Skip to main content

Problems on Repeated Subconfigurations

  • Chapter
Research Problems in Discrete Geometry
  • 1980 Accesses

Abstract

The set of unit-distance pairs determined by an n-element point set X can be regarded as an equivalence class of all point pairs under congruence as the equivalence relation. The basic questions discussed in Chapter 5 are to determine the size of the largest equivalence class and the number of distinct equivalence classes. Erdős and Purdy [ErP71], [ErP76] started the investigation of the same questions for k-dimensional simplices in IRd, that is, for (k + 1)-tuples rather than point pairs. (In [ErP71] some of these problems are attributed to A. Oppenheim.) Let u k,d(n) denote the maximum number of mutually congruent k-dimensional simplices determined by n points in d-dimensional Euclidean space. Using the notation in the previous chapter, u 1,d (n) = u d(n) is the maximum number of unit distances determined by n points in IRd.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.K. Agarwal, M. Sharir: On the number of congruent simplices in a point set, Discrete Comput. Geom.28 (2002) 123–150.

    MATH  MathSciNet  Google Scholar 

  2. T. Akutsu, H. Tamaki, T. Tokuyama: Distribution of distances and triangles in a point set and algorithms for computing the largest common point sets, Discrete Comput. Geom.20 (1998) 307–331.

    Article  MATH  MathSciNet  Google Scholar 

  3. B.M. Ábrego, S. Fernández-Merchant: Convex polyhedra in R3 spanning Θ(n4/3) congruent triangles, J. Combinatorial Theory Ser. A98 (2002) 406–409.

    Article  MATH  Google Scholar 

  4. B.M. Ábrego, S. Fernández-Merchant: Onthemaximum number of equilateral triangles I, Discrete Comput. Geom.23 (2000) 129–135.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Brass: Combinatorial geometry problems in pattern recognition, Discrete Comput. Geom.28 (2002) 495–510.

    MATH  MathSciNet  Google Scholar 

  6. P. Brass: Exact point pattern matching and the number of congruent triangles in a three-dimensional pointset, Algorithms — ESA 2000, M. Paterson, ed., Springer LNCS1879 (2000) 112–119.

    Google Scholar 

  7. P. Brass, J. Pach: Problems and results on geometric patterns, in: Graph Theory and Combinatorial Optimization, D. Avis et al., eds., Kluwer Academic Publishers, to appear.

    Google Scholar 

  8. K.L. Clarkson, H. Edelsbrunner, L.J. Guibas, M. Sharir, E. Welzl: Combinatorial complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom.5 (1990) 99–160.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Elekes, P. Erdős: Similar configurations and pseudo grids, in: Intuitive Geometry (Szeged, 1991), K. Böröczky et. al., eds., Colloq. Math. Soc. János Bolyai63 (1994) 85–104.

    Google Scholar 

  10. P. Erdős: On some problems of elementary and combinatorial geometry, Ann. Mat. Pura Appl. Ser. IV103 (1975) 99–108.

    Article  Google Scholar 

  11. P. Erdős, D. Hickerson, J. Pach: A problem of Leo Moser about repeated distances on the sphere, Amer. Math. Monthly96 (1989) 569–575.

    Article  MathSciNet  Google Scholar 

  12. P. Erdős, G. Purdy: Some extremal problems in geometry IV, Congressus Numerantium17 (Proc. 7th South-Eastern Conf. Combinatorics, Graph Theory, and Computing, 1976) 307–322.

    Google Scholar 

  13. P. Erdős, G. Purdy: Some extremal problems in geometry, J. Combinatorial Theory Ser. A10 (1971) 246–252.

    Article  MathSciNet  Google Scholar 

  14. M.J. van Kreveld, M. de Berg: Finding squares and rectangles in sets of points, in: WG 1989 (Graph-Theoretic Concepts in Comp. Sci.), M. Nagl, ed., Springer-Verlag LNCS411 (1989) 341–355.

    Google Scholar 

  15. M. Laczkovich, I.Z. Ruzsa: The number of homothetic subsets, in: The Mathematics of Paul Erdős, Vol. II, R.L. Graham et al., eds., Springer-Verlag 1997 Algorithms and Combinatorics Ser.14 294–302.

    Google Scholar 

  16. J. Pach, R. Pinchasi: How many unit equilateral triangles can be generated by n points in convex position? Amer. Math. Monthly110 (2003) 400–406.

    Article  MathSciNet  Google Scholar 

  17. C. Xu, R. Ding: The number of isosceles right triangles determined by n points in convex position in the plane, Discrete Comput. Geom.31 (2004) 491–499.

