Skip to main content

Ultra-Wideband Communications Using Pseudo-Chaotic Time Hopping

  • Chapter
Digital Communications Using Chaos and Nonlinear Dynamics

Part of the book series: Institute for Nonlinear Science ((INLS))

  • 727 Accesses

Summary

Pseudo-chaotic time hopping (PCTH) is a recently proposed encoding/modulation scheme for UWB (ultra-wide band) impulse radio. PCTH exploits concepts from symbolic dynamics to generate aperiodic spreading sequences, resulting in a noiselike spectrum. In this chapter we present the signal characteristics of single-user PCTH as well as a suitable multiple access technique. In particular, we provide analytical expressions for the BER (bit-error-rate) performance as a function of the number of users and validate it by simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Merriam-Webster Collegiate Dictionary. Merriam-Webster, Inc. online, 2002. http://www.m-w.com.

    Google Scholar 

  2. P. J. Nahin, The Science of Radio. Woodbury, NY: American Institute of Physics Press, 1996.

    Google Scholar 

  3. Nobel Foundation, Nobel e-Museum. online, 2002. http://www.nobel.se/physics/laureates.

    Google Scholar 

  4. J. G. Proakis, Digital Communications. New York, NY: Mc Graw Hill, 3rd ed., 1995.

    Google Scholar 

  5. D. G. Leeper, A long-term view of short-range wireless, IEEE Computer Magazine, vol. 34, pp. 39–44, 2001.

    Google Scholar 

  6. R. J. Fontana, An insight into UWB interference from a shot noise perspective, in Proceedings of Ultra Wideband Systems and Technologies Conference, pp. 309–313, 2002.

    Google Scholar 

  7. P. Withington, Impulse radio overview. online, 1998. http://www.timedomain.com.

    Google Scholar 

  8. Federal Communications Commission, Revision of Part 15 of the Commission’s rules regarding ultra-wideband transmission systems. First Report and Order FCC 02-48, ET docket 98–153, April 2002.

    Google Scholar 

  9. G. M. Maggio, N. Rulkov, and L. Reggiani, Pseudo-chaotic time hopping for UWB impulse radio, IEEE Transactions on Circuits and Systems—I, vol. 48, 2001.

    Google Scholar 

  10. M. Z. Win and R. A. Scholtz, Impulse radio: How it works, IEEE Communications Letters, vol. 2, pp. 36–38, 1998.

    Article  Google Scholar 

  11. S. S. Kolenchery, J. K. Townsend, and J. Freebersyer, A novel impulse radio network for tactical military wireless communications, in Proceedings of MILCOM, pp. 59–65, 1998.

    Google Scholar 

  12. R. A. Scholtz, Multiple access with time hopping impulse modulation, in Proceedings of MILCOM, pp. 447–450, 1993.

    Google Scholar 

  13. F. Ramirez-Mireles and R. A. Scholtz, N-orthogonal time-shift-modulated signals for ultra-wide bandwidth impulse radio modulation, in IEEE Miniconference Proceedings on Commmunication Theory, 1997.

    Google Scholar 

  14. F. Ramirez-Mireles and R. A. Scholtz, Multiple-access performance limits with time hopping and pulse position modulation, in Proceedings of MILCOM, pp. 529–533, 1998.

    Google Scholar 

  15. M. Z. Win and R. A. Scholtz, Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple access communications, IEEE Transactions on Communications, vol. 48, pp. 679–689, 2000.

    Article  Google Scholar 

  16. R. G. Aiello, G. D. Rogerson, and P. Enge, Preliminary assessment of interference between ultra-wideband transmitters and the global positioning system: A cooperative study, in Proceedings of the National Technical Meeting of the Institute of Navigation, 2000.

    Google Scholar 

  17. P. A. Bernhardt, Chaotic frequency modulation, in Proc. SPIE, vol. 2038, pp. 162–81, 1993.

    ADS  Google Scholar 

  18. N. F. Rulkov and A. R. Volkovskii, Threshold synchronization of chaotic relaxation oscillations, Phys. Lett. A, vol. 179, pp. 332–336, 1993.

    Article  ADS  Google Scholar 

  19. H. Torikai, T. Saito, and W. Schwarz, Synchronization via multiplex pulse trains, IEEE Trans. Circuits and Systems—I, vol. 46, pp. 1072–1085, 1999.

    Article  Google Scholar 

  20. M. Sushchick, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K. Yao, and A. Volkovskii, Chaotic pulse position modulation: A robust method of communicating with chaos, IEEE Communications Letters, vol. 4, pp. 128–130, 2000.

    Article  Google Scholar 

  21. T. Yang and L. Chua, Chaotic impulse radio: A novel chaotic secure communication system, Int. J. Bif. and Chaos, vol. 10, pp. 345–357, 2000.

    Article  MathSciNet  Google Scholar 

  22. G. M. Maggio, N. Rulkov, M. Sushchik, L. Tsimring, A. Volkovskii, H. Abarbanel, L. Larson, and K. Yao, Chaotic pulse-position modulation for ultrawideband communication systems, in Proc. of UWB Conference, Washington D.C., 1999.

    Google Scholar 

  23. D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding (Cambridge University Press, 1995).

    Google Scholar 

  24. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, 1993).

    Google Scholar 

  25. D. C. Laney, G. M. Maggio, F. Lehmann, and L. E. Larson, BER and spectral properties of interleaved convolutional time hopping for UWB impulse radio, in Proc. of Globecom 2003, San Francisco, CA, December 1–5, 2003.

    Google Scholar 

  26. C. Caire, G. Taricco, and E. Biglieri, Bit-interleaved coded modulation, IEEE Trans. on Inf. Theory, vol. 44, pp. 932–946, 1998.

    Article  MathSciNet  Google Scholar 

  27. D. C. Laney, G. M. Maggio, F. Lehmann, and L. E. Larson, Multiple access for UWB impulse radio with pseudo-chaotic time hopping, IEEE J. on Selected Areas in Comm., vol. 20, pp. 1692–1700, 2002.

    Article  Google Scholar 

  28. S. Lin and D. J. Costello, Error Control Coding (Prentice-Hall, 1983).

    Google Scholar 

  29. S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory (Prentice Hall, 1998).

    Google Scholar 

  30. J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering (Waveland Press, 1965).

    Google Scholar 

  31. E. Zehavi, 8-psk trellis code for a rayleigh channel, IEEE Trans. Comm., vol. 40, pp. 873–884, 1992.

    Article  MATH  ADS  Google Scholar 

  32. A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding (McGraw-Hill, N.Y., 1979).

    MATH  Google Scholar 

  33. R. D. Gitlin, J. F. Hayes, and S. B. Weinstein, Data Communication Principles (Plenum,, N.Y., 1992).

    Google Scholar 

  34. L. W. Couch, Digital and Analog Communication Systems, 5th ed.. (Prentice-Hall, 1997).

    Google Scholar 

  35. G. M. Maggio, D. Laney, F. Lehmann, and L. Larson, A multi-access scheme for UWB radio using pseudo-chaotic time hopping, in Proceedings of Ultra Wideband Systems and Technologies Conference, pp. 225–229, 2002.

    Google Scholar 

  36. G. Maggio, D. Laney, and L. Larson, BER for synchronous multi-access UWB radio using pseudo-chaotic time hopping, in Proceedings of IEEE Global Telecommunications Conference (Globecom), pp. 1324–1328, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Laney, D.C., Maggio, G.M. (2006). Ultra-Wideband Communications Using Pseudo-Chaotic Time Hopping. In: Larson, L.E., Tsimring, L.S., Liu, JM. (eds) Digital Communications Using Chaos and Nonlinear Dynamics. Institute for Nonlinear Science. Springer, New York, NY . https://doi.org/10.1007/0-387-29788-X_4

Download citation

Publish with us

Policies and ethics