Advertisement

Bounds on Outcome Components

Chapter
  • 515 Downloads
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 85)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11. Annotated References

  1. Burkard R.E., Hamacher H.W., Rothe G., (1987), Approximation of convex functions and applications in mathematical programming. Report 89, Institut für Mathematik, Technische Universität Graz.Google Scholar
  2. Evtushenko Yu. G., Potapov M.A., (1986), Methods of Numerical Solution of Multicriterion Problems. Soviet Mathematical Doklady, 34, 420–423.Google Scholar
  3. Fruhwirth B., Burkard R.E., Rothe G., (1988), Approximation of convex curves with applications to the bicriterial minimum cost flow problem. Report 119, Institut für Mathematik, Technische Universität Graz.Google Scholar
  4. Geromel J.C., Ferreira P.A.V., (1991), An upper bound on properly efficient solutions in multiobjective optimisation. Operation Research Letters, 10, 83–86.MathSciNetCrossRefGoogle Scholar
  5. Kaliszewski I., (2001a), Eliciting information on efficient outcomes prior to explicitly identyfying them. Scientific Transactions of the Department of Mechanics, Koszalin University of Technology, Koszalin, 157–164.Google Scholar
  6. Kaliszewski I., (2001b), Multiple criteria decision making without optimization. Systems Science, 27, 5–13.MathSciNetGoogle Scholar
  7. Kaliszewski I., (2002b), Multiple criteria decision making with deductive approximate representation of efficient outcomes. Control & Cybernetics, 31, 949–964.Google Scholar
  8. Kaliszewski I., (2003a), Weighting versus reference point multiple criteria decision making methods–analogies and differences. Journal of Telecommunication and Information Technologies, 3, 9–15.Google Scholar
  9. Kaliszewski I., (2003b), Dynamic parametric bounds on efficient outcomes in multiple criteria decision making. European Journal of Operational Research, 147, 94–107.zbMATHMathSciNetCrossRefGoogle Scholar
  10. Kaliszewski I., (2004), Out of the mist — towards decision-maker-friendly multiple criteria decision making support. European Journal of Operational Research, 158, 293–307.zbMATHMathSciNetCrossRefGoogle Scholar
  11. Korhonen P., Salo S., Steuer R., (1997), A heuristic for estimating nadir criterion values in multiple objective linear programming. Operations Research, 45, 751–757.CrossRefGoogle Scholar
  12. Ruhe G., Fruhwirth B., (1989), ϵ-optimality for bicriteria programs and its application to minimum cost flows. Report 140, Institut für Mathematik, Technische Universität Graz.Google Scholar
  13. Steuer R.E. (1986), Multiple Criteria Optimization: Theory, Computation and Application. John Wiley & Sons, New York.Google Scholar
  14. Weistroffer H.R., (1985), Careful usage of pesimistic values is needed in multiple objectives optimization. Operations Research Letters, 4, 23–25.zbMATHCrossRefGoogle Scholar
  15. Yang X.Q., Goh C.J., (1997), A method for curve approximation. European Journal of Operational Research, 97, 205–212.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Personalised recommendations