    MATH  MathSciNet  Google Scholar 

References

  1. R. Apfelbaum, M. Sharir: Repeated angles in three and four dimensions, SIAM J. Discrete Math., to appear.

    Google Scholar 

  2. A. Blokhuis, Á. Seress: The number of directions determined by points in the three-dimensional euclidean space, Discrete Comput. Geom.28 (2002) 491–494.

    MATH  MathSciNet  Google Scholar 

  3. J. Beck: On the lattice property of the plane and some problems of Dirac, Motzkin and Erdős in combinatorial geometry, Combinatorica3 (1983) 281–297.

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Brass: On finding maximum-cardinality symmetric subsets, Comput. Geom. Theory Appl.24 (2003) 19–25.

    MATH  MathSciNet  Google Scholar 

  5. P. Brass, G. Rote, K.J. Swanepoel: Triangles of extremal area or perimeter in a finite planar pointset, Discrete Comput. Geom.26 (2001) 51–58.

    MATH  MathSciNet  Google Scholar 

  6. G.R. Burton, G. Purdy: The directions determined by n points in the plane, J. London Math. Soc. 2. Ser.20 (1979) 109–114.

    Article  MATH  MathSciNet  Google Scholar 

  7. J.H. Conway, H.T. Croft, P. Erdős, M.J.T. Guy: On the distribution of values of angles determined by coplanar points, J. London Math. Soc. 2. Ser.19 (1979) 137–143.

    Article  MATH  Google Scholar 

  8. H.T. Croft: On 6-point configurations on 3-space, J. London Math. Soc.36 (1961) 289–306.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Elekes: On the number of distinct radii of circles determined by triplets and on parameters of other curves, Studia Sci. Math. Hungar.40 (2003) 195–203.

    MATH  MathSciNet  Google Scholar 

  10. G. Elekes: n points in the plane can determine n3/2 unit circles, Combinatorica4 (1984) p. 131.

    Article  MathSciNet  Google Scholar 

  11. P. Erdős: Some problems on elementary geometry, Australian Math. Soc. Gaz.2 (1975) 2–3.

    Google Scholar 

  12. P. Erdős, G. Purdy: Extremal problems in combinatorial geometry, in: Handbook of Combinatorics, Vol. 1, R.L. Graham et al., eds., Elsevier 1995, 809–874.

    Google Scholar 

  13. P. ERDŐS, G. PURDY: Some extremal problems in geometry V, Congressus Numerantium 19 (Proc. 8th South-Eastern Conf. Combinatorics, Graph Theory, and Computing, 1977) 569–578.

    Google Scholar 

  14. P. Erdős, G. Purdy: Some extremal problems in geometry IV, Congressus Numerantium17 (Proc. 7th South-Eastern Conf. Combinatorics, Graph Theory, and Computing, 1976) 307–322.

    Google Scholar 

  15. P. Erdős, G. Purdy: Some extremal problems in geometry III, Congressus Numerantium14 (Proc. 6th South-Eastern Conf. Combinatorics, Graph Theory, and Computing, 1975) 291–308.

    Google Scholar 

  16. P. Erdős, G. Purdy: Some extremal problems in geometry, J. Combinatorial Theory Ser. A10 (1971) 246–252.

    Article  MathSciNet  Google Scholar 

  17. H. Harborth: Einheitskreise in ebenen Punktmengen, 3. Kolloquium über Diskrete Geometrie, Universität Salzburg (1985) 163–168.

    Google Scholar 

  18. H. Harborth, I. Mengersen: Point sets with many unit circles, Discrete Math. 60 (1986) 193–197.

    Article  MATH  MathSciNet  Google Scholar 

  19. R.E. Jamison: Direction trees in centered polygons, in: Towards a Theory of Geometric Graphs, J. Pach, ed., Contemporary Mathematics342, AMS 2004, 87–98.

    Google Scholar 

  20. R.E. Jamison: Direction trees, Discrete Comput. Geom.2 (1987) 249–254.

    Article  MATH  MathSciNet  Google Scholar 

  21. R.E. Jamison: Few slopes without collinearity, Discrete Math. 60 (1986) 199–206.

    Article  MATH  MathSciNet  Google Scholar 

  22. R.E. Jamison: Direction paths, Congressus Numerantium54 (Proc 17th South-Eastern Conf. Combinatorics, Graph Theory, and Computing 1986) 145–156.

    Google Scholar 

  23. R.E. Jamison: A survey of the slope problem, in: Discrete Geometry and Convexity, J.E. Goodman et al., eds., Annals New York Acad. Sci.440 (1985) 34–51.

    Google Scholar 

  24. R.E. Jamison: Planar configurations which determine few slopes, Geometriae Dedicata16 (1984) 17–34.

    MATH  MathSciNet  Google Scholar 

  25. R.E. Jamison: Structure of slope-critical configurations, Geometriae Dedicata16 (1984) 249–277.

    MATH  MathSciNet  Google Scholar 

  26. R.E. Jamison, D. Hill: A catalogue of sporadic slope-critical configurations, Congressus Numerantium40 (Proc. 14th South-Eastern Conf. Combinatorics, Graph Theory and Computing 1983) 101–125.

