, T. N., & Hubel, D. H. (1980). The development of ocular dominance columns in normal and visually deprived monkeys. Journal of Comparative Neurology, 191, 1–51.

    Article  PubMed  CAS  Google Scholar 

  • Levi, D. M., & Klein, S. (1982). Hyperacuity and amblyopia. Nature, 298, 268–270.

    Article  PubMed  CAS  Google Scholar 

  • Liao, D. S., Krahe, T., Prusky, G. T., Medina, A. E., & Ramoa, A. S. (2004). Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity. Journal of Neurophysiology, 92, 2113–2121.

    Article  PubMed  Google Scholar 

  • Mason, A. J. S., Braddick, O. J., Wattam-Bell, J., & Atkinson, J. (2001). Directional motion asymmetry in infant VEPs—which direction? Vision Research, 41, 201–211.

    Article  PubMed  CAS  Google Scholar 

  • Maurer, D., & Lewis, T. L. (1993). Visual outcomes after infantile cataract. In K Simons (Ed.), Early visual development, normal and abnormal (pp. 454–484). New York: Oxford University Press.

    Google Scholar 

  • Meyer, E., Mizrahi, E., & Perlman, I. (1991). Amblyopia success index: a new method of quantitative assessment of treatment efficiency; application in a study of 473 anisometropic amblyopic patients. Binocular Vision Quarterly, 6, 83–90.

    Google Scholar 

  • Mitchell, D. E. (1988). The extent of visual recovery from early monocular or binocular visual deprivation in kittens. Journal of Physiology, 395, 639–660.

    PubMed  CAS  Google Scholar 

  • Mitchell, D. E. (1991). The long-term effectiveness of different regimens of occlusion on recovery from early monocular deprivation in kittens. Philosophical Transaction of the Royal Society. Series B. Biological sciences, 333, 51–79.

    CAS  Google Scholar 

  • Mower, G. D. (1991). The effect of dark rearing on the time course of the critical period in cat visual cortex. Developmental Brain Research, 58, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Mower, G. D., Caplan, C. J., Christen, W. G., & Duffy, F. H. (1985). Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex. Journal of Comparative Neurology, 235, 448–466.

    Article  PubMed  CAS  Google Scholar 

  • Norcia, A. M. (1996). Abnormal motion processing and binocularity: infantile esotropia as a model system for effects of early interruptions of binocularity. Eye, 10, 259–265.

    PubMed  Google Scholar 

  • Norcia, A. M., Hamer, R. D., & Jampolsky, A. (1995). Plasticity of human motion processing mechanisms following surgery for infantile esotropia. Vision Research, 35, 3279–3296.

    Article  PubMed  CAS  Google Scholar 

  • Olson, C. R., & Freeman, R. D. (1975). Progressive changes in kitten striate cortex during monocular vision. Journal of Neurophysiology, 38, 26–32.

    PubMed  CAS  Google Scholar 

  • Olson, C. R., & Freeman, R. D. (1980). Profile of the sensitive period for monocular deprivation in kittens. Experimental Brain Research, 39, 17–21.

    CAS  Google Scholar 

  • Parks, M. M. (1984). Congenital esotropia with a bifixation result: report of a case. Documenta Ophthalmologica, 58, 109–114.

    Article  PubMed  CAS  Google Scholar 

  • Pasino, L., & Cordella, M. (1959). Il comportamento della difficoltà di separazione durante il trattamento dell’ambliopia strabica. Istituto di clinica oculistica dell’università di Sassari, 25, 111–115.

    Google Scholar 

  • Pettet, M. W., & Gilbert, C. D. (1992). Dynamic changes in receptive-field size in cat primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 89, 8366–8370.

    Article  PubMed  CAS  Google Scholar 

  • Pham, T. A., Graham, S. J., Suzuki, S., Barco, A., Kandel, E. R., Gordon, B., & Lickey, M. E. (2004). A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB. Learning and Memory, 11, 738–747.

    Article  PubMed  Google Scholar 

  • Rodman, H. R. (1994). Development of inferior temporal cortex in the monkey. Cerebral Cortex, 5, 484–498.

