Skip to main content

Antioxidant Nutrients and Antioxidant Nutrient-Rich Foods Against Coronary Heart Disease

  • Chapter
Antioxidants and Cardiovascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 258))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger A. What does zinc do? BMJ 2002;325:1062–3.

    PubMed  Google Scholar 

  2. Bray TM, Bettger WJ. The physiological role of zinc as antioxidant. Free Rad Biol Med 1990;8:281–91.

    CAS  PubMed  Google Scholar 

  3. Rayman MP. Dietary selenium: time to act. BMJ 1997;314:387–8.

    CAS  PubMed  Google Scholar 

  4. Goyer RA. Toxic and essential metal interactions. Ann Rev Nutr 1997; 17:35–50.

    Google Scholar 

  5. de Lorgeril M, Salen P, Accominotti M, et al. Dietary and blood antioxidants in patients with chronic heart failure. Insights into the potential importance of selenium in heart failure. Eur J Heart Failure 2001;3:661–9.

    Google Scholar 

  6. Cowie MR, Mostred A, Wood DA, et al. The epidemiology of heart failure. Eur Heart J 1997;18:208–25.

    CAS  PubMed  Google Scholar 

  7. Gheorghiade M, Bonow RO. Chronic heart failure in the United States. Circulation 1998;97282–9.

    Google Scholar 

  8. Keith M, Geranmayegan A, Sole MJ, et al. Increased oxidative stress in patients with congestive heart failure. J Am Coll Cardiol 1998;31:1352–6.

    CAS  PubMed  Google Scholar 

  9. Mallat Z, Philip I, Lebret M, Chatel D, Maclouf J, Tedgui A. Elevated levels of 8-iso-prostaglandin F2 alpha in pericardial fluid of patients with heart failure. A potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 1998;97:1536–9.

    CAS  PubMed  Google Scholar 

  10. Dhalla AK, Hill M, Singal PK. Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol 1996;28:506–14.

    CAS  PubMed  Google Scholar 

  11. Bauersachs J, Bouloumié A, Fraccarollo D, Hu K, Busse R, Ertl G. Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylate cyclase expression: role of enhanced vascular superoxide production. Circulation 1999;100:292–8.

    CAS  PubMed  Google Scholar 

  12. Ge K, Yang G. The epidemiology of selenium deficiency in the etiological study of endemic diseases in China. Am J Clin Nutr (Suppl) 1993;57:259S–263S.

    CAS  Google Scholar 

  13. Chariot P, Perchet H, Monnet I. Dilated cardiomyopathy in HIV-infected patients. N EnglJMed 1999;340:732.

    CAS  Google Scholar 

  14. Ferrari R. Origin of heart failure: cardiac or generalized myopathy? Eur Heart J 1999;20:1613–4.

    CAS  PubMed  Google Scholar 

  15. Coats AJS. Exercise training for heart failure. Coming of age. Circulation 1999;99:1138–40.

    CAS  PubMed  Google Scholar 

  16. Inoko M, Konishi T, Matsusue S, Kobashi Y. Midmural fibrosis of left ventricle due to selenium deficiency. Circulation 1998;98:2638–9.

    CAS  PubMed  Google Scholar 

  17. Xu GL, Wang SC, Gu BQ, et al. Further investigation on the role of selenium deficiency in the etiology and pathogenesis of Keshan disease. Biomed Environ Sci 1997;10:316–26.

    CAS  PubMed  Google Scholar 

  18. Recommended Dietary Allowances, 1989. Food and Nutrition Board, National Research council, 10ed. National Acad Press.

    Google Scholar 

  19. Yang GQ, Xia YM. Studies on human dietary requirements and safe range of dietary intakes of selenium in China and their application in the prevention of related endemic diseases. Biomed Environ Sci 1995;8:187–201.

    CAS  PubMed  Google Scholar 

  20. Coats AJ. Origins of symptoms in heart failure. Cardiovasc Drugs Ther 1997;11(suppl 1):265–72.

    PubMed  Google Scholar 

  21. Takahashi K, Newburger PE, Cohen HJ. Glutathione peroxidase protein. Absence in selenium deficiency states and correlation with enzymatic activity. J Clin Invest 1986;77:1402–4.