    Google Scholar 

  27. N.H. Katz, G. Tardos: A new entropy inequality for the Erdős distance problem, in: Towards a Theory of Geometric Graphs, J. Pach, ed., Contemporary Mathematics342, AMS 2004, 119–126.

    Google Scholar 

  28. D.J. Kleitman, R. Pinchasi: A note on caterpillar-embeddings with no two parallel edges, Discrete Comput. Geom., to appear.

    Google Scholar 

  29. J. Pach, R. Pinchasi, M. Sharir: On the number of directions determined by a three-dimensional points set, J. Combinatorial Theory Ser. A108 (2004) 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  30. J. Pach, R. Pinchasi, M. Sharir: Solution of Scott’s problem on the number of directions determined by a point set in 3-space, in: SCG 04 (20th ACM Symp. Comput. Geom. 2004) 76–85.

    Google Scholar 

  31. J. Pach, M. Sharir: Geometric incidences, in: Towards a Theory of Geometric Graphs, J. Pach, ed., Contemporary Mathematics342, AMS 2004, 185–223.

    Google Scholar 

  32. J. Pach, M. Sharir: Repeated angles in the plane and related problems, J. Combinatorial Theory Ser. A59 (1992) 12–22.

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Pach, G. Tardos: Isosceles triangles determined by a planar point set, Graphs Combinatorics18 (2002) 769–779.

    Article  MATH  MathSciNet  Google Scholar 

  34. G. Purdy: Repeated angles in E4, Discrete Comput. Geom.3 (1988) 73–75.

    Google Scholar 

  35. G. Purdy: Some extremal problems in geometry, Discrete Math. 7 (1974) 305–313.

    MATH  MathSciNet  Google Scholar 

  36. P.R. Scott: On the sets of directions determined by n points, Amer. Math. Monthly77 (1970) 502–505.

    Article  MATH  MathSciNet  Google Scholar 

  37. E.G. Straus: Some extremal problems in combinatorial geometry, in: Proc. Internat. Conf. Combinatorial Theory, (Canberra 1977), D.A. Holten et al., eds., Springer Lecture Notes in Math.686 (1978) 308–312.

    Google Scholar 

  38. E. Szemerédi, W.T. Trotter: Extremal problems in discrete geometry, Combinatorica3 (1983) 381–392.

    Article  MATH  MathSciNet  Google Scholar 

  39. P. Ungar: 2N noncollinear points determine at least 2N directions, J. Combinatorial Theory Ser. A33 (1982) 343–347.

    Article  MATH  MathSciNet  Google Scholar 

References

  1. H.L. Abbott: On a conjecture of Erdős and Silverman in combinatorial geometry, J. Combinatorial Theory Ser. A29 (1980) 380–381.

    Article  MATH  MathSciNet  Google Scholar 

  2. V. Bálint, M. Branická, P. Grešák, I. Hrinko, P. Novotný, M. Stacho: Several remarks about midpoint-free subsets, Studies of University Transport and Communication in Žilina, Math.-Phys. Series10 (1995) 3–10.

    Google Scholar 

  3. M. Bóna: A Euclidean Ramsey theorem, Discrete Math. 122 (1993) 349–352.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Bóna, G. Tóth: A Ramsey-type problem on right-angled triangles in space, Discrete Math. 150 (1996) 61–67.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. Cantwell: Finite Euclidean Ramsey theory, J. Combinatorial Theory Ser. A73 (1996) 273–285.

    MATH  MathSciNet  Google Scholar 

  6. H.T. Croft: Incidence incidents, Eureka (Cambridge) 30 (1967) 22–26.

    Google Scholar 

  7. G. Csizmadia, G. Tóth: Note on a Ramsey-type problem in geometry, J. Combinatorial Theory Ser. A65 (1994) 302–306.

    Article  MATH  Google Scholar 

  8. P. Erdős, R.L. Graham, P. Montgomery, B.L. Rothschild, J. Spencer, E.G. Straus: Euclidean Ramsey theorems. II., in: Infinite and Finite Sets (Keszthely, 1973), A. Hajnal et al., eds., Colloq. Math. Soc. János Bolyai10 (1975) 559–584.

    Google Scholar 

  9. P. Erdős, R.L. Graham, P. Montgomery, B.L. Rothschild, J. Spencer, E.G. Straus: Euclidean Ramsey theorems. III., in: Infinite and Finite Sets (Keszthely, 1973), A. Hajnal et al., eds., Colloq. Math. Soc. János Bolyai10 (1975) 559–584.

    Google Scholar 

  10. P. Erdős, R.L. Graham, P. Montgomery, B.L. Rothschild, J. Spencer, E.G. Straus: Euclidean Ramsey theorems. I. J. Combinatorial Theory14 (1973) 341–363.

    Article  Google Scholar 

  11. G. Exoo: A Euclidean Ramsey problem, Discrete Comput. Geom.29 (2003) 223–227.

    MATH  MathSciNet  Google Scholar 

  12. K.J. Falconer: The realization of small distances in plane sets of positive measure, Bull. London Math. Soc.18 (1986) 471–474.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Frankl, V. Rödl: A partition property of simplices in Euclidean space, J. Amer. Math. Soc.3 (1990) 1–7.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Furstenberg, Y. Katznelson: A density version of the Hales-Jewett theorem, J. Anal. Math.57 (1991) 64–119.

    MATH  MathSciNet  Google Scholar 

  15. R.L. Graham: Euclidean Ramsey theory, in: Handbook of Discrete and Computational Geometry, J.E. Goodman et al., eds., CRC Press 1997, 153–166.

    Google Scholar 

  16. R.L. Graham: Recent trends in Euclidean Ramsey theory, Discrete Math. 136 (1994) 119–127.

    Article  MATH  MathSciNet  Google Scholar 

  17. R.L. Graham: Topics in Euclidean Ramsey theory, in: Mathematics of Ramsey Theory, J. Nešetřil, V. Rödl, eds., Graphs and Combinatorics5, Springer 1990, 200–213.

    Google Scholar 

  18. R.L. Graham: Old and new Euclidean Ramsey theorems, in: Discrete Geometry and Convexity, J.E. Goodman et al., eds., Annals New York Acad. Sci.440 (1985) 20–30.

    Google Scholar 

  19. R.L. Graham: Euclidean Ramsey theorems on the n-sphere, J. Graph Theory7 (1983) 105–114.

    Article  MATH  MathSciNet  Google Scholar 

  20. R.L. Graham: On partitions of En, J. Combinatorial Theory Ser. A28 (1980) 89–97.

    Article  MATH  Google Scholar 

  21. R. Juhász: Ramsey type theorems in the plane, J. Combinatorial Theory Ser. A27 (1979) 152–160.

    Article  MATH  Google Scholar 

  22. I. Křiž: All trapezoids are Ramsey, Discrete Math. 108 (1992) 59–62.

    Article  MATH  MathSciNet  Google Scholar 

  23. I. Křiž: Permutation groups in Ramsey theory, Proc. Amer. Math. Soc.112 (1991) 899–907.

    Article  MATH  MathSciNet  Google Scholar 

  24. D.G. Larman, C.A. Rogers: The realization of distances within sets in Euclidean space, Mathematika19 (1972) 1–24.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Matoušek, V. Rödl: On Ramsey sets on spheres, J. Combinatorial Theory Ser. A70 (1995) 30–44.

    Article  MATH  Google Scholar 

  26. J. Pach: Midpoints of segments induced by a point set, Geombinatorics13 (2003) 98–105.

    MATH  MathSciNet  Google Scholar 

  27. E.R. Scheinerman, D.H. Ullman: Fractional Graph Theory: A Rational Approach, Wiley 1997.

    Google Scholar 

  28. L. Shader: All right triangles are Ramsey in E2, J. Combinatorial Theory Ser. A20 (1976) 385–389.

    Article  MATH  MathSciNet  Google Scholar 

  29. A.D. Szlam: Monochromatic translates of configurations in the plane, J. Combinatorial Theory Ser. A93 (2001) 173–176.

    Article  MATH  MathSciNet  Google Scholar 

  30. L.A. Székely: Erdős on unit distances and the Szemerédi-Trotter theorems, in: Paul Erdős and His Mathematics, Vol. II, G. Halász et al., eds., Bolyai Society Mathematical Studies11 (2002) 649–666.

    Google Scholar 

  31. L.A. Székely: Measurable chromatic number of geometric graphs and sets without some distances in Euclidean space, Combinatorica4 (1984) 213–218.

    Article  MATH  MathSciNet  Google Scholar 

  32. L.A. Székely, N.C. Wormald: Bounds on the measurable chromatic number of IRn. Discrete Math. 75 (1989) 343–372.

    Article  MATH  MathSciNet  Google Scholar 

  33. G. Tóth: A Ramsey-type bound for rectangles, J. Graph Theory23 (1996) 53–56.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Problems on Repeated Subconfigurations. In: Research Problems in Discrete Geometry. Springer, New York, NY. https://doi.org/10.1007/0-387-29929-7_7

Download citation

Publish with us

Policies and ethics