    Google Scholar 

  • Sawtell, N. B., Frenkel, M. Y., Philpot, B. D., Nakazawa, K., Tonegawa, S., & Bear, M. F. (2003). NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron, 38, 977–985.

    Article  PubMed  CAS  Google Scholar 

  • Shapley, R. M., & So, Y. T. (1980). Is there an effect of monocular deprivation on the proportion of X and Y cells in the cat lateral geniculate nucleus? Experimental Brain Research, 39, 41–48.

    Article  CAS  Google Scholar 

  • Shatz, C. J., & Stryker, M. P. (1978). Ocular dominance in layer IV of the cat’s visual cortex and the effects of monocular deprivation. Journal of Physiology, 281, 267–283.

    PubMed  CAS  Google Scholar 

  • Sherman, S. M., & Stone, J. (1973). Physiological normality of the retina in visually deprived cats. Brain Research, 60, 224–230.

    Article  PubMed  CAS  Google Scholar 

  • Stager, D. R., & Birch, E. E. (1986). Preferential-looking acuity and stereopsis in infantile esotropia. Journal of Pediatric Ophthalmoglogy and Strabismus, 23, 160–165.

    CAS  Google Scholar 

  • Stuart, J. A., & Burian, H. M. (1962). A study of separation difficulty. American Journal of Ophthalmology, 53, 471–477.

    PubMed  CAS  Google Scholar 

  • Swindale, N. V., Vital-Durand, F., & Blakemore, C. (1981). Recovery from monocular deprivation in the monkey. III. Reversal of anatomical effects in the visual cortex. Proceedings of the Royal Society. Series B. Biological sciences, 213, 435–450.

    Article  CAS  Google Scholar 

  • Taylor, D. M. (1972). Is congenital esotropia functionally curable? Transactions of the American Ophthalmological Society, 70, 529–576.

    PubMed  CAS  Google Scholar 

  • Tierney, D.W. (1989). Vision recovery in amblyopia after contralateral subretinal hemorrhage. Journal of the American Optometric Association, 60, 281–283.

    PubMed  CAS  Google Scholar 

  • Timney, B. N. (1981). Development of binocular depth perception in kittens. Investigative Ophthalmology, 21, 493–496.

    CAS  Google Scholar 

  • Vaegan & Taylor, D. (1979). Critical period for deprivation amblyopia in children. Transactions of the Ophthalmological Society (UK), 99, 432–439.

    CAS  Google Scholar 

  • Vereecken, E. P., & Brabant, P. (1984). Prognosis for vision in amblyopia after loss of the good eye. Archives of Ophthalmology, 102, 220–224.

    PubMed  CAS  Google Scholar 

  • Von Noorden, G. K. (1981). New clinical aspects of stimulus deprivation amblyopia. American Journal of Ophthalmology, 92, 416–421.

    Google Scholar 

  • Von Noorden, G. K. (1988). A reassessment of infantile esotropia. American Journal of Ophthalmology, 105, 1–10.

    Google Scholar 

  • Von Noorden, G. K. (1990). Binocular vision and ocular motility. St. Louis: Mosby.

    Google Scholar 

  • Wick, B., Wingard, M., Cotter, S., & Scheiman, M. (1992). Anisometropic amblyopia: is the patient ever too old to treat? Optometry and Vision Science, 69, 866–878.

    PubMed  CAS  Google Scholar 

  • Wiesel, T. N., & Hubel, D. H. (1963a). Single cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26, 1003–1017.

    PubMed  CAS  Google Scholar 

  • Wiesel, T. N., & Hubel, D. H. (1963b). Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. Journal of Neurophysiology, 26, 978–993.

    PubMed  CAS  Google Scholar 

  • Wilson, M. E. (1992). Adult amblyopia reversed by contralateral cataract formation. Journal of Pediatric Ophthalmology and Strabismus, 29, 100–102.

    PubMed  CAS  Google Scholar 

  • Wright, K. W., Edelman, P. M., McVey, J. H., Terry, A. P., & Lin, M. (1994). High-grade stereo acuity after early surgery for congenital esotropia. Archives of Ophthalmology, 112, 913–919.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2006). Critical Periods. In: Visual Development. Springer, Boston, MA. https://doi.org/10.1007/0-387-30484-3_9

Download citation

Publish with us

Policies and ethics