    CAS  PubMed  Google Scholar 

  22. Burk RF, Hill KE. Selenoprotein P. A selenium-rich extracellular glycoprotein. J Nutr 1994; 124:1891–7.

    CAS  PubMed  Google Scholar 

  23. May JM, Mendiratta S, Hill KE, Burk RF. Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase. J Biol Chem 1997;272:22607–10.

    CAS  PubMed  Google Scholar 

  24. Zelis R, Flaim SF. Alterations in vasomotor tone in chronic heart failure. Prog Cardiovasc Dis 1982;24:437–59.

    CAS  PubMed  Google Scholar 

  25. Okita K, Yonezawa K, Nishijima H, et al. Skeletal muscle metabolism limits exercise capacity in patients with chronic heart failure. Circulation 1998;98:1886–91.

    CAS  PubMed  Google Scholar 

  26. Drexler H. Endothelium as a therapeutic target in heart failure. Circulation 1998;98:2652–5.

    CAS  PubMed  Google Scholar 

  27. Hambrecht R, Fiehn E, Weigl C, et al. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 1998;98:2709–15.

    CAS  PubMed  Google Scholar 

  28. Frei B, England L, Ames BN. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci U S A 1989;86:6377–81.

    CAS  PubMed  Google Scholar 

  29. Meister A. Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem 1994;269:9397–400.

    CAS  PubMed  Google Scholar 

  30. Tanguy S, Morel S, Berthonneche C et al. Preischemic selenium status as a major determinant of myocardial infarct size in vivo in rats. Antioxid Redox Signal 2004;6:792–6.

    CAS  PubMed  Google Scholar 

  31. Tanguy S, Toufektsian MC, Besse S, et al. Dietary selenium intake affects cardiac susceptibility to ischemia/reperfusion in male senescent rats. Age Ageing 2003;32:273–8.

    PubMed  Google Scholar 

  32. Boucher F, Coudray C, Tirard V, et al. Oral selenium supplementation in rats reduces cardiac toxicity of adriamycin during ischemia and reperfusion. Nutrition 1995;11:708–11.

    CAS  PubMed  Google Scholar 

  33. Lopes C, Casal S, Oliveira B, et al. Retinol, beta-carotene and alpha-tocopherol in heart disease, in Nutrition and Heart Disease, Causation and Prevention, edited by Watson RR and Preedy VR, CRC Press, Boca Raton, Florida, 2004, chap 8.

    Google Scholar 

  34. Ness AR, Powles JW. Fruits and vegetables and cardiovascular diseases: a review. Int J Epidemiol 1997;26:1–12.

    CAS  PubMed  Google Scholar 

  35. Asplund K. Antioxidant vitamins in the prevention of cardiovascular disease: a systematic review. J Intern Med 2002;251:372–7.

    CAS  PubMed  Google Scholar 

  36. Kardinaal AF, Kok FJ, Ringstad J, et al. Antioxidants in adipose tissue and risk of myocardial infarction. The EURAMIC Study. Lancet 1993,342:1379–84.

    CAS  PubMed  Google Scholar 

  37. Kardinaal AF, Aro A, Kark JD, et al. Association between beta-carotene and acute myocardial infarction depends on polyunsaturated fatty acid status. The EURAMIC Study on antioxidants. Arterioscl Thromb Vasc Biol 1995;15:726–32.

    CAS  PubMed  Google Scholar 

  38. Rimm EB, Stampfer MJ, Ascherio A, et al. Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med 1993;328:1450–6.

    CAS  PubMed  Google Scholar 

  39. Klipstein-Grobusch K, Geleijnse JM, Breeijen JH. Dietary antioxidants and the risk of myocardial infarction in the elderly. The Rotterdam Study. Am J Clin Nutr 1999;69:261–7.

    CAS  PubMed  Google Scholar 

  40. Alpha-Tocopherol-Beta-Carotene Cancer Prevention Study Group. The effect of vitamin E and beta-carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 1994;330:1029–34.

