Skip to main content
  • 2030 Accesses

Abstract

The classical isoperimetric inequality states that among all (convex) sets with a given perimeter, the circular disk has the greatest area. This is a very old result that has been generalized in many directions. Apart from the fact that one does not need convexity here, essentially the same result holds in all scenarios in which the notions of “perimeter” and “area” can be naturally defined. The embedding space can also be varied: similar inequalities are true in higher dimensions (balls have maximum volume among all bodies with a given surface area), and problems of this type have also been considered in many spaces other than the Euclidean. Moreover, many analogous inequalities have been established concerning other measures besides the perimeter and the area. For the extensive literature on the many aspects of these problems see [ScA00], [BuZ88], [Tal93], [Lu93], [Fl93], [Ha57]. In this section, we concentrate on isoperimetric problems in discrete geometry, and avoid most questions that largely belong to convexity, differential geometry, or geometric measure theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Audet, P. Hansen, F. Messine, J. Xiong: Thelargest small octagon, J. Combinatorial Theory Ser. A98 (2002) 46–59.

    MATH  MathSciNet  Google Scholar 

  2. A. Bezdek, K. Bezdek: On a discrete Dido-type question, Elemente Math. 4 (1989) 92–100.

    MathSciNet  Google Scholar 

  3. A. Bezdek, F. Fodor: On convex polygons of maximal width, Arch. Math.74 (2000) 75–80.

    MATH  MathSciNet  Google Scholar 

  4. H. Bieri: Zweiter Nachtrag zu Nr. 12, Bericht von H. Hadwiger, Elemente Math. 16 (1961) 105–106.

    Google Scholar 

  5. K. Böröczky, I. Bárány, E. Makai Jr., J. Pach: Maximal volume enclosed by plates and proof of the chessboard conjecture, Discrete Math. 60 (1986) 101–120.

    MATH  MathSciNet  Google Scholar 

  6. K. Böröczky Jr., K. Böröczky: Isoperimetric problems for polytopes with given number of vertices, Mathematika, 43 (1996) 237–254.

    MATH  MathSciNet  Google Scholar 

  7. Y.D. Burago, V.A. Zalgaller: Geometric Inequalities, Springer-Verlag 1988.

    Google Scholar 

  8. C. Darwin: On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, John Murray publishers, London, 1859.

    Google Scholar 

  9. B. Datta: A discrete isoperimetric problem, Geometriae Dedicata64 (1997) 55–68.

    MATH  MathSciNet  Google Scholar 

  10. L. Fejes Töth: Lagerungen in der Ebene, auf der Kugel, und im Raum, zweite Auflage, Springer-Verlag 1972.

    Google Scholar 

  11. L. Fejes Tóth: Regular Figures, Pergamon Press 1964.

    Google Scholar 

  12. L. Fejes Tóth: Extremum properties of the regular polyhedra, Canadian J. Math.2 (1950) 22–31.

    MATH  MathSciNet  Google Scholar 

  13. L. Fejes Tóth: The Isepiphan Problem for n-hedra, Amer. J. Math.70 (1948) 174–180.

    MATH  MathSciNet  Google Scholar 

  14. A. Florian: Extremum problems for convex discs and polyhedra, in: Handbook of Convex Geometry, Vol. 1, P.M. Gruber et al., eds., Elsevier 1993, 177–221.

    Google Scholar 

  15. A. Florian: Eine Ungleichung über konvexe Polyeder, Monatshefte Math. 60 (1956) 130–156.

    MATH  MathSciNet  Google Scholar 

  16. M. Goldberg: The isoperimetric problem for polyhedra, Tohoku Math. J. (First Series) 40 (1935) 226–236.

    MATH  Google Scholar 

  17. R.L. Graham: The largest small hexagon, J. Combinatorial Theory Ser. A18 (1975) 165–170.

    MATH  MathSciNet  Google Scholar 

  18. B. Grünbaum, G.C. Shephard: Tilings and Patterns, W.H. Freeman and Company 1987.

    Google Scholar 

  19. H. Hadwiger: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag 1957.

    Google Scholar 

  20. H. Hadwiger: Ungelöste Probleme 12, Elemente Math. 11 (1956) p. 86.

    Google Scholar 

  21. T.C. Hales: The honeycomb conjecture, Discrete Comput. Geom.25 (2001) 1–22.

    MATH  MathSciNet  Google Scholar 

  22. B. Kind, P. Kleinschmidt: On the maximal volume of convex bodies with few vertices, J. Combinatorial Theory Ser. A21 (1976) 124–128.

    MATH  MathSciNet  Google Scholar 

  23. A. Klein, M. Wessler: The largest small n-dimensional polytope with n + 3 vertices, J. Combinatorial Theory Ser. A102 (2003) 401–409.

    MATH  MathSciNet  Google Scholar 

  24. D.G. Larman, N.K. Tamvakis: The decomposition of the n-sphere and the boundaries of plane convex domains, in: Convexity and Graph Theory, M. Rosenfeld et al., eds., Annals of Discrete Math. 20 North-Holland, 1984, 209–214.

    Google Scholar 

  25. H. Lenz: Über die Bedeckung ebener Punktmengen durch solche kleineren Durchmessers, Archiv Math. 6 (1956) 34–40.

    MathSciNet  Google Scholar 

  26. H. Lenz: Zerlegung ebener Bereiche in konvexe Zellen von möglichst kleinem Durchmesser, Jahresbericht Deutsch. Math. Ver.58 (1956) 87–97.

    MATH  MathSciNet  Google Scholar 

  27. L. Lindelöf: Recherches sur les polyèdres maxima, Acta Soc. Sci. Fenn. Helsingfors 24 (1898/1899).

    Google Scholar 

  28. L. Lindelöf: Propriétés générales des polyèdres etc., Bull. Acad. Sci. St. Petersburg14 (1869) 258–269.

    Google Scholar 

  29. E. Lutwak: Selected affine isoperimetric inequalities, in: Handbook of Convex Geometry, Vol. 1, P.M. Gruber et al., eds., Elsevier 1993, 151–176.

    Google Scholar 

  30. J. Pach: On an isoperimetric problem, Studia Sci. Math. Hungar.13 (1978) 43–45.

    MATH  MathSciNet  Google Scholar 

  31. R. Phelan: Generalisations of the Kelvin problem and other minimal problems, Forma11 (1996) 287–302.

    MATH  MathSciNet  Google Scholar 

  32. K. Reinhardt: Extremale Polygone gegebenen Durchmessers, Jahresbericht Deutsch. Math.-Ver.31 (1922) 251–270.

    Google Scholar 

  33. J.J. Schäfer: Nachtrag zu Nr. 12, Bericht von H. Hadwiger, Elemente Math. 13 (1957) 85–86.

    Google Scholar 

  34. P.R. Scott, P.W. Awyong: Inequalities for convex sets, J. Ineq. Pure Appl. Math, 1 (2000) Art. 6.

    Google Scholar 

  35. A. Siegel: A Dido problem as modernized by Fejes Tóth, Discrete Comput. Geom.27 (2002) 227–238.

    MATH  MathSciNet  Google Scholar 

  36. A. Siegel: Some Dido-type inequalities, Elemente Math. 56 (2001) 1–4.

    Google Scholar 

  37. E. Steinitz: Über isoperimetrische Probleme bei konvexen Polyedern II, J. Math.159 (1928) 133–143.

    MATH  Google Scholar 

  38. E. Steinitz: Über isoperimetrische Probleme bei konvexen Polyedern I, J. Math.158 (1927) 129–153.

    MATH  Google Scholar 

  39. N.K. Tamvakis: On the perimeter and area of the convex polygons of a given diameter, Bull. Soc. Math. Gréce (N. S.) 28 (1987) 115–132.

    MATH  MathSciNet  Google Scholar 

  40. G. Talenti: The standard isoperimetric theorem, in: Handbook of Convex Geometry, Vol. 1, P.M. Gruber et al., eds., Elsevier 1993, 73–123.

    Google Scholar 

  41. S. Vincze: On a geometrical extremum problem, Acta Sci. Math. (Szeged)12A (1950) 136–142.

    MathSciNet  Google Scholar 

  42. D. Weaire, R. Phelan: A counter-example to Kelvin’s conjecture on minimal surfaces. Philos. Mag. Lett.69 (1994) 107–110, also appeared in Forma11 (1996) 209–213.

    Google Scholar 

References

  1. G. Barequet: A lower bound for Heilbronn’s triangle problem in d dimensions, SIAM J. Discrete Math.14 (2001) 230–236.

    MATH  MathSciNet  Google Scholar 

  2. G. Barequet: A duality between small-face problems in arrangements of lines and Heilbronn-type problems, Discrete Math.237 (2001) 1–12.

    MATH  MathSciNet  Google Scholar 

  3. J. Beck: Almost collinear triples among N points on the plane, in: A Tribute to Paul Erdős, A. Baker et al., eds., Cambridge Univ. Press 1990, 39–57.

    Google Scholar 

  4. C. Bertram-Kretzberg, T. Hofmeister, H. Lefmann: An algorithm for Heilbronn’s problem, SIAM J. Comput.30 (2000) 383–390.

    MATH  MathSciNet  Google Scholar 

  5. L.M. Blumenthal: Metric methods in determinant theory, Amer. J. Math.61 (1939) 912–922.

    MATH  MathSciNet  Google Scholar 

  6. P. Brass: An upper bound for the d-dimensional analogue of Heilbronn’s triangle problem, to appear in SIAM J. Discrete Math.

    Google Scholar 

  7. F. Comellas, J.L.A. Yebra: New lower bounds for Heilbronn numbers, Electron. J. Combin.9 (2002) Research Paper 6.

    Google Scholar 

  8. J.H. Conway, H.T. Croft, P. Erdős, M.J.T. Guy: On the distribution of values of angles determined by coplanar points, J. London Math. Soc. 2. Ser. 19 (1979) 137–143.

    MATH  Google Scholar 

  9. H.T. Croft: On 6-point configurations on 3-space, J. Lond. Math. Soc.36 (1961) 289–306.

    MATH  MathSciNet  Google Scholar 

  10. L. Danzer, B. Grünbaum: Über zwei Probleme bezüglich konvexer Körper von P. Erdős und V.L. Klee, Math. Zeitschrift79 (1962) 95–99.

    MATH  Google Scholar 

  11. A.W.M. Dress, L. Yang, Z. Zeng: Heilbronn problem for six points in a planar convex body, in: Minimax and Applications, D.-Z. Dhu et al., eds., Nonconvex Optim. Appl. Ser. Vol. 4, Kluwer Acad. Publ. 1995, 173–190.

    Google Scholar 

  12. J.B. Du: A lower bound for Heilbronn’s problem (Chinese. English summary) Hunan Jiaoyu Xueyuan Xuebao (Ziran Kexue)13 (1995) 41–47.

    MathSciNet  Google Scholar 

  13. P. Erdős: Problems and results in combinatorial geometry, in: Discrete Geometry and Convexity, J.E. Goodman et al., eds., Annals New York Acad. Sci.440 (1985): 1–11.

    Google Scholar 

  14. P. Erdős: Some old and new problems in combinatorial geometry, in: Convexity and Graph Theory, M. Rosenfeld et al., eds., Annals Discrete Math. 20 (1984) 129–136.

    Google Scholar 

  15. P. Erdős, Z. Füredi: The greatest angle among n points in the d-dimensional Euclidean space, Annals Discrete Math. 17 (1983) 275–283.

    Google Scholar 

  16. P. Erdős, G. Purdy, E.G. Straus: On a problem in combinatorial geometry, Discrete Math. 40 (1982) 45–52.

    MathSciNet  Google Scholar 

  17. P. Erdős, G. Szekeres: On some extremum problems in elementary geometry, Ann. Univ. Sci. Budapest. Rolando Eötvös, Sect. Math.3–4 (1961) 53–62.

    Google Scholar 

  18. L. Fejes Tóth: On spherical tilings generated by great circles, Geometriae Dedicata23 (1987) 67–71.

    MATH  MathSciNet  Google Scholar 

  19. M. Goldberg: Maximizing the smallest triangle made by N points in a square, Math. Magazine45 (1972) 135–144.

    Article  MATH  Google Scholar 

  20. G. Grimmett, S. Janson: On smallest triangles, Random Structures Algorithms23 (2003) 206–223.

    MATH  MathSciNet  Google Scholar 

  21. B. Grünbaum: Strictly antipodal sets, Israel J. Math.1 (1963) 5–10.

    MATH  MathSciNet  Google Scholar 

  22. D. Ismailescu: Slicing the pie, Discrete Comput. Geom.30 (2003) 263–276.

    MATH  MathSciNet  Google Scholar 

  23. T. Jiang, M. Li, P. Vitányi: The average-case area of Heilbronn-type triangles, Random Structures Algorithms20 (2002) 206–219.

    MATH  MathSciNet  Google Scholar 

  24. J. Komlós, J. Pintz, E. Szemerédi: On a problem of Erdős and Straus, in: Topics in Classical Number Theory, Vol. II, G. Halász, ed., Colloq. Math. Soc. János Bolyai34 North-Holland 1984, 927–960.

    Google Scholar 

  25. J. Komlós, J. Pintz, E. Szemerédi: A lower bound for Heilbronn’s problem, J. London Math. Soc.25 (1982) 13–24.

    MATH  MathSciNet  Google Scholar 

  26. J. Komlós, J. Pintz, E. Szemerédi: On Heilbronn’s triangle problem, J. London Math. Soc. 2. Ser. 24 (1981) 385–396.

    MATH  Google Scholar 

  27. H. Lefmann: On Heilbronn’s problem in higher dimension, Combinatorica23 (2003) 669–680.

    MATH  MathSciNet  Google Scholar 

  28. H. Lefmann, N. Schmitt: A deterministic polynomial-time algorithm for Heilbronn’s problem in three dimensions, SIAM J. Computing31 (2002) 1926–1947.

    MATH  MathSciNet  Google Scholar 

  29. K.F. Roth: Developments in Heilbronn’s triangle problem, Advances Math.22 (1976) 364–385.

    MATH  Google Scholar 

  30. K.F. Roth: Estimation of the area of the smallest triangle obtained by selecting three out of n points in a disc of unit area, in: Analytic Number Theory, H.G. Diamond, ed., Proc. Sympos. Pure Math.24 Amer. Math. Soc., 1973, 251–262.

    Google Scholar 

  31. K.F. Roth: On a problem of Heilbronn II, Proc. London Math. Soc.25 (1972) 193–212.

    MATH  MathSciNet  Google Scholar 

  32. K.F. Roth: On a problem of Heilbronn III, Proc. London Math. Soc.25 (1972) 543–549.

    MATH  Google Scholar 

  33. K.F. Roth: On a problem of Heilbronn, J. London Math. Soc.26 (1951) 198–204.

    MATH  MathSciNet  Google Scholar 

  34. B.L. Rothschild, E.G. Straus: On triangulations of the convex hull of n points, Combinatorica5 (1985) 167–179.

    MATH  MathSciNet  Google Scholar 

  35. W.M. Schmidt: On a problem of Heilbronn, J. London Math. Soc. 2. Ser. 4 (1971/72) 545–550.

    Google Scholar 

  36. K. Schütte: Minimale Durchmesser endlicher Punktmengen mit vorgeschriebenem Mindestabstand, Math. Ann.150 (1963) 91–98.

    MATH  MathSciNet  Google Scholar 

  37. Bl. Sendov: Minimax of the angles in a planar configuration of points, Acta Math. Hungar.69 (1995) 27–46.

    MATH  MathSciNet  Google Scholar 

  38. Bl. Sendov: Angles in a plane configuration of points C. R. Acad. Bulg. Sci.46 (1993) 27–30.

    MATH  MathSciNet  Google Scholar 

  39. Bl. Sendov: On a conjecture of P. Erdős and G. Szekeres, C. R. Acad. Bulg. Sci.45 (1992) 17–20.

    MATH  MathSciNet  Google Scholar 

  40. E.G. Straus: Some extremal problems in combinatorial geometry, in: Combinatorial Mathematics (Proc. Conf. Canberra 1977), D.A. Holton et al., eds., Springer Lect. Notes Math. 686 (1978) 308–312.

    Google Scholar 

  41. G. Szekeres: On an extremum problem in the plane, Amer. J. Math.63 (1941) 208–210.

    MATH  MathSciNet  Google Scholar 

  42. L. Yang, Z. Zeng: Heilbronn problem for seven points in a planar convex body, in: Minimax and Applications, D.-Z. Dhu et al., eds., Nonconvex Optim. Appl. Ser. Vol. 4, Kluwer Acad. Publ. 1995, 173–190.

    Google Scholar 

  43. L. Yang, J.Z. Zhang, Z. Zeng: On the Heilbronn numbers of triangular regions, (in Chinese, English summary), Acta Math. Sinica37 (1994) 678–689.

    MATH  MathSciNet  Google Scholar 

  44. L. Yang, J.Z. Zhang, Z. Zeng: A conjecture on the first several Heilbronn numbers and a computation, (in Chinese, see MR93i:51045) Chinese Ann. Math. Ser. A13 (1992) 503–515.

    MATH  MathSciNet  Google Scholar 

References

  1. I. Bá0ány, A. Heppes: On the exact constant in the quantitative Steinitz theorem in the plane, Discrete Comput. Geom.12 (1994) 387–398.

    MathSciNet  Google Scholar 

  2. I. Bárány, M. Katchalski, J. Pach: Quantitative Hellytype theorems, Proc. Amer. Math. Soc.86 (1982) 109–114.

    MATH  MathSciNet  Google Scholar 

  3. A. Bezdek, F. Fodor, I. Talata: Applications of inscribed affine regular polygons in convex discs, in: Proc. Int. Sci. Conf. Mathematics, Vol. 2 (Žilina, Slovakia, 1998), V. Bálint, ed., EDIS, Žilina University Publisher, (1999) 19–27.

    Google Scholar 

  4. W. Blaschke: Über affine Geometrie III: Eine Minimumeigenschaft der Ellipse, Ber. Ver. Sächs. Akad. Wiss. Leipzig, Math.-Nat. Klasse69 (1917) 3–12.

    Google Scholar 

  5. P. Brass: On the quantitative Steinitz theorem in the plane, Discrete Comput. Geom.17 (1997) 111–117.

    MATH  MathSciNet  Google Scholar 

  6. P. Brass, M. Lassak: Problems on approximation by triangles, Geombinatorics10 (2001) 103–115.

    MATH  MathSciNet  Google Scholar 

  7. G.D. Chakerian: Minimum area of circumscribed polygons, Elemente Math. 28 (1973) 108–111.

    MATH  MathSciNet  Google Scholar 

  8. G.D. Chakerian, L.H. Lange: Geometric extremum problems, Math. Mag.44 (1971) 57–69.

    Article  MATH  MathSciNet  Google Scholar 

  9. G.D. Chakerian, S.K. Stein: Some intersection properties of convex bodies, Proc. Amer. Math. Soc.18 (1967) 109–112.

    MATH  MathSciNet  Google Scholar 

  10. H.G. Eggleston: On triangles circumscribing plane convex sets, J. London Math. Soc.28 (1953) 36–46.

    MATH  MathSciNet  Google Scholar 

  11. R. Fleischer, K. Mehlhorn, G. Rote, E. Welzl, C. Yap: Simultaneous inner and outer approximation of shapes, Algorithmica8 (1992) 365–389.

    MATH  MathSciNet  Google Scholar 

  12. D. Gale: On inscribing n-dimensional sets in a regular n-simplex, Proc. Amer. Math. Soc.4 (1953) 222–225.

    MATH  MathSciNet  Google Scholar 

  13. P. Gritzmann, M. Lassak: Estimates for the minimal width of polytopes incribed in convex bodies, Discrete Comput. Geom.4 (1989) 627–635.

    MATH  MathSciNet  Google Scholar 

  14. W. Gross: Über affine Geometrie XIII: Eine Minimumeigenschaft der Ellipse und des Ellipsoids, Ber. Ver. Sächs. Akad. Wiss. Leipzig, Math.-Nat. Klasse70 (1918) 38–54.

    Google Scholar 

  15. J. Hodges: An extremal problem in geometry, J. London Math. Soc.26 (1951) 311–312.

    MATH  MathSciNet  Google Scholar 

  16. D. Kirkpatrick, B. Mishra, C. Yap: Quantitative Steinitz’s theorems with applications to multifingered grasping, Discrete Comput. Geom.7 (1992) 295–318.

    MATH  MathSciNet  Google Scholar 

  17. A. KosiŃski: A proof of the Auerbach-Banach-Mazur-Ulam theorem on convex bodies, Colloq. Math.17 (1957) 216–218.

    Google Scholar 

  18. M. Lassak: Affine-regular hexagons of extreme areas inscribed in a centrally symmetric convex body, Adv. Geom.3 (2003) 45–51.

    MATH  MathSciNet  Google Scholar 

  19. M. Lassak: Approximation of convex bodies by axially symmetric bodies, Proc. Amer. Math. Soc.130 (2002) 3075–3084 (electronic), Erratum in 131 (2003) p. 2301 (electronic).

    MATH  MathSciNet  Google Scholar 

  20. M. Lassak: Approximation of convex bodies by rectangles, Geometriae Dedicata47 (1993) 111–117.

    MATH  MathSciNet  Google Scholar 

  21. M. Lassak: Estimation of the volume of parallelotopes contained in convex bodies, Bull. Polish Acad. Sci. Math.41 (1993) 349–353.

    MATH  MathSciNet  Google Scholar 

  22. M. Lassak: Approximation of convex bodies by parallelotopes, Bull. Polish Acad. Sci. Math.39 (1991) 219–223.

    MATH  MathSciNet  Google Scholar 

  23. A. Macbeath: An extremal property of the hypersphere, Proc. Cambridge Philosophical Soc.47 (1951) 245–247.

    Article  MATH  MathSciNet  Google Scholar 

  24. K. Radziszewski: Sur une problème extrémal relatif aux figures inscrites et circonscrites aux figures convexes, Ann. Univ. Mariae Curie-Sklodowska, Sect. A6 (1952) 5–18.

    MathSciNet  Google Scholar 

  25. E. Sas: Über eine Extremaleigenschaft der Ellipse, Compositio Math. 6 (1939) 468–470.

    MATH  MathSciNet  Google Scholar 

  26. R. Schneider: A characteristic extremal property of simplices, Proc. Amer. Math. Soc.40 (1973) 247–249.

    MATH  MathSciNet  Google Scholar 

  27. R. Schneider: Zwei Extremalaufgaben für konvexe Bereiche, Acta Math. Acad. Sci. Hungar.22 (1971/72) 379–383.

    MathSciNet  Google Scholar 

  28. G. Tsintsifas: The strip (Problem 5973), Amer. Math. Monthly83 (1976) p. 142.

    MathSciNet  Google Scholar 

References

  1. K. Bezdek: On certain translation covers, Note Mat. 10 (1990) 279–286.

    MATH  MathSciNet  Google Scholar 

  2. K. Bezdek, R. Connelly: The minimum mean width translation cover for sets of diameter one, Beiträge Algebra Geom. 39 (1998) 473–479.

    MATH  MathSciNet  Google Scholar 

  3. K. Bezdek, R. Connelly: Minimal translation covers for sets of diameter 1, Period. Math. Hungar.34 (1997) 23–27.

    MATH  MathSciNet  Google Scholar 

  4. K. Bezdek, R. Connelly: Covering curves by translates of a convex set, Amer. Math. Monthly96 (1989) 789–806.

    MATH  MathSciNet  Google Scholar 

  5. L.M. Blumenthal, G.E. Wahlin: On the spherical surface of smallest radius enclosing a bounded subset of n-dimensional space, Bull. Amer. Math. Soc.47 (1941) 771–777.

    MATH  MathSciNet  Google Scholar 

  6. P. Brass, M. Sharifi: A lower bound for Lebesgue’s universal cover problem, Internat. J. Comput. Geom. Appl., to appear.

    Google Scholar 

  7. G. Cąlinescu, A. Dumitrescu: The carpenter’s ruler folding problem, in: Current Trends in Combinatorial and Computational Geometry, J.E. Goodman et al., eds., Cambridge Univ. Press, to appear.

    Google Scholar 

  8. G.D. Chakerian, M.S. Klamkin: Minimal covers for closed curves, Math. Mag.46 (1973) 55–61.

    Article  MATH  MathSciNet  Google Scholar 

  9. G.D. Chakerian, D. Logothetti: Minimal regular polygons serving as universal covers in IR2, Geometriae Dedicata26 (1988) 281–297.

    MATH  MathSciNet  Google Scholar 

  10. G.F.D. Duff: A smaller universal cover for sets of unit diameter, C. R. Math. Rep. Acad. Sci. Canada2 (1980/81) 37–42.

    MATH  MathSciNet  Google Scholar 

  11. H.G. Eggleston: Minimal universal covers in En, Israel J. Math.1 (1963) 149–155.

    MATH  MathSciNet  Google Scholar 

  12. G. Elekes: Generalized breadths, Cantor-type arrangements and the least area UCC, Discrete Comput. Geom.12 (1994) 439–449.

    MATH  MathSciNet  Google Scholar 

  13. Z. Füredi, J.E. Wetzel: The smallest convex cover for triangles of perimeter two, Geometriae Dedicata81 (2000) 285–293.

    MATH  MathSciNet  Google Scholar 

  14. D. Gale: On inscribing n-dimensional sets in a regular nsimplex, Proc. Amer. Math. Soc.4 (1953) 222–225.

    MATH  MathSciNet  Google Scholar 

  15. J. Gerriets, G. Poole: Convex regions which cover arcs of constant length, Amer. Math. Monthly81 (1974) 36–41.

    MATH  MathSciNet  Google Scholar 

  16. B. Grünbaum: Borsuk’s problem and related questions, in: Convexity, V. Klee, ed., Proc. Sympos. Pure Math.7, Amer. Math. Soc., 1963, 271–284.

    Google Scholar 

  17. B. Grünbaum: A simple proof of Borsuk’s conjecture in three dimensions, Proc. Cambridge Philos. Soc., 53 (1957) 776–778.

    Article  MATH  MathSciNet  Google Scholar 

  18. H.C. Hansen: The worm problem (in Danish), Normat40 (1992) 119–123, p. 143.

    MATH  MathSciNet  Google Scholar 

  19. H.C. Hansen: Small universal covers for sets of unit diameter, Geometriae Dedicata42 (1992) 205–213.

    MATH  MathSciNet  Google Scholar 

  20. H.C. Hansen: Towards the minimal universal cover (in Danish), Normat29 (1981) 115–119, p. 148.

    MathSciNet  Google Scholar 

  21. H.C. Hansen: A small universal cover of figures of unit diameter, Geometriae Dedicata4 (1975) 165–172.

    MATH  MathSciNet  Google Scholar 

  22. T. Hausel, E. Makai Jr., A. Szűcs: Inscribing cubes and covering by rhombic dodecahedra via equivariant topology, Mathematika47 (2000) 371–397.

    Article  MATH  MathSciNet  Google Scholar 

  23. T. Hausel, E. Makai Jr., A. Szűcs: Polyhedra inscribed and circumscribed to convex bodies, in: Proc. Third Internat. Workshop on Diff. Geom. and its Appls. and First German-Romanian Seminar on Geom. (Sibiu, Romania, 1997), General Math. 5 (1997) 183–190.

    MATH  Google Scholar 

  24. J. Håstad, S. Linusson, J. Wästlund: A smaller sleeping bag for a baby snake, Discrete Comput. Geom.26 (2001) 173–181.

    MATH  MathSciNet  Google Scholar 

  25. A. Heppes: On the partitioning of three-dimensional point sets into sets of smaller diameter (in Hungarian), Magyar Tud. Akad. Mat. Fiz. Oszt. Közl.7 (1957) 413–416.

    MATH  MathSciNet  Google Scholar 

  26. A. Heppes, P. Révész: Zum Borsukschen Zerteilungsproblem, Acta Math. Sci. Hungar.7 (1956) 159–162.

    MATH  Google Scholar 

  27. H.W.E. Jung: Über den kleinsten Kreis, der eine ebene Figur einschließt, J. Reine Angew. Math.137 (1910) 310–313.

    MATH  Google Scholar 

  28. H.W.E. Jung: Über die kleinste Kugel, die eine räumliche Figur einschließt, J. Reine Angew. Math.123 (1901) 241–257.

    MATH  Google Scholar 

  29. M.D. Kovalev: The smallest Lebesgue covering exists (in Russian), Mat. Zametki40 (1986) 401–406, translation in Math. Notes40 (1986) 736–739.

    MathSciNet  Google Scholar 

  30. M.D. Kovalev: A minimal convex covering for triangles (in Russian), Ukrain. Geom. Sb.26 (1983) 63–68.

    MATH  MathSciNet  Google Scholar 

  31. G. Kuperberg: Circumscribing constant-width bodies with polytopes, New York J. Math.5 (1999) 91–100.

    MATH  MathSciNet  Google Scholar 

  32. B. Lindström: A sleeping bag for a baby snake, Math. Gaz.81 (1997) 451–452.

    Google Scholar 

  33. V.V. Makeev: On affine images of a rhombo-dodecahedron circumscribed about a three-dimensional convex body (in Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI)246 (1997), Geom. i Topol. 2, 191–195, 200; translation in J.Math. Sci. (New York)100 (2000) 2307–2309.

    Google Scholar 

  34. V.V. Makeev: Inscribed and circumscribed polygons of a convex body (in Russian), Mat. Zametki55 (1994) 128–130; translation in Math. Notes55 (1994) 423–425.

    MathSciNet  Google Scholar 

  35. V.V. Makeev: Dimension restrictions in problems of combinatorial geometry (in Russian), Sibirsk. Mat. Zh.23 (1982), 197–201, p. 222.

    MATH  MathSciNet  Google Scholar 

  36. H. Mallée: Translationsdeckel für geschlossene Kurven, Arch. Math. (Basel)62 (1994) 569–576.

    MATH  MathSciNet  Google Scholar 

  37. J.C.C. Nitsche: The smallest sphere containing a rectifiable curve, Amer. Math. Monthly78 (1971) 881–882.

    MATH  MathSciNet  Google Scholar 

  38. R. Norwood, G. Poole: An improved upper bound for Leo Moser’s worm problem, Discrete Comput. Geom.29 (2003) 409–417.

    MATH  MathSciNet  Google Scholar 

  39. R. Norwood, G. Poole, M. Laidacker: The worm problem of Leo Moser, Discrete Comput. Geom.7 (1992) 153–162.

    MATH  MathSciNet  Google Scholar 

  40. J. Pál: Über ein elementares Variationsproblem, Math.-fys. Medd., Danske Vid. Selsk.3 (1920) no. 2, 35 p.

    Google Scholar 

  41. J. Pál: Ein Minimumproblem für Ovale, Math. Annalen83 (1921) 311–319.

    MATH  Google Scholar 

  42. G. Poole, J. Gerriets: Minimum covers for arcs of constant length, Bull. Amer. Math. Soc.79 (1973) 462–463.

    MATH  MathSciNet  Google Scholar 

  43. H. Rutishauser, H. Samelson: Sur le rayon d’une sphère dont la surface contient une courbe fermée, C. R. Acad. Sci. Paris227 (1948) 755–757.

    MATH  MathSciNet  Google Scholar 

  44. J. Schaer, J.E. Wetzel: Boxes for curves of constant length, Israel J. Math.12 (1972) 257–265.

    MATH  MathSciNet  Google Scholar 

  45. B. Segre: Sui circoli geodetici de una superficie a curvatura totale constante che contengono nell’interno un linea assegnata, Boll. Un. Mat. Ital.13 (1934) 279–283.

    MATH  Google Scholar 

  46. R. Sprague: Über ein elementares Variationsproblem, Mat. Tidsskr. Ser. B (1936) 96–98.

    Google Scholar 

  47. C.G. Wastun: Universal covers of finite sets, J. Geometry32 (1988) 192–201.

    MATH  MathSciNet  Google Scholar 

  48. B. Weissbach: On a covering problem in the plane, Beiträge Algebra Geom. 41 (2000) 425–426.

    MATH  MathSciNet  Google Scholar 

  49. B. Weissbach: Quermaßintegrale zentralsymmetrischer Deckel, Geometriae Dedicata69 (1998) 113–120.

    MATH  MathSciNet  Google Scholar 

  50. B. Weissbach: Polyhedral covers, in: Intuitive Geometry (Siófok, 1985), K. Böröczky et al., eds., Colloq. Math. Soc. János Bolyai48 North-Holland, 1987, 639–646.

    Google Scholar 

  51. J.E. Wetzel: Sectorial covers for curves of constant length, Canadian Math. Bull.16 (1973) 367–375.

    MATH  MathSciNet  Google Scholar 

  52. J.E. Wetzel: On Moser’s problem of accommodating closed curves in triangles, Elemente Math. 27 (1972) 35–36.

    MATH  MathSciNet  Google Scholar 

  53. J.E. Wetzel: Covering balls for curves of constant length, Enseignement Math. (2) 17 (1971) 275–277.

    MATH  MathSciNet  Google Scholar 

  54. J.E. Wetzel: Triangular covers for closed curves of constant length, Elemente Math. 25 (1970) 78–82.

    MATH  MathSciNet  Google Scholar 

References

  1. H. Alt, L.J. Guibas: Discrete geometric shapes: matching, interpolation and approximation, in: Handbook of Computational Geometry, J.-R. Sachs et al., eds., Elsevier 1999, 121–153.

    Google Scholar 

  2. V. Bálint, A. Bálintová, M. Branická, P. Grešák, I. Hrinko, P. Novotný, M. Stacho: Translative covering by homothetic copies, Geometriae Dedicata46 (1993) 173–180.

    MATH  MathSciNet  Google Scholar 

  3. W. Blaschke: Über affine Geometrie III: Eine Minimumeigenschaft der Ellipse, Ber. Ver. Sächs. Akad. Wiss. Leipzig, Math.-Naturw. Klasse69 (1917) 3–12.

    Google Scholar 

  4. P. Brass: On the approximation of polygons by subpolygons, in: Euro-CG 2000, Proc. European Workshop Comput. Geom. (Eilat, 2000), 59–61.

    Google Scholar 

  5. P. Brass, M. Lassak: Problems on approximation by triangles, Geombinatorics10 (2001) 103–115.

    MATH  MathSciNet  Google Scholar 

  6. C.H. Dowker: On minimum circumscribed polygons, Bull. Amer. Math. Soc.50 (1944) 120–122.

    Article  MATH  MathSciNet  Google Scholar 

  7. H.G. Eggleston: Approximation of plane convex curves I: Dowker-type theorems, Proc. London Math. Soc.7 (1957) 351–377.

    MATH  MathSciNet  Google Scholar 

  8. G. Fejes Tóth: On a Dowker-type theorem of Eggleston, Acta Math. Acad. Sci. Hungar.29 (1977) 131–148.

    MATH  MathSciNet  Google Scholar 

  9. R. Fleischer, K. Mehlhorn, G. Rote, E. Welzl, C. Yap: Simultaneous inner and outer approximation of shapes, Algorithmica8 (1992) 365–389.

    MATH  MathSciNet  Google Scholar 

  10. P. Georgiev: Approximation of convex n-gons by (n−1)-gons (in Bulgarian, English summary, see Zbl 545.41045), in: Mathematics and Education in Math., Proc. 13th Spring Conf. Bulg. Math. Soc. (Sunny Beach, Bulgaria, 1984), 289–303.

    Google Scholar 

  11. P.M. Gruber: Aspects of the Approximation of Convex Bodies, in: Handbook of Convex Geometry, Vol. A, P.M. Gruber et al., eds., Elsevier 1993, 319–345.

    Google Scholar 

  12. B. Grünbaum: Measures of symmetry of convex sets, in: Convexity, V. Klee, ed., Proc. Sympos. Pure Math.7 Amer. Math. Soc. 1963, 233–270.

    Google Scholar 

  13. R. Ivanov: Approximation of convex n-polygons by means of inscribed (n−1)-polygons (in Bulgarian, English summary, see Zbl 262.52002), in: Mathematics and Education in Mathematics, Proc. 2nd Spring Conf. Bulg. Math. Soc. (Vidin, Bulgaria, 1973), 113–122.

    Google Scholar 

  14. P. Kenderov: On an optimal property of the square (in Russian, see Zbl 329.52010), C. R. Acad. Bulg. Sci.26 (1973) 1143–1146.

    MathSciNet  MATH  Google Scholar 

  15. M. Lassak: Affine-regular hexagons of extreme areas inscribed in a centrally symmetric convex body, Adv. Geom.3 (2003) 45–51.

    MATH  MathSciNet  Google Scholar 

  16. M. Lassak: Approximation of convex bodies by axially symmetric bodies, Proc. Amer. Math. Soc.130 (2002) 3075–3084 (electronic), Erratum in 131 (2003) p. 2301 (electronic).

    MATH  MathSciNet  Google Scholar 

  17. M. Lassak: Approximation of convex bodies by centrally symmetric bodies, Geometriae Dedicata72 (1998) 63–68.

    MATH  MathSciNet  Google Scholar 

  18. M. Lassak: Approximation of convex bodies by rectangles, Geometriae Dedicata47 (1993) 111–117.

    MATH  MathSciNet  Google Scholar 

  19. M. Lassak: Approximation of convex bodies by triangles, Proc. Amer. Math. Soc.115 (1992) 207–210.

    MATH  MathSciNet  Google Scholar 

  20. M. Lassak: Approximation of plane convex bodies by centrally symmetric bodies, J. London Math. Soc. 2. Ser. 40 (1989) 369–377.

    MATH  MathSciNet  Google Scholar 

  21. V.A. Popov: Approximation of convex sets (in Bulgarian, with Russian, English summary), B’ lgar. Akad. Nauk. Otdel. Mat. Fiz. Nauk. Izv. Mat. Inst.11 (1970) 67–80.

    MATH  Google Scholar 

  22. V.A. Popov: Approximation of convex bodies (in Russian, see Zbl 215.50601), C. R. Acad. Bulg. Sci.21 (1968) 993–995.

    MATH  Google Scholar 

  23. W. Stromquist: The maximum distance between two-dimensional Banach spaces, Math. Scand.48 (1981) 205–225.

    MATH  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Geometric Inequalities. In: Research Problems in Discrete Geometry. Springer, New York, NY. https://doi.org/10.1007/0-387-29929-7_12

Download citation

Publish with us

Policies and ethics