Skip to main content

Density Problems for Packings and Coverings

  • Chapter
Research Problems in Discrete Geometry
  • 2084 Accesses

Abstract

In his lecture at the Scandinavian Natural Science Congress in 1892, Axel Thue [Th892] claimed that the density of any arrangement of non-overlapping equal circles in the plane is at most \( \pi /\sqrt {12} \), the ratio of the area of the circle to the area of the regular hexagon circumscribed about it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Böröczky Jr.: Finite Packing and Covering, Cambridge University Press, 2004.

    Google Scholar 

  2. J.W.S. Cassels: An Introduction to the Geometry of Numbers (2nd edition), Springer-Verlag, 1972.

    Google Scholar 

  3. J.H. Conway, N.J.A. Sloane: Sphere Packings, Lattices and Groups (3rd edition), Springer-Verlag, 2003.

    Google Scholar 

  4. P. Erdős, P.M. Gruber, J. Hammer: Lattice Points, Pitman Monographs and Surveys in Pure and Applied Mathematics 39, Longman Scientific and Technical, Wiley, 1989.

    Google Scholar 

  5. G. Fejes Tóth: Recent progress on packing and covering, in: Advances in Discrete and Computational Geometry (South Hadley, MA, 1996), Contemporary Math. 223, Amer. Math. Soc., 1999, 145–162.

    Google Scholar 

  6. G. Fejes Tóth: Packing and covering, in: Handbook of Discrete and Computational Geometry, J.E. Goodman, J. O’Rourke, eds., CRC Press, 1997, 19–41.

    Google Scholar 

  7. G. Fejes Tóth: New results in the theory of packing and covering, in: Convexity and Its Applications, P.M. Gruber, J.M. Wills, eds., Birkhäuser-Verlag, 1983, 318–359.

    Google Scholar 

  8. G. Fejes Tóth, W. Kuperberg: A survey of recent results in the theory of packing and covering, in: New Trends in Discrete and Computational Geometry, J. Pach, ed., Algorithms Combin. Series10, Springer-Verlag, 1993, 251–279.

    Google Scholar 

  9. G. Fejes Tóth, W. Kuperberg: Packing and covering with convex sets, in: Handbook of Convex Geometry, P.M. Gruber, J.M. Wills, eds., North-Holland, 1993, 799–860.

    Google Scholar 

  10. L. Fejes Tóth: Density bounds for packing and covering with convex discs, Expositiones Math. 2 (1984) 131–153.

    Google Scholar 

  11. L. Fejes Tóth: Lagerungen in der Ebene, auf der Kugel und im Raum (2. Auflage), Springer-Verlag, 1972.

    Google Scholar 

  12. L. Fejes Tóth: Regular Figures, Pergamon Press, 1964.

    Google Scholar 

  13. P. Gritzmann, J.M. Wills: Finite packing and covering, in: Handbook of Convex Geometry, P.M. Gruber, J.M. Wills, eds., North-Holland, 1993, 861–897.

    Google Scholar 

  14. P.M. Gruber, P.M. Lekkerkerker: Geometry of Numbers, North-Holland, 1987.

    Google Scholar 

  15. B. Grünbaum, G.C. Shephard: Tilings and Patterns, W.H. Freeman and Co., 1987. The first seven chapters are also available separately as Tilings and Patterns — An Introduction.

    Google Scholar 

  16. D. Hilbert: Mathematische Probleme. (Lecture delivered at the International Congress of Mathematicians, Paris 1900.) Göttinger Nachrichten (1900) 253–297, or Gesammelte Abhandlungen Band 3, 290–329. English translation in Bull. Amer. Math. Soc. (1902) 437–479, and Bull. Amer. Math. Soc. New Ser. 37 (2000) 407–436.

    Google Scholar 

  17. H. Minkowski: Geometrie der Zahlen, Teubner-Verlag, Leipzig, 1896.

    Google Scholar 

  18. J. Pach, P.K. Agarwal: Combinatorial Geometry, Wiley-Interscience, 1995.

    Google Scholar 

  19. C.A. Rogers: Packing and Covering, Cambridge University Press, 1964.

    Google Scholar 

  20. W.M. Schmidt: Zur Lagerung kongruenter Körper im Raum, Monatshefte Math. 65 (1961) 154–158.

    MATH  Google Scholar 

  21. E. Schulte: Tilings, in: Handbook of Convex Geometry, P.M. Gruber, J.M. Wills, eds., North-Holland, 1993, 899–932.

    Google Scholar 

  22. A. Thue: On the densest packing of congruent circles in the plane (in Norwegian), Skr. Vidensk-Selsk, Christiania1 (1910) 3–9, or in Selected mathematical papers, T. Nagell et al., eds., Universitetsforlaget Oslo, 1977.

    Google Scholar 

  23. A. Thue: On some geometric number-theoretic theorems (in Danish), Forhandlingerne ved de Skandinaviske Naturforskeres14 (1892) 352–353, or in: Selected Mathematical Papers, T. Nagell et al., eds., Universitetsforlaget Oslo, 1977.

    Google Scholar 

  24. C. Zong: Sphere Packings, Springer-Verlag, 1999.

    Google Scholar 

References

  1. K.M. Ball: A lower bound for the optimal density of lattice packings, Internat. Math. Res. Notices10 (1992) 217–221.

    Google Scholar 

  2. A. Bezdek, W. Kuperberg: Packing Euclidean space with congruent cylinders and with congruent ellipsoids, in: Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift, P. Gritzmann et al., eds., DIMACS Ser. Discrete Math. Comp. Sci., AMS and ACM, 1991, 71–80.

    Google Scholar 

  3. G. Blind: Research Problem 34, Periodica Math. Hungar.14 (1983) 309–312.

    Google Scholar 

  4. G.D. Chakerian, L.H. Lange: Geometric extremum problems, Math. Mag.44 (1971) 57–69.

    MATH  Google Scholar 

  5. R. Courant: The least dense lattice packing of two-dimensional convex bodies, Comm. Pure. Appl. Math.18 (1965) 339–343.

    MATH  Google Scholar 

  6. K.R. Doheny: On the lower bound of packing density for convex bodies in the plane, Beiträge Algebra Geom. 36 (1995) 109–117.

    MATH  Google Scholar 

  7. N.D. Elkies, A.M. Odlyzko, J.A. Rush: On the packing densities of superballs and other bodies, Invent. Math.105 (1991) 613–639.

    MATH  Google Scholar 

  8. V. Ennola: On the lattice constant of a symmetric convex domain, J. London Math. Soc.36 (1961) 135–138.

    MATH  Google Scholar 

  9. I. Fáry: Sur la densité des réseaux de domaines convexes, Bull. Soc. Math. France78 (1950) 152–161.

    MATH  Google Scholar 

  10. L. Fejes Tóth: Some packing and covering theorems, Acta Sci. Math. (Szeged)12 A (1950) 62–67.

    Google Scholar 

  11. L. Fejes Tóth: On the densest packing of convex domains, Proc. Nederl. Akad. Wetensch. (Amsterdam)51 (1948) 544–547.

    MATH  Google Scholar 

  12. E. Hlawka: Zur Geometrie der Zahlen, Mathematische Z. 49 (1943) 285–312.

    MATH  Google Scholar 

  13. G. Kuperberg, W. Kuperberg: Double lattice packings of convex bodies in the plane, Discrete Comput. Geom.5 (1990) 389–397.

    MATH  Google Scholar 

  14. W. Kuperberg: On packing the plane with congruent copies of a convex body, in: Intuitive Geometry (Siófok, 1985), K. Böröczky et al., eds., Colloq. Math. Soc. János Bolyai48 North-Holland, 1987, 317–329.

    Google Scholar 

  15. K. Mahler: On the minimum determinant and the circumscribed hexagons of a convex domain, Proc. Nederl. Akad. Wetensch. (Amsterdam)50 (1947) 695–703.

    Google Scholar 

  16. K. Mahler: The theorem of Minkowski-Hlawka, Duke Math. J.13 (1946) 611–621.

    MATH  Google Scholar 

  17. F.L. Nazarov: On the Reinhardt problem of lattice packings of convex regions. Local extremality of the Reinhardt octagon (in Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)151 (1986) Issled. Teor. Chisel.9 104–114, 197–198; translation in J. Soviet Math. 43 (1988) 2687–2693.

    Google Scholar 

  18. K. Reinhardt: Über die dichteste gitterförmige Lagerung kongruenter Bereiche in der Ebene und eine besondere Art konvexer Kurven, Abh. Math. Sem. Hamburg10 (1934) 216–230.

    Google Scholar 

  19. C.A. Rogers: Packing and Covering. Cambridge University Press, 1964.

    Google Scholar 

  20. J.A. Rush: Sphere packing and coding theory, in: Handbook of Discrete and Computational Geometry, J.E. Goodman, J. O’Rourke, eds., CRC Press, 1997, 917–932.

    Google Scholar 

  21. J.A. Rush: A bound, and a conjecture on the maximum lattice-packing density of a superball, Mathematika40 (1993) 137–143.

    MATH  Google Scholar 

  22. W.M. Schmidt: On the Minkowski-Hlawka theorem, Illinois J. Math.7 (1963) 18–23.

    Google Scholar 

  23. E.H. Smith: A density bound for efficient packings of 3-space with centrally symmetric convex bodies, Mathematika46 (1999) 137–144.

    MATH  Google Scholar 

  24. P. Tammela: An estimate of the critical determinant of a two-dimensional convex symmetric domain (in Russian), Izv. Vyss. Ucebn. Zaved. Math.12 (1970) 103–107.

    Google Scholar 

References

  1. H.S.M. Coxeter, L. Few, C.A. Rogers: Covering space with equal spheres, Mathematika6 (1959) 147–157.

    Google Scholar 

  2. P. Erdős, C.A. Rogers: Covering space with convex bodies, Acta Arith. 7 (1962) 281–285.

    Google Scholar 

  3. I. Fáry: Sur la densité des réseaux de domaines convexes, Bull. Soc. Math. France178 (1950) 152–161.

    Google Scholar 

  4. Z. Füredi, J.-H. Kang: Covering Euclidean n-space by translates of a convex body, manuscript.

    Google Scholar 

  5. P. Gritzmann: Lattice covering of space with symmetric convex bodies, Mathematika32 (1985) 311–315.

    MATH  Google Scholar 

  6. A. Heppes: Research problem, Period. Math. Hungar.36 (1998) 181–182.

    Google Scholar 

  7. D. Ismailescu: Covering the plane with copies of a convex disk, Discrete Comput. Geom.20 (1998) 251–263.

    MATH  Google Scholar 

  8. R.B. Kershner: The number of circles covering a set, Amer. J. Math.61 (1939) 665–671.

    MATH  Google Scholar 

  9. W. Kuperberg: Covering the plane with congruent copies of a convex body, Bull. London Math. Soc.21 (1989) 82–86.

    MATH  Google Scholar 

  10. H. Lenz: Über die Bedeckung ebener Punktmengen durch solche kleineren Durchmessers, Archiv Math. 6 (1956) 34–40.

    Google Scholar 

  11. H. Lenz: Zerlegung ebener Bereiche in konvexe Zellen von möglichst kleinem Durchmesser, Jahresbericht Deutsch. Math. Ver.58 (1956) 87–97.

    MATH  Google Scholar 

  12. C.A. Rogers: Lattice coverings of space, Mathematika6 (1959) 33–39.

    Google Scholar 

  13. C.A. Rogers: A note on coverings, Mathematika4 (1957) 1–6.

    Google Scholar 

  14. E. Sas: Über eine Extremumeigenschaft der Ellipsen, Compositio Math. 6 (1939) 468–470.

    MATH  Google Scholar 

  15. E.H. Smith: Covering the plane with congruent copies of a convex disk, Beiträge Algebra Geom. 35 (1994) 101–108.

    MATH  Google Scholar 

References

  1. R.P. Bambah, C.A. Rogers: Covering the plane with convex sets, J. London Math. Soc.27 (1952) 304–314.

    MATH  Google Scholar 

  2. R.P. Bambah, C.A. Rogers, H. Zassenhaus: Oncoverings with convex domains, Acta Arith. 9 (1964) 191–207.

    MATH  Google Scholar 

  3. A. Bezdek, G. Kertész: Counterexamples to a packing problem of L. Fejes Tóth, in: Intuitive Geometry (Siófok, 1985), K. Böröczky et al., eds., Colloq. Math. Soc. János Bolyai48, North-Holland, 1987, 29–36.

    Google Scholar 

  4. C.H. Dowker: On minimum circumscribed polygons, Bull. Amer. Math. Soc.50 (1944) 120–122.

    MATH  Google Scholar 

  5. G. Fejes Tóth: Covering with fat convex discs, Discrete Comput. Geom., to appear.

    Google Scholar 

  6. G. Fejes Tóth: Densest packings of typical convex sets are not lattice-like, Discrete Comput. Geom.14 (1995) 1–8.

    MATH  Google Scholar 

  7. G. Fejes Tóth: Note to a paper of Bambah, Rogers and Zassenhaus, Acta Arith. 50 (1988) 119–122.

    MATH  Google Scholar 

  8. G. Fejes Tóth: On the intersection of a convex disc and a polygon, Acta Math. Acad. Sci. Hungar.29 (1977) 149–153.

    MATH  Google Scholar 

  9. G. Fejes Tóth: Covering the plane by convex discs, Acta Math. Acad. Sci. Hungar.23 (1972) 263–270.

    MATH  Google Scholar 

  10. G. Fejes Tóth, W. Kuperberg: Thin non-lattice covering with an affine image of a strictly convex body, Mathematika42 (1995) 239–250.

    MATH  Google Scholar 

  11. G. Fejes Tóth, T. Zamfirescu: For most convex discs thinnest covering is not lattice-like, in: Intuitive Geometry (Szeged, 1991) K. Böröczky et al., eds., Colloq. Math. Soc. János Bolyai63, North-Holland, 1994, 105–108.

    Google Scholar 

  12. L. Fejes Tóth: Research Problems, Periodica Math. Hungar.15 (1984) 249–250.

    MATH  Google Scholar 

  13. L. Fejes Tóth: On the densest packing of convex discs, Mathematika30 (1983) 1–3.

    MATH  Google Scholar 

  14. L. Fejes Tóth: Lagerungen in der Ebene, auf der Kugel und im Raum (2. Auflage). Springer-Verlag, 1972.

    Google Scholar 

  15. L. Fejes Tóth: Some packing and covering theorems, Acta Sci. Math. (Szeged)12 A (1950) 62–67.

    Google Scholar 

  16. A. Heppes: Covering the plane with fat ellipses without non-crossing assumption, Discrete Comput. Geom.29 (2003) 477–481.

    MATH  Google Scholar 

  17. C.A. Rogers: The closest packing of convex two-dimensional domains, Acta Math. 86 (1951) 309–321.

    MATH  Google Scholar 

  18. G. Wegner: Zu einem ebenen Überdeckungsproblem, Studia Sci. Math. Hung.15 (1980) 287–297.

    MATH  Google Scholar 

References

  1. R.P. Bambah, V.C. Dumir, R.J. Hans-Gill: Covering by star domains, Indian J. Pure Appl. Math.8 (1977) 344–350.

    MATH  Google Scholar 

  2. A. Bezdek, G. Kertész: Counter-examples to a packing problem of L. Fejes Tóth, in: Intuitive Geometry (Siófok, 1985), K. Böröczky et al., eds., Colloq. Math. Soc. János Bolyai48 North-Holland, 1987, 29–36.

    Google Scholar 

  3. L. Fejes Tóth: Densest packing of translates of the union of two circles, Discrete Comput. Geom.1 (1986) 307–314.

    MATH  Google Scholar 

  4. L. Fejes Tóth: Densest packing of translates of a domain, Acta Math. Hungar.45 (1985) 437–440.

    MATH  Google Scholar 

  5. L. Fejes Tóth: The densest packing of lenses in the plane (in Hungarian), Mat. Lapok22 (1971) 209–213.

    Google Scholar 

  6. L. Fejes Tóth: Some packing and covering theorems, Acta Sci. Math. Szeged12 A (1950) 62–67.

    Google Scholar 

  7. M. Gardner: Mathematical Games: Extraordinary nonperiodic tiling that enriches the theory of tiles, Scientific Amer. 236/1 (1977) 110–121.

    Google Scholar 

  8. H. Groemer, A. Heppes: Packing and covering properties of split disks, Studia Sci. Math. Hungar.10 (1975) 185–189.

    Google Scholar 

  9. B. Grünbaum, G.C. Shephard: Tilings and Patterns. W.H. Freeman and Co., 1987.

    Google Scholar 

  10. A. Heppes: Packing of rounded domains on a sphere of constant curvature, Acta Math. Hungar.91 (2001) 245–252.

    MATH  Google Scholar 

  11. A. Heppes: On the packing density of translates of a domain, Studia Sci. Math. Hungar.25 (1990) 117–120.

    Google Scholar 

  12. A. Heppes: On the density of translates of a domain, Közl. MTA Számítástech. Automat. Kutató Int. Budapest36 (1987) 93–97.

    Google Scholar 

  13. G. Kertész: Packing with translates of a special domain, Tagungsberichte Math. Forschungsinstitut Oberwolfach, Koll. Diskrete Geometrie, 1987.

    Google Scholar 

  14. P. Loomis: The covering constant for a certain symmetric star body, Sitzungsberichte Österreich. Akad. Wiss., Math.-Naturw. Kl. II192 (1983) 295–308.

    MATH  Google Scholar 

  15. P. McMullen: Convex bodies which tile space by translation, Mathematika27 (1980) 113–121.

    MATH  Google Scholar 

  16. W. Mögling: Über Packungen und Überdeckungen mit Halbellipsen, in: 4. Kolloquium Geometrie und Kombinatorik (Chemnitz, 1991), 1991, 65–70.

    Google Scholar 

  17. C.A. Rogers: The closest packing of convex two-dimensional domains, Acta Math. 86 (1951) 309–321.

    MATH  Google Scholar 

  18. S. Rödiger: Untersuchungen zur Packungskonstante von Halbellipsen, Wiss. Z. Pädagogische Hochschule Erfurt/Mühlhausen Math.-Natur. Reihe28 (1992) 101–115.

    MATH  Google Scholar 

  19. P. Schmitt: Disks with special properties of densest packings, Discrete Comput. Geom.6 (1991) 181–190.

    MATH  Google Scholar 

  20. S.K. Stein: Tiling, packing, and covering by clusters, Rocky Mountain J. Math.16 (1986) 277–321.

    MATH  Google Scholar 

  21. S. Szabó: A symmetric star polyhedron that tiles but not as a fundamental domain, Proc. Amer. Math. Soc.89 (1983) 563–566.

    MATH  Google Scholar 

  22. B.A. Venkov: On a class of Euclidean polyhedra (in Russian), Vestnik Leningrad. Univ. Ser. Mat. Fiz. Him.9 (1954) no. 2, 11–31.

    Google Scholar 

References

  1. P. Ament, G. Blind: Packing equal circles in a square, Studia Sci. Math. Hungar.36 (2000) 313–316.

    MATH  Google Scholar 

  2. V. Bálint, V. Bálint Jr.: On the number of points at distance at least one in the unit cube, Geombinatorics12 (2003) 157–166.

    MATH  Google Scholar 

  3. S. Basu: New results on quantifier elimination over real closed fields and applications to constraint databases, J. ACM46 (1999) 537–555.

    MATH  Google Scholar 

  4. S. Basu, R. Pollack, M.-F. Roy: On the combinatorial and algebraic complexity of quantifier elimination, J. ACM43 (1996) 1002–1046.

    MATH  Google Scholar 

  5. A. Bezdek, K. Bezdek: Über einige dünnste Kreisüberdeckungen konvexer Bereiche durch endliche Anzahl von kongruenten Kreisen, Beiträge Algebra Geom. 19 (1985) 159–168.

    MATH  Google Scholar 

  6. K. Bezdek: Über einige Kreisüberdeckungen, Beiträge Algebra Geom. 14 (1983) 7–13.

    MATH  Google Scholar 

  7. K. Bezdek, G. Blekherman, R. Connelly, B. Csikós: The polyhedral Tammes problem, Arch. Math.76 (2001) 314–320.

    MATH  Google Scholar 

  8. G. Blind, R. Blind: Über ein Kreisüberdeckungsproblem auf der Sphäre, Studia Sci. Math. Hungar.30 (1995) 197–203.

    MATH  Google Scholar 

  9. G. Blind, R. Blind: Ein Kreisüberdeckungsproblem auf der Sphäre, Studia Sci. Math. Hungar.29 (1994) 107–164.

    MATH  Google Scholar 

  10. D.W. Boll, J. Donovan, R.L. Graham, B.D. Lubachevsky: Improving dense packings of equal disks in a square, Electronic J. Combin.7 (2000), # R46.

    Google Scholar 

  11. K. BÖRÖCZKY: The problem of Tammes for n = 11, Studia Sci. Math. Hungar. 18 (1983) 165–171.

    MATH  Google Scholar 

  12. K. Böröczky: Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hungar.32 (1978) 243–261.

    MATH  Google Scholar 

  13. K. Böröczky, L. Szabó: Arrangements of thirteen points on a sphere, in: Discrete Geometry: In Honor of W. Kuperberg’s 60th Birthday, A. Bezdek, ed., Marcel Dekker, 2003, 111–184.

    Google Scholar 

  14. K. Böröczky Jr., G. Wintsche: Covering the sphere by equal spherical balls, in: Discrete and Computational Geometry — The Goodman-Pollack Festschrift, B. Aronov et al., eds., Springer-Verlag, 2003, 237–253.

    Google Scholar 

  15. S.A. Chepanov, S.S. Ryškov, N.N. Yakovlev: On the disjointness of point systems (in Russian), Trudy Mat. Inst. Steklov196 (1991) 147–155.

    MATH  Google Scholar 

  16. B.W. Clare, D.L. Kepert: The optimal packing of circles on a sphere, J. Math. Chem.6 (1991) 325–349.

    Google Scholar 

  17. B.W. Clare, D.L. Kepert: The closest packing of equal circles in a sphere, Proc. Royal Soc. London Ser. A405 (1986) 329–344.

    MATH  Google Scholar 

  18. H.S.M. Coxeter: A packing of 840 balls of radius 9°0′19″ on the 3-sphere, in: Intuitive Geometry (Siófok, 1985), K. BÖrÖczky et al., eds., Colloq. Math. Soc. János Bolyai48, North-Holland, 1987, 127–137.

    Google Scholar 

  19. L. Dalla, D.G. Larman, P. Mani-Levitska, C. Zong: The blocking numbers of convex bodies, Discrete Comput. Geom.24 (2000) 267–277.

    MATH  Google Scholar 

  20. L. Danzer: Finite point-sets on S2 with minimum distance as large as possible, Discrete Math. 60 (1986) 3–66.

    MATH  Google Scholar 

  21. G. Fejes Tóth: Thinnest covering of a circle by eight, nine, or ten congruent circles, in: Combinatorial and Computational Geometry, J.E. Goodman et al., eds., Cambridge Univ. Press, MSRI Publications52 (2005), to appear.

    Google Scholar 

  22. G. Fejes Tóth: Kreisüberdeckungen der Sphäre, Studia Sci. Math. Hung.4 (1969) 225–247.

    MATH  Google Scholar 

  23. L. Fejes Tóth: Lagerungen in der Ebene, auf der Kugel und im Raum (2. Aufl.), Springer-Verlag, 1972.

    Google Scholar 

  24. L. Fejes Tóth: Über dichteste Kreislagerung und dünnste Kreisüberdeckung, Comm. Math. Helv.23 (1949) 342–349.

    MATH  Google Scholar 

  25. L. Fejes Tóth: On covering a spherical surface with equal spherical caps (in Hungarian), Mat. Fiz. Lapok50 (1943) 40–46.

    Google Scholar 

  26. F. Fodor: Packing 14 congruent circles in a circle, Stud. Univ. Žilina, Math. Ser.16 (2003) 25–34.

    MATH  Google Scholar 

  27. F. Fodor: The densest packing of 13 congruent circles in a circle, Beiträge Algebra Geom. 44 (2003) 431–440.

    MATH  Google Scholar 

  28. F. Fodor: The densest packing of 12 congruent circles in a circle, Beiträge Algebra Geom. 21 (2000) 401–409.

    Google Scholar 

  29. F. Fodor: The densest packing of 19 congruent circles in a circle, Geometriae Dedicata74 (1999) 139–145.

    MATH  Google Scholar 

  30. Z. Gáspár: Some new multisymmetric packings of equal circles on a 2-sphere, Acta Crystal. Ser. B45 (1989) 452–453.

    Google Scholar 

  31. M. Goldberg: Packing 14, 16, 17 and 20 circles in a circle, Math. Mag.44 (1971) 134–139.

    MATH  Google Scholar 

  32. M. Goldberg: On the densest packing of equal spheres in a cube, Math. Mag.44 (1971) 199–208.

    MATH  Google Scholar 

  33. M. Goldberg: The packing of equal circles in a square, Math. Mag.43 (1970) 24–30.

    MATH  Google Scholar 

  34. R.L. Graham, B.D. Lubachevsky: Dense packings of equal disks in an equilateral triangle: from 22 to 34 and beyond, Electron. J. Combin.2 (1995) #A1.

    Google Scholar 

  35. R.L. Graham, B.D. Lubachevsky, K.J. Nurmela, P.R.J. Östergård: Dense packings of congruent circles in a circle, Discrete Math. 181 (1998) 139–154.

    MATH  Google Scholar 

  36. P.M. Gruber: In many cases optimal configurations are almost regular hexagonal (3rd Int. Conf. Stochastic Geometry, Convex Bodies and Empirical Measures, Part II (Mazara del Vallo, 1999), Rend. Circ. Mat. Palermo (2), Suppl.65/II (2000), 121–145.

    Google Scholar 

  37. L. Hárs: The Tammes problem for n = 10, Studia Sci. Math. Hungar.21 (1986) 439–451.

    Google Scholar 

  38. A. Heppes, J.B.M. Melissen: Covering a rectangle with equal circles, Period. Math. Hungar.34 (1997) 65–81.

    MATH  Google Scholar 

  39. E. Jucovič: Some coverings of a spherical surface with equal circles (in Slovakian), Mat.-Fyz. Časopis Slovensk. Akad. Vied.10 (1960) 99–104.

    Google Scholar 

  40. R.B. Kershner: The number of circles covering a set, Amer. J. Math.61 (1939) 665–671.

    MATH  Google Scholar 

  41. K. Kirchner, G. Wengerodt: Die dichteste Packung von 36 Kreisen in einem Quadrat, Beiträge Algebra Geom. 25 (1987) 147–159.

    MATH  Google Scholar 

  42. D.A. Kottwitz: The densest packing of equal circles on a sphere, Acta Cryst. Sect. A47 (1991) 158–165 (Erratum, p. 851).

    Google Scholar 

  43. S. Kravitz: Packing cylinders into cylindrical containers, Math. Mag.40 (1967) 65–71.

    MATH  Google Scholar 

  44. D.E. Lazić, V. Senk, I. Seskar: Arrangements of points on a sphere which maximize the least distance, Bull. Appl. Math. Techn. Univ. Budapest47 (1987) no. 479, 5–21.

    Google Scholar 

  45. V.I. Levenštein: On bounds for packings in n-dimensional Euclidean space, Soviet Math. Dokl.20 (1979) 417–421.

    Google Scholar 

  46. B.D. Lubachevsky, R.L. Graham, F.H. Stillinger: Patterns and structures in disk packings, Period. Math. Hungar. 34 (1997) 123–142.

    MATH  Google Scholar 

  47. M.Cs. Markót: Optimal packing of 28 equal circles in a unit square — the first reliable solution, Numerical Algorithms37 (2004) 253–261.

    MATH  Google Scholar 

  48. C.D. Maranas, Ch.A. Floudas, P.M. Pardalos: New results in the packing of equal circles in a square, Discrete Math. 142 (1995) 287–293.

    MATH  Google Scholar 

  49. J.B.M. Melissen: Packing and Covering with Circles (Ph.D. dissertation), University of Utrecht, 1997.

    Google Scholar 

  50. J.B.M. Melissen: Densest packing of six equal circles in a square, Elemente Math. 49 (1994) 27–31.

    MATH  Google Scholar 

  51. J.B.M. Melissen: Densest packings of eleven congruent circles in a circle, Geometriae Dedicata50 (1994) 15–25.

    MATH  Google Scholar 

  52. J.B.M. Melissen: Optimal packings of eleven equal circles in an equilateral triangle, Acta Math. Hungar.65 (1994) 389–393.

    MATH  Google Scholar 

  53. J.B.M. Melissen: Densest packings of congruent circles in an equilateral triangle, Amer. Math. Monthly100 (1993) 916–925.

    MATH  Google Scholar 

  54. J.B.M. Melissen, P.C. Schuur: Covering a rectangle with six and seven circles, Discrete Appl. Math.99 (2000) 149–156.

    MATH  Google Scholar 

  55. J.B.M. Melissen, P.C. Schuur: Improved coverings of a square with six and eight equal circles, Electron. J. Combin. 3 (1996) # R31.

    Google Scholar 

  56. J.B.M. Melissen, P.C. Schuur: Packing 16, 17 or 18 circles in an equilateral triangle, Discrete Math. 145 (1995) 333–342.

    MATH  Google Scholar 

  57. T.W. Melnyk, O. Knop, W.R. Smith: Extremal arrangement of points and unit charges on a sphere: equilibrium con-figurations revisited, Canad. J. Chem. 55 (1977) 1745–1761.

    Google Scholar 

  58. J. Molnár: On an extremal problem in elementary geometry (in Hungarian), Mat. Fiz. Lapok49 (1943) 249–253.

    Google Scholar 

  59. L. Moser: Poorly Formulated Unsolved Problems of Combinatorial Geometry. Mimeographed, 1966. Reprinted in [Mo91].

    Google Scholar 

  60. L. Moser: Problem 24 (corrected), Canad. Math. Bull.3 (1960) 78.

    Google Scholar 

  61. W.O.J. Moser: Problems, problems, problems, Discrete Appl. Math.31 (1991) 201–225.

    MATH  Google Scholar 

  62. O.R. Musin: The kissing number in four dimensions, arXiv: math.MG/0309430, manuscript.

    Google Scholar 

  63. O.R. Musin: The problem of the twenty-five spheres, Russ. Math. Surv.58 (2003) 794–795.

    MATH  Google Scholar 

  64. E.H. Neville: On the solution of numerical functional equations, Proc. London Math. Soc. 2. Ser. 14 (1915) 308–326.

    Google Scholar 

  65. K.J. Nurmela: Conjecturally optimal coverings of an equilateral triangle with up to 36 equal circles, Experimental Math. 9 (2000) 241–250.

    MATH  Google Scholar 

  66. K.J. Nurmela: Circle coverings in the plane, Proceedings of the Seventh Nordic Combinatorial Conference (Turku, 1999), TUCS Gen. Publ.15, Turku Cent. Comput. Sci., Turku, 1999, 71–78.

    Google Scholar 

  67. K.J. Nurmela, P.R.J. Östergård: Coveringasquare with up to 30 equal circles, Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 62 (2000) 1–14.

    Google Scholar 

  68. K.J. Nurmela, P.R.J. Östergård: More optimal packings of equal circles in a square, Discrete Comput. Geom.22 (1999) 439–457.

    MATH  Google Scholar 

  69. K.J. Nurmela, P.R.J. Östergård: Packing up to 50 equal circles in a square, Discrete Comput. Geom.18 (1997) 111–120.

    MATH  Google Scholar 

  70. K.J. Nurmela, P.R.J. Östergård, R. aus dem Spring: Asymptotic behavior of optimal circle packings in a square, Canad. Math. Bull.42 (1999) 380–385.

    MATH  Google Scholar 

  71. A.M. Odlyzko, N.J.A. Sloane: New bounds on the number of unit spheres that can touch a unit sphere in n dimensions, J. Combinatorial Theory Ser. A26 (1979) 210–214.

    MATH  Google Scholar 

  72. N. Oler: A finite packing problem, Canad. Math. Bull.4 (1961) 153–155.

    MATH  Google Scholar 

  73. Ch. Payan: Empilement de cercles égaux dans un triangle équilatéral. À propos d’une conjecture d’Erdős-Oler, Discrete Math. 165–166 (1997) 555–565.

    Google Scholar 

  74. R. Peikert, D. Würtz, M. Monagan, C. de Groot: Packing circles in a square: A review and new results, in: Systems Modelling and Optimization 1991, P. Kall, ed., Springer Lecture Notes Control Inf. Sci.180 (1992) 45–54.

    Google Scholar 

  75. U. Pirl: Der Mindestabstand von n in der Einheitskreisscheibe gelegenen Punkten, Math. Nachr.40 (1969) 111–124.

    MATH  Google Scholar 

  76. R.M. Robinson: Finite sets of points on a sphere with each nearest to five others, Math. Ann.179 (1969) 296–318.

    MATH  Google Scholar 

  77. R.M. Robinson: Arrangement of 24 points on a sphere, Math. Ann.144 (1961) 17–48.

    MATH  Google Scholar 

  78. J. Schaer: The densest packing of ten congruent spheres in a cube, in: Intuitive Geometry (Szeged, 1991), K. Böröczky et al., eds., Colloq. Math. Soc. János Bolyai63, North-Holland, 1994, 403–424.

    Google Scholar 

  79. J. Schaer: On the packing of ten equal circles in a square, Math. Mag.44 (1971) 139–140.

    MATH  Google Scholar 

  80. J. Schaer: On the densest packing of spheres in a cube, Canad. Math. Bull.9 (1966) 265–270.

    MATH  Google Scholar 

  81. J. Schaer: On the densest packing of five spheres in a cube, Canad. Math. Bull.9 (1966) 271–274.

    MATH  Google Scholar 

  82. J. Schaer: On the densest packing of six spheres in a cube, Canad. Math. Bull.9 (1966) 275–280.

    MATH  Google Scholar 

  83. J. Schaer: The densest packing of 9 circles in a square, Canad. Math. Bull.8 (1965) 273–277.

    MATH  Google Scholar 

  84. J. Schaer, A. Meir: On a geometric extremum problem, Canad. Math. Bull.8 (1965) 21–27.

    MATH  Google Scholar 

  85. K. Schlüter: Kreispackung in Quadraten, Elemente Math. 34 (1979) 12–14.

    MATH  Google Scholar 

  86. K. Schütte: Minimale Durchmesser endlicher Punktmengen mit vorgeschriebenem Mindestabstand, Math. Ann.150 (1963) 91–98.

    MATH  Google Scholar 

  87. K. Schütte: Überdeckung der Kugel mit höchstens acht Kreisen, Math. Ann.129 (1955) 181–186.

    MATH  Google Scholar 

  88. K. Schütte, B.L. van der Waerden: Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand eins Platz? Math. Ann.123 (1951) 96–124.

    MATH  Google Scholar 

  89. B. Segre, K. Mahler: On the densest packing of circles, Amer. Math. Monthly51 (1944) 261–270.

    Google Scholar 

  90. D.O. Škljarskii, N.N. Čzencov, I.M. Jaglom: Geometrical estimates and problems from combinatorial geometry (in Russian). Library of the Mathematical Circle, No. 13, Nauka, Moscow 1974.

    Google Scholar 

  91. R.M.L. Tammes: On the origin of number and arrangement of the places of exit on the surface of pollen grains, Rec. Trav. Bot. Nederl.27 (1930) 1–84.

    Google Scholar 

  92. T. Tarnai: Multisymmetric packing of equal circles on a sphere, Ann. Univ. Sci. Budapest Eötvös, Sect. Math.27 (1984) 199–204.

    MATH  Google Scholar 

  93. T. Tarnai: Packing of 180 equal circles on a sphere, Elemente Math. 38 (1983) 119–122.

    MATH  Google Scholar 

  94. T. Tarnai, Z. Gáspár: Covering a square by equal circles, Elemente Math. 50 (1995) 167–170.

    MATH  Google Scholar 

  95. T. Tarnai, Z. Gáspár: Arrangement of 23 points on a sphere (on a conjecture of R.M. Robinson), Proc. Royal Soc. London A433 (1991) 257–267.

    MATH  Google Scholar 

  96. T. Tarnai, Z. Gáspár: Covering a sphere by equal circles, and the rigidity of its graph, Math. Proc. Camb. Phil. Soc.110 (1991) 71–89.

    MATH  Google Scholar 

  97. T. Tarnai, Z. Gáspár: Multisymmetric close packings of equal spheres on the spherical surface, Acta Cryst. Sect. A43 (1987) 612–616.

    Google Scholar 

  98. T. Tarnai, Z. Gáspár: Covering the sphere with 11 equal circles, Elemente Math. 41 (1986) 35–38.

    Google Scholar 

  99. T. Tarnai, Z. Gáspár: Improved packing of equal circles on a sphere and rigidity of its graph, Math. Proc. Cambridge Philos. Soc.93 (1983) 191–218.

    MATH  Google Scholar 

  100. Y. Teshima, T. Ogawa: Dense packing of equal circles on a sphere by the minimum-zenith method: symmetrical arrangement, Forma15 (2000) 347–364.

    MATH  Google Scholar 

  101. A. Thue: On the densest packing of congruent circles in the plane (in Norwegian), Skr. Vidensk-Selsk, Christiania1 (1910) 3–9. Also in: Selected Mathematical Papers, T. Nagell et al., eds., Universitetsforlaget Oslo, 1977, 257–263.

    Google Scholar 

  102. A. Thue: On some geometric-number-theoretic theorems (in Danish), Forhandlingerne ved de Skandinaviske Naturforskeres14 (1892) 352–353. Also in: Selected Mathematical Papers, T. Nagell et al., eds., Universitetsforlaget Oslo, 1977, 5–6.

    Google Scholar 

  103. G. Valette: A better packing of ten equal circles in a square, Discrete Math. 76 (1989) 57–59.

    MATH  Google Scholar 

  104. S. Verblunsky: On the least number of unit circles which can cover a square, J. London Math. Soc.24 (1949) 164–170.

    MATH  Google Scholar 

  105. G. Wengerodt: Die dichteste Packung von 25 Kreisen in einem Quadrat, Ann. Univ. Sci. Budapest. Eötvös. Sect. Math.30 (1987) 3–15.

    MATH  Google Scholar 

  106. G. Wengerodt: Die dichteste Packung von 16 Kreisen in einem Quadrat, Beiträge Algebra Geom. 16 (1983) 173–190.

    Google Scholar 

  107. C.T. Zahn: Black box maximization of circular coverage, J. Res. Nat. Bureau Standards66B (1962) 181–216.

    Google Scholar 

References

  1. S. ElMoumni: Optimal packings of unit squares in a square, Studia Sci. Math. Hungar.35 (1999) 281–290.

    MATH  Google Scholar 

  2. S. El Moumni: Rangements optimaux de carrés unité dans une bande infinie, Ann. Fac. Sci. Toulouse Math. (6)6 (1997) 121–125.

    MATH  Google Scholar 

  3. P. Erdős, R.L. Graham: On packing squares with equal squares, J. Combinatorial Theory Ser. A19 (1975) 119–123.

    Google Scholar 

  4. L. Fejes Tóth: Research Problem 45, Period. Math. Hungar.20 (1989) 169–171.

    MATH  Google Scholar 

  5. E. Friedman: Packing unit squares in squares: a survey and new results, Electron. J. Combin.7 (2000) Dynamic Survey 7, 24 pp.

    Google Scholar 

  6. Z. Füredi: The densest packing of equal circles into a parallel strip, Discrete Comput. Geom.6 (1991) 95–106.

    MATH  Google Scholar 

  7. F. Göbel: Geometrical packing and covering problems, in: Packing and Covering in Combinatorics, A. Schrijver, ed., Mathematical Centre Tracts106, Mathematisch Centrum Amsterdam, 1979, 179–199.

    Google Scholar 

  8. H. Groemer: Über die Einlagerung von Kreisen in einen konvexen Bereich, Math. Zeitschrift73 (1960) 285–294.

    MATH  Google Scholar 

  9. J. Horváth: The densest packing of unit balls in 3-dimensional and 4-dimensional layers (in Russian), Ann. Univ. Sci. Budapest. Eötvös Sect. Math.18 (1975) 171–176.

    Google Scholar 

  10. J. Horváth: Die Dichte einer Kugelpackung in einer 4-dimensionalen Schicht, Periodica Math. Hungar.5 (1974) 195–199.

    MATH  Google Scholar 

  11. J. Horváth: The densest packing of an n-dimensional cylinder by unit spheres (in Russian), Annales Univ. Sci. Budapest. Eötvös Sect. Math.15 (1972) 139–143.

    Google Scholar 

  12. J. Horváath, J. Molnáar: On the density of non-overlapping unit spheres lying in a strip, Ann. Univ. Sci. Budapest. Eötvös Sect. Math.10 (1967) 193–201

    Google Scholar 

  13. J. Horváth, Á.H. Temesvári, J. Závoti: Über Kugelpackungen um einen Zylinder, Publ. Math. Debrecen58 (2001) 411–422.

    MATH  Google Scholar 

  14. M. Kearney, P. Shiu: Efficient packing of unit squares in a square, Electron. J. Combin.9 (2002) # R14.

    Google Scholar 

  15. G. Kertész: On a Problem of Parasites (in Hungarian), master’s thesis, Eötvös University, Budapest, 1982.

    Google Scholar 

  16. J. Molnár: Packing of congruent spheres in a strip, Acta. Math. Hungar.31 (1978) 173–183.

    MATH  Google Scholar 

  17. K.F. Roth, R.C. Vaughan: Inefficiency in packing squares with unit squares, J. Combinatorial Theory Ser. A24 (1978) 170–186.

    MATH  Google Scholar 

  18. L. SzabÓ: On the density of unit balls touching a unit cylinder, Arch. Math.64 (1995) 459–464.

    MATH  Google Scholar 

References

  1. K.M. Ball: A lower bound for the optimal density of lattice packings, Internat. Math. Res. Notices92 (1992) 217–221.

    Google Scholar 

  2. R.P. Bambah: On lattice coverings by spheres, Proc. Nat. Inst. Sci. India20 (1954) 25–52.

    Google Scholar 

  3. K. Bezdek: Improving Rogers’ upper bound for the density of unit ball packings via estimating the surface area of Voronoi cells from below in Euclidean d-space for all d ≥ 8, Discrete Comput. Geom.28 (2002) 75–106.

    MATH  Google Scholar 

  4. A. Bezdek, W. Kuperberg, E. Makai Jr.: Maximum density space packing with parallel strings of spheres, Discrete Comput. Geom.6 (1991) 277–283.

    MATH  Google Scholar 

  5. M.N. Bleicher, L. Fejes Tóth: Circle-packings and circle-coverings on a cylinder, Michigan Math. J.11 (1964) 337–341.

    MATH  Google Scholar 

  6. K. Böröczky: Edge close ball packings, Discrete Comput. Geom.26 (2001) 59–71.

    MATH  Google Scholar 

  7. K. Böröczky: Closest packing and loosest covering of the space with balls, Studia Sci. Math. Hungar.21 (1986) 79–89.

    MATH  Google Scholar 

  8. K. Böröczky: Research Problem 12, Period. Math. Hungar.6 (1975) p.109.

    Google Scholar 

  9. K. Böröczky, L. Szabó: Arrangements of thirteen points on a sphere, in: Discrete Geometry — In honor of W. Kuperbergs 65th birthday, A. Bezdek, ed., Marcel Dekker, 2003, 111–184.

    Google Scholar 

  10. H. Cohn: New upper bounds on sphere packings II, Geom. Topol.6 (2002) 329–353.

    MATH  Google Scholar 

  11. H. Cohn, N.D. Elkies: New upper bounds on sphere packings I, Ann. Math. (2)157 (2003) 689–714.

    MATH  Google Scholar 

  12. H. Cohn, A. Kumar: Optimality and uniqueness of the Leech lattice among lattices, manuscript, http://research.microsoft.com/~cohn/Leech

    Google Scholar 

  13. J.H. Conway, N.J.A. Sloane: Sphere Packings, Lattices and Groups (3rd edition), Springer-Verlag, 1999.

    Google Scholar 

  14. J.H. Conway, N.J.A. Sloane: The antipode construction for sphere packings, Invent. Math.123 (1996) 309–313.

    MATH  Google Scholar 

  15. J.H. Conway, N.J.A. Sloane: What are all the best sphere packings in low dimensions? Discrete Comput. Geom.13 (1995) 383–403.

    Google Scholar 

  16. H.S.M. Coxeter, L. Few, C.A. Rogers: Covering space with equal spheres, Mathematika6 (1959) 147–157.

    Google Scholar 

  17. G. Fejes Tóth: Recent progress on packing and covering, in: Advances in Discrete and Computational Geometry, Contemporary Math. 223 AMS 1999, 145–162.

    Google Scholar 

  18. L. Fejes Tóth: Close packing and loose covering with balls, Publ. Math. Debrecen23 (1976) 323–326.

    Google Scholar 

  19. L. Fejes Tóth: Remarks on a theorem of R. M. Robinson, Studia Sci. Math. Hungar.4 (1969) 441–445.

    MATH  Google Scholar 

  20. S.P. Ferguson: Sphere packings, V, Discrete Comput. Geom., to appear; see arXiv:math.MG/9811077

    Google Scholar 

  21. S.P. Ferguson, T.C. Hales: A formulation of Kepler conjecture, Discrete Comput. Geom., to appear; see arXiv:math.MG/9811072

    Google Scholar 

  22. C.F. Gauss: Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seber, Göttingische gelehrte Anzeigen 9. Juli 1831, see: Werke, Band 2, 2. Aufl. Göttingen 1876, 188–196; also J. Reine Angew. Math.20 (1840) 312–320.

    Google Scholar 

  23. H. Groemer: Über die dichteste gitterförmige Lagerung kongruenter Tetraeder, Monatshefte Math. 66 (1962) 12–15.

    MATH  Google Scholar 

  24. T.C. Hales: Overview of the Kepler conjecture, Discrete Comput. Geom., to appear; see arXiv:math.MG/9811071

    Google Scholar 

  25. T.C. Hales: Sphere packings, III, Discrete Comput. Geom., to appear; see arXiv:math.MG/9811075

    Google Scholar 

  26. T.C. Hales: Sphere packings, IV, Discrete Comput. Geom., to appear; see arXiv:math.MG/9811076

    Google Scholar 

  27. T.C. Hales: The Kepler conjecture, Discrete Comput.Geom., to appear; see arXiv:math.MG/9811078

    Google Scholar 

  28. T.C. Hales: Cannonballs and honeycombs, Notices Amer. Math. Soc.47 (2000) 440–449.

    MATH  Google Scholar 

  29. T.C. Hales: Sphere packings, I, Discrete Comput. Geom.17 (1997) 1–51.

    MATH  Google Scholar 

  30. T.C. Hales: Sphere packings, II, Discrete Comput. Geom.18 (1997) 135–149.

    MATH  Google Scholar 

  31. T.C. Hales: The status of the Kepler conjecture, Math. Intelligencer16 (1994) 47–58.

    MATH  Google Scholar 

  32. A. Heppes, E. Makai Jr.: String packing, manuscript.

    Google Scholar 

  33. D. Hilbert: Mathematische Probleme. (Lecture delivered at the International Congress of Mathematicians, Paris 1900.) Göttinger Nachrichten (1900) 253–297, or Gesammelte Abhandlungen Band 3, 290–329. English translation in Bull. Amer. Math. Soc. (1902) 437–479. and Bull. Amer. Math. Soc. (New Ser.)37 (2000) 407–436.

    Google Scholar 

  34. D.J. Hoylman: The densest lattice packing of tetrahedra, Bull. Amer. Math. Soc.76 (1970) 135–137.

    MATH  Google Scholar 

  35. W.-Y. Hsiang: Least Action Principle of Crystal Formation of Dense Packing Type and Kepler’s Conjecture, World Sci. Publishing 2001.

    Google Scholar 

  36. W.-Y. Hsiang: On the sphere packing problem and the proof of Kepler’s conjecture, Internat. J. Math.4 (1993) 739–831.

    MATH  Google Scholar 

  37. W.-Y. Hsiang: On the sphere packing problem and the proof of Kepler’s conjecture, in: Differential Geometry and Topology (Alghero, 1992), World Sci. Publishing 1993, 117–127.

    Google Scholar 

  38. G.A. Kabatjanskii, V.I. Levenštein: Bounds for packings on a sphere and in space (in Russian), Problemy Peredači Informacii14 (1978) 3–25. English translation: Problems of Information Transmission14 (1978) 1–17.

    Google Scholar 

  39. J. Kepler: Strena seu de nive sexangula. Tampach, Frankfurt, 1611. English translation: The Six-Cornered Snowflake. Oxford, 1966.

    Google Scholar 

  40. J.C. Lagarias: Bounds for the local density of sphere packings and the Kepler conjecture, Discrete Comput. Geom.27 (2002) 165–193.

    MATH  Google Scholar 

  41. Wing-Lung Lee: Thirteen spheres problem and Fejes Tóth conjecture (Ph.D. Thesis.) Hong Kong University of Science and Technology, October 2002.

    Google Scholar 

  42. J.H. Lindsey: Sphere packing in R3, Mathematika33 (1986) 417–421.

    Google Scholar 

  43. L. Moser: Poorly Formulated Unsolved Problems in Combinatorial Geometry. Mimeographed, 1966. Reprinted [Mo91].

    Google Scholar 

  44. W.O.J. Moser: Problems, problems, problems, Discrete Appl. Math.31 (1991) 201–225.

    MATH  Google Scholar 

  45. D.J. Muder: A new bound on the local density of sphere packings, Discrete Comput. Geom.10 (1993) 351–375.

    MATH  Google Scholar 

  46. D.J. Muder: Putting the best face on a Voronoi polyhedron, Proc. London Math. Soc. 3. Ser. 56 (1988) 329–348.

    MATH  Google Scholar 

  47. C.A. Rogers: The packing of equal spheres, Proc. London Math. Soc. 3. Ser. 8 (1958) 609–620.

    MATH  Google Scholar 

  48. C.A. Rogers, G.C. Shephard: The difference body of a convex body, Arch. Math.8 (1957) 220–223.

    MATH  Google Scholar 

  49. A. Vardy: A new sphere packing in 20 dimensions, Invent. Math.121 (1995) 119–133.

    MATH  Google Scholar 

References

  1. U. Betke, M. Henk: Densest lattice packings of 3-polytopes, Comput. Geom.16 (2000) 157–186.

    Google Scholar 

  2. G. Fejes Tóth: Covering with fat convex discs, Discrete Comput. Geom., to appear.

    Google Scholar 

  3. A. Bezdek: A remark on the packing density in the 3-space, in: Intuitive Geometry (Szeged, 1991), K. Böröczky et al., eds., Colloq. Math. Soc. János Bolyai63 (1994) 17–22.

    Google Scholar 

  4. A. Bezdek, W. Kuperberg: Packing Euclidean space with congruent cylinders and with congruent ellipsoids, in: Applied Geometry and Discrete Mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci.4, Amer. Math. Soc. 1991, 71–80.

    Google Scholar 

  5. A. Bezdek, W. Kuperberg: Maximum density space packing with congruent circular cylinders of infinite length, Mathematika34 (1990) 74–80.

    Google Scholar 

  6. H.F. Blichfeldt: The minimum values of positive quadratic forms in six, seven and eight variables, Math. Zeitschrift39 (1934) 1–15.

    MATH  Google Scholar 

  7. H.F. Blichfeldt: The minimum value of quadratic forms and the closest packing of spheres, Math. Ann.101 (1929) 605–608.

    Google Scholar 

  8. J.H.H. Chalk, C.A. Rogers: The critical determinant of a convex cylinder, J. London Math. Soc.23 (1948) 178–187. Corrigendum, ibid. 24 (1949) p. 240.

    Google Scholar 

  9. A. Donev, F.H. Stillinger, P.M. Chaikin, S. Torquato: Unusually dense crystal packings of ellipsoids, Phys. Rev. Lett.92, 255506 (2004).

    Google Scholar 

  10. G. Fejes Tóth, W. Kuperberg: Thin non-lattice covering with an affine image of a strictly convex body, Mathematika42 (1995) 239–250.

    MATH  Google Scholar 

  11. C.F. Gauss: Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seber, Göttingische gelehrte Anzeigen 9. Juli 1831, see: Werke, Band 2, 2. Aufl. Göttingen 1876, 188–196; also J. Reine Angew. Math.20 (1840) 312–320.

    Google Scholar 

  12. C. Graf, P. Paukowitsch: Möglichst dichte Packungen aus kongruenten Drehzylindern mit paarweise windschiefen Achsen, Elemente Math. 52 (1997) 71–83.

    MATH  Google Scholar 

  13. H. Groemer: Über die dichteste gitterförmige Lagerung kongruenter Tetraeder, Monatshefte Math. 66 (1962) 12–15.

    MATH  Google Scholar 

  14. A. Heppes: Covering the plane with fat ellipses without non-crossing assumption, Discrete Comput. Geom.29 (2003) 477–481.

    MATH  Google Scholar 

  15. D.J. Hoylman: The densest lattice packing of tetrahedra, Bull. Amer. Math. Soc.76 (1970) 135–137.

    MATH  Google Scholar 

  16. A.N. Korkin, E. Zolotareff: Sur les formes quadratiques positive, Math. Ann.11 (1877) 242–292.

    Google Scholar 

  17. A.N. Korkin, E. Zolotareff: Sur les formes quadratiques, Math. Ann.6 (1873) 366–389.

    Google Scholar 

  18. A.N. Korkin, E. Zolotareff: Sur les formes quadratiques positives quaternaires, Math. Ann.5 (1872) 581–583.

    Google Scholar 

  19. K. Kuperberg: A nonparallel cylinder packing with positive density, Mathematika37 (1990) 324–331.

    MATH  Google Scholar 

  20. J.L. Lagrange: Recherches d’arithmétique, Nouveaux Mem. Acad. Roy. Sci. et Belles-Lettres de Berlin, 1773, 265–312. Also in: Oeuvres3, 693–758.

    Google Scholar 

  21. K. Mahler: On lattice points in a cylinder, Quart. J. Math.17 (1947) 16–18.

    Google Scholar 

  22. H. Minkowski: Dichteste gitterförmige Lagerung kongruenter Körper, Nachr. Königl. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1904) 311–355. Also in: Ges. Abh.2, 3–42.

    Google Scholar 

  23. A. Schürmann: Dense ellipsoid packings, Discrete Math. 247 (2002) 243–249.

    MATH  Google Scholar 

  24. J.V. Whitworth: The critical lattices of the double cone, Proc. London Math. Soc. 2. Ser. 53 (1951) 422–443.

    MATH  Google Scholar 

  25. J.B. Wilker: Problem2, in: Intuitive Geometry (Siófok, 1985), K. Böröczky et al., eds., Colloq. Math. Soc. János Bolyai48 (1987) p. 700.

    Google Scholar 

  26. J.M. Wills: An ellipsoid packing in E3 of unexpected high density, Mathematika38 (1991) 318–320.

    MATH  Google Scholar 

  27. A.C. Woods: The critical determinant of a spherical cylinder, J. London Math. Soc33 (1958) 357–368.

    MATH  Google Scholar 

  28. Y. Yeh: Lattice points in a cylinder over a convex domain, J. London Math. Soc.23 (1948) 188–195.

    Google Scholar 

References

  1. W. Banaszczyk: On the lattice packing-covering ratio of finite-dimensional normed spaces, Colloq. Math.59 (1990), no. 1, 31–33.

    MATH  Google Scholar 

  2. E.P. Baranovskii, S.S. Ryškov: Classical methods in the theory of lattice packings (in Russian), Uspehi Mat. Nauk34 (1979) 3–63. English translation: Russian Math. Surveys34 (1979) 1–68.

    Google Scholar 

  3. E.P. Baranovskii, S.S. Ryškov: C-types of n-dimensional lattices and five-dimensional primitive parallelohedra (with an application to coverings theory) (in Russian), Dokl. Akad. Nauk SSSR Trudy Otdel. Leningrad Mat. Inst. Steklova137, 131 pp. Izdat. Nauka, Moscow, 1976. English translation: Proc. Steklov Inst. Math.137 (1978).

    Google Scholar 

  4. E.P. Baranovskii, S.S. Ryškov: Solution of the problem of the least dense lattice covering of five-dimensional space by equal spheres (in Russian), Dokl. Akad. Nauk SSSR222 (1975) 39–42. English translation: Soviet Math. Dokl.16 (1975) 586–590.

    Google Scholar 

  5. A. Bezdek: Remark on the closest packing of convex discs, Studia Sci. Math. Hungar.15 (1980) 283–285.

    MATH  Google Scholar 

  6. K. Böröczky: Closest packing and loosest covering of the space with balls, Studia Sci. Math. Hungar.21 (1986) 79–89.

    MATH  Google Scholar 

  7. G.J. Butler: Simultaneous packing and covering in Euclidean space, Proc. London Math. Soc. 3. Ser. 25 (1972) 721–735.

    MATH  Google Scholar 

  8. B.N. Delone, S.S. Ryškov: Solution of a problem on the least dense lattice covering of a 4-dimensional space by equal spheres (in Russian), Dokl. Akad. Nauk SSSR152 (1963) 523–524. English translation: Soviet Math. Dokl.4 (1963) 1333–1334.

    Google Scholar 

  9. G. Fejes Tóth, L. Fejes Tóth: Dictators on a planet, Studia Sci. Math. Hungar.15 (1980) 313–316.

    MATH  Google Scholar 

  10. G. Fejes Tóth, W. Kuperberg: A survey of recent results in the theory of packings and coverings, in: New Trends in Discrete and Computational Geometry, J. Pach, ed., Algorithms Comb. Ser.10 Springer-Verlag 1993, 251–279.

    Google Scholar 

  11. L. Fejes Tóth: Remarks on the closest packing of convex discs, Comment. Math. Helv.53 536–541.

    Google Scholar 

  12. L. Fejes Tóth: Close packing and loose covering with balls, Publ. Math. Debrecen23 (1976) 323–326.

    Google Scholar 

  13. L. Fejes Tóth: Lagerungen in der Ebene, auf der Kugel und im Raum (2. Aufl.), Springer-Verlag 1972.

    Google Scholar 

  14. L. Fejes Tóth: Perfect distribution of points on a sphere, Period. Math. Hungar.1 (1971) 25–33.

    MATH  Google Scholar 

  15. M. Henk: Finite and Infinite Packings, Habilitationsschrift, Universität Siegen, 1995.

    Google Scholar 

  16. J. Horváth: Several Problems of n-Dimensional Discrete Geometry (in Russian), Doctoral dissertation, Hungar. Acad. Sci., Budapest, 1989.

    Google Scholar 

  17. J. Horváth: Narrow lattice packing of unit balls in the space En (in Russian), in: Geometry of Positive Quadratic Forms’, Trudy Mat. Inst. Steklova152 (1980) 216–231. English translation: Proc. Steklov Math. Inst.152 (1980) 237–254.

    Google Scholar 

  18. D. Ismailescu: Inequalities between the lattice packing and lattice covering densities of a plane centrally symmetric convex body, Discrete Comput. Geom.25 (2001) 365–388.

    MATH  Google Scholar 

  19. W. Kuperberg: Personal communication, 1988.

    Google Scholar 

  20. W. Kuperberg: An inequality linking packing and covering densities of plane convex bodies, Geometriae Dedicata23 (1987) 59–66.

    MATH  Google Scholar 

  21. D. Lázár: Sur l’approximation des courbes convexes par des polygones, Acta Univ. Szeged Sect. Sci. Math.11 (1947) 129–132.

    Google Scholar 

  22. J. Linhart: Closest packings and closest coverings by translates of a convex disc, Studia Math. Hungar.13 (1978) 157–162.

    MATH  Google Scholar 

  23. H. Meschkowski: Ungelöste und unlösbare Probleme der Geometrie, Vieweg-Verlag, 1960.

    Google Scholar 

  24. C.A. Rogers: A note on coverings and packings, J. London Math. Soc.25 (1950) 327–331.

    MATH  Google Scholar 

  25. S.S. Ryškov: The polyhedron µ(m) and certain extremal problems of the geometry of numbers (in Russian), Dokl. Akad. Nauk SSSR194 (1970) 514–517.

    Google Scholar 

  26. E.H. Smith: A bound on the ratio between the packing and covering densities of a convex body, Discrete Comput. Geom.23 (2000) 325–331.

    MATH  Google Scholar 

  27. C. Zong: Simultaneous packing and covering in three-dimensional Euclidean space, J. London Math. Soc. 2. Ser. 67 (2003) 29–40.

    MATH  Google Scholar 

  28. C. Zong: Simultaneous packing and covering in the Euclidean plane, Monatshefte Math. 134 (2002) 247–255.

    MATH  Google Scholar 

  29. C. Zong: From deep holes to free planes, Bull. Amer. Math. Soc. (New Ser.) 39 (2002) 533–555.

    MATH  Google Scholar 

References

  1. P. Bateman, P. Erdős: Geometrical extrema suggested by a lemma of Besicovitch, Amer. Math. Monthly58 (1951) 306–314.

    MATH  Google Scholar 

  2. U. Betke, P. Gritzmann, J.M. Wills: Slices of L. Fejes Tóth’s sausage conjecture, Mathematika29 (1982) 194–201.

    MATH  Google Scholar 

  3. U. Betke, P. Gritzmann: Über L. Fejes Tóth’s Wurstvermutung in kleinen Dimensionen, Acta Math. Hungar.43 (1984) 299–307.

    Google Scholar 

  4. U. Betke, M. Henk: Finite packings of spheres, Discrete Comput. Geom.19 (1998) 197–227.

    MATH  Google Scholar 

  5. U. Betke, M. Henk, J.M. Wills: Finite and infinite packings, J. Reine Angew. Math.453 (1994) 165–191.

    MATH  Google Scholar 

  6. A. Bezdek, F. Fodor: Minimal diameter of certain sets in the plane, J. Combinatorial Theory Ser. A85 (1999) 105–111.

    MATH  Google Scholar 

  7. K. Böröczky Jr.: Finite Packing and Covering, Cambridge University Press, 2004

    Google Scholar 

  8. K. Böröczky Jr.: Finite packing and covering by congruent convex domains, Discrete Comput. Geom.30 (2003) 185–193.

    MATH  Google Scholar 

  9. K. Böröczky Jr.: About four-ball packings, Mathematika40 (1993) 226–232.

    MATH  Google Scholar 

  10. K. Böröczky Jr., I.Z. Ruzsa: Note on an inequality of Wegner, manuscript.

    Google Scholar 

  11. G. Fejes Tóth: Finite coverings by translates of centrally symmetric convex domains, Discrete Comput. Geom.2 (1987) 353–363.

    MATH  Google Scholar 

  12. G. Fejes Tóth, P. Gritzmann, J.M. Wills: Finite sphere packing and covering, Discrete Comput. Geom.4 (1989) 19–40.

    MATH  Google Scholar 

  13. G. Fejes Tóth, P. Gritzmann, J.M. Wills: Sausage-skin problems for finite coverings, Mathematika31 (1984) 117–136.

    MATH  Google Scholar 

  14. L. Fejes Tóth: Research problem 13, PeriodicaMath. Hungar.6 (1975) 197–199.

    Google Scholar 

  15. L. Fejes Tóth: Über die dichteste Kreislagerung und dünnste Kreisüberdeckung, Comment. Math. Helv.23 (1949) 342–349.

    MATH  Google Scholar 

  16. J.H. Folkman, R.L. Graham: A packing inequality for compact convex subsets of the plane, Canad. Math. Bull.12 (1969) 745–752.

    MATH  Google Scholar 

  17. P.M. Gandini, J.M. Wills: On finite sphere-packings, Math. Pannon.3 (1992) 19–29.

    MATH  Google Scholar 

  18. P.M. Gandini, A. Zucco: On the sausage catastrophe in 4-space, Mathematika39 (1992) 274–278.

    MATH  Google Scholar 

  19. R.L. Graham, H.S. Witsenhausen, H. Zassenhaus: On tightest packings on the Minkowski plane, Pacific J. Math.41 (1972) 699–715.

    MATH  Google Scholar 

  20. P. Gritzmann: Finite packing of equal balls, J. London Math. Soc. 2. Series 33 (1986) 543–553.

    MATH  Google Scholar 

  21. P. Gritzmann, J.M. Wills: Finite packing and covering, in: Handbook of Convex Geometry, P.M. Gruber et al., eds., Elsevier 1993, 861–897.

    Google Scholar 

  22. P. Gritzmann, J.M. Wills: Finite packing and covering, Studia Sci. Math. Hungar.21 (1986) 149–162.

    MATH  Google Scholar 

  23. H. Groemer: Über die Einlagerung von Kreisen in einen konvexen Bereich, Math. Zeitschrift73 (1960) 285–294.

    MATH  Google Scholar 

  24. H. Hadwiger: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag 1970.

    Google Scholar 

  25. P. Kleinschmidt, U. Pachner, J.M. Wills: On L. Fejes Tóth’s sausage conjecture, Israel J. Math.47 (1984) 216–226.

    MATH  Google Scholar 

  26. P. McMullen: Non-linear angle-sum relations for polyhedral cones and polytopes, Proc. Cambridge Phil. Soc.78 (1975) 247–261.

    MATH  Google Scholar 

  27. J. Molnár: On the packing of unit circles in a convex domain, Ann. Univ. Sci. Budapest Eőtvős, Sect. Math.22 (1979) 113–123.

    Google Scholar 

  28. N. Oler: An inequality in the geometry of numbers, Acta Math. 105 (1961) 19–48.

    MATH  Google Scholar 

  29. P. Scholl: Finite Sphere Packings (Diploma Thesis, in German), Universität Siegen, 2000.

    Google Scholar 

  30. A. Schürmann: On extremal finite packings, Discrete Comput. Geom.28 (2002) 389–403.

    MATH  Google Scholar 

  31. A. Schürmann: On parametric density of finite circle packings, Beiträge Algebra Geom. 41 (2000) 329–334.

    MATH  Google Scholar 

  32. G. Wegner: Über endliche Kreispackungen in der Ebene, Studia. Sci. Math. Hungar.21 (1986) 1–28.

    MATH  Google Scholar 

  33. J.M. Wills: The Wulff-shape of large periodic sphere packings, in: Discrete Mathematical Chemistry, Amer. Math. Soc., DIMACS Ser. Discrete Math. Theoret. Comput. Sci.51 (2000) 367–375.

    Google Scholar 

  34. J.M. Wills: Spheres and sausages, crystals and catastrophes-and a joint packing theory, Math. Intelligencer20 (1998) 16–21.

    MATH  Google Scholar 

  35. J.M. Wills: On large lattice packings of spheres, Geometriae Dedicata65 (1997) 117–126.

    MATH  Google Scholar 

  36. J.M. Wills: Lattice packings of spheres and theWulff-shape, Mathematika43 (1996) 229–236.

    MATH  Google Scholar 

  37. J.M. Wills: Research Problem 33, Periodica Math. Hungar.14 (1983) 189–191.

    MATH  Google Scholar 

  38. J.M. Wills: Research Problem 35, Periodica Math. Hungar.14 (1983) 312–314.

    Google Scholar 

  39. J.M. Wills: Research Problem 30, Periodica Math. Hungar.13 (1982) 75–76.

    MATH  Google Scholar 

  40. G. Wulff: Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Krystallflächen, Zeitschrift Krystallographie Mineral. 34 (1901) 499.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Density Problems for Packings and Coverings. In: Research Problems in Discrete Geometry. Springer, New York, NY. https://doi.org/10.1007/0-387-29929-7_2

Download citation

Publish with us

Policies and ethics