    Google Scholar 

  41. Omenn GS, Goodman E, Thornquist MD, et al. Effect of a combination of beta-carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 1996;334:1150–5.

    CAS  PubMed  Google Scholar 

  42. Hennekens CH, Buring JE, Manson JE, et al. Lack of effect of long term supplementation with beta-carotene on the incidence of malignant neoplasm and cardiovascular disease. N Engl J Med 1996;334:1145–51.

    CAS  PubMed  Google Scholar 

  43. Jansen MC, Van Kappel AL, Ocke MC, et al. “Plasma carotenoid levels in Dutch men and women, and in relation with vegetable and fruit consumption. Eur J Clin Nutr 2004;58:1386–95.

    CAS  PubMed  Google Scholar 

  44. Stephensen CB, Gildengorin G. Serum retinol, the acute phase response, and the apparent misclassification of vitamin A status in the third National Health and Nutrition Examination Survey. Am J Clin Nutr 2000;72:1170–8.

    CAS  PubMed  Google Scholar 

  45. Sesso HD, Buring JE, Norkus EP, Gaziano JM. Plasma lycopene, other carotenoids, and retinol and the risk of cardiovascular disease in women. Am J Clin Nutr 2004;79:47–53.

    CAS  PubMed  Google Scholar 

  46. Rissanan TH, Voutilainen S, Nyyssönen K, et al. Serum lycopene concentrations and carotid atherosclerosis: The Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr 2003;77:133–8.

    Google Scholar 

  47. Jiang Q, Christen S, Shigenaga MK, Ames BN. Gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr 2001;74:714–22.

    CAS  PubMed  Google Scholar 

  48. Rimm EB, Stampfer MJ, Ascherio A, et al. Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med 1993;328:1450–6.

    CAS  PubMed  Google Scholar 

  49. Stampfer MJ, Hennekens CH, Manson JE, et al. Vitamin E consumption and the risk of coronary heart disease in women. N Engl J Med 1993;328:1444–9.

    CAS  PubMed  Google Scholar 

  50. GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet 1999;354:447–55.

    Google Scholar 

  51. The Heart Outcome Prevention Evaluation (HOPE) Study Investigators. Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med 2000;342:154–60.

    Google Scholar 

  52. Rapola JM, Virtamo J, Ripatti S et al. Randomised trial of alpha-tocopherol and beta-carotene supplements on incidence of major coronary events in men with previous myocardial infarction. Lancet 1997;349:1715–20.

    CAS  PubMed  Google Scholar 

  53. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360:23–33.

    Google Scholar 

  54. Stephens NG, Parsons A, Schofield PM et al. Randomised controlled trial of vitamin E in patients with coronary heart disease. The Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996;347:781–6.

    CAS  PubMed  Google Scholar 

  55. Sebbag L, Forrat R, Canet E, et al. Effect of dietary supplementation with alpha-tocopherol on myocardial infarct size and ventricular arrhythmias in a dog model of ischemia and reperfusion. J Am Coll Cardiol 1994;24:1580–5.

    CAS  PubMed  Google Scholar 

  56. Ohrvall M, Sundlof G, Vessby B. Gamma, but not alpha, tocopherol levels in serum are reduced in coronary heart disease patients. J Intern Med 1996;239:111–7.

    CAS  PubMed  Google Scholar 

  57. Kontush A, Spranger T, Reich A, et al. Lipophilic antioxidants in blood plasma as markers of atherosclerosis: the role of alpha-carotene and gamma-tocopherol. Atherosclerosis 1999; 144:117–22.

    CAS  PubMed  Google Scholar 

  58. Kushi LH, Folsom AR, Prineas RJ, et al. Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. N Engl J Med 1996;334:1156–62.

    CAS  PubMed  Google Scholar 

  59. Hak AE, Stampfer MJ, Campos H, et al. Plasma carotenoids and tocopherols and risk of myocardial infarction in a low risk population of US male physicians. Circulation 2003;108:802–7.

    CAS  PubMed  Google Scholar 

  60. Kris-Etherton P, Lichtenstein AH, Howard BV, et al. Antioxidant vitamins supplements and cardiovascular disease. AHA Science Advisory. Circulation 2004; 10:637–41.

    Google Scholar 

  61. Carr AC, Frei B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am J Clin Nutr 1999;69:1086–107.

    CAS  PubMed  Google Scholar 

  62. Miyata T, Inagi R, Asahi K, et al. Generation of protein carbonyls by glycoxidation and lipoxidation reactions with autoxidation products of ascorbic acid and polyunsaturated fatty acids. FEBS Lett 1998;437:24–8.

    CAS  PubMed  Google Scholar 

  63. Picklo MJ, Montine TJ, Amarnath V, Neely MD. Carbonyl toxicology and Alzheimer disease. Toxicol Appl Pharmacol 2002; 184:187–97.

    CAS  PubMed  Google Scholar 

  64. Fletcher AE, Breeze E, Shetty PS. Antioxidant vitamins and mortality in older persons: findings from the nutrition add-on study to the Medical Research Council Trial of Assessment and Management of Older People in the Community. Am J Clin Nutr 2003;78:999–1010.

    CAS  PubMed  Google Scholar 

  65. Fang JC, Kinlay S, Beltrame J, et al. Effects of vitamins C and E on progression of transplant-associated arteriosclerosis: a randomised trial. Lancet 2002;359:1108–13.

    CAS  PubMed  Google Scholar 

  66. Salonen RM, Nyyssonen K, Kaikkonen J, et al. Six-year effect of combined vitamin C and E supplementation on atherosclerotic progression: the Antioxidant Supplementation in Atherosclerosis Prevention (ASDAP) Study. Circulation 2003;107:947–53.

    CAS  PubMed  Google Scholar 

  67. Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combination of phytochemicals. Am J Clin Nutr 2003;78(suppl):517S–20S.

    CAS  PubMed  Google Scholar 

  68. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr 2000;130:2073S–85S.

    CAS  PubMed  Google Scholar 

  69. Kroon PA, Clifford MN, Crozier A, et al. How should we assess the effects of exposure to dietary polyphenols in vitro? Am J Clin Nutr 2004;80:15–21.

    CAS  PubMed  Google Scholar 

  70. Kühnau J. The flavonoids: a class of semi-essential food components: their role in human nutrition. World RevNutr Diet 1976;24:117–91.

    Google Scholar 

  71. Donovan JL, Bell JR, Kasin-Karakas S, et al. Catechin is present as metabolites in human plasma after consumption of red wine. J Nutr 1999;129:1662–8.

    CAS  PubMed  Google Scholar 

  72. Cassidy A, Bingham S, Setchell KD. Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am J Clin Nutr 1994;60:333–40.

    CAS  PubMed  Google Scholar 

  73. Geleijnse JM, Launer JL, van der Kuip DAM, et al. Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam Study. Am J Clin Nutr 2002;75:880–6.

    CAS  PubMed  Google Scholar 

  74. Arts ICW, Hollman PCH, Feskens EJM, et al. Catechin intake might explain the inverse association between tea consumption and ischemic heart disease: the Zutphen Elderly Study. Am J Clin Nutr 2001;74:227–32.

    CAS  PubMed  Google Scholar 

  75. Mukamal KJ, Maclure M, Muller JE, et al. Tea consumption and mortality after acute myocardial infarction. Circulation 2002; 105:2474–9.

    Google Scholar 

  76. Peters U, Poole C, Arab L. Does tea affect cardiovascular disease? A meta-analysis. Am J Epidemiol 2001;154:495–503.

    CAS  PubMed  Google Scholar 

  77. Hakim IA, Alsaif MA, Alduwaihy M, et al. Tea consumption and the prevalence of coronary heart disease in Saudi adults: results from a Saudi national Study. Prev Ned 2003;36:64–70.

    Google Scholar 

  78. Sasazuki S, Kodama H, Yoshimasu K, et al. Relation between green tea consumption and the severity of coronary atherosclerosis among Japanese men and women. Ann Epidemiol 2000;10:401–8.

    CAS  PubMed  Google Scholar 

  79. Yang YC, Lu FH, Wu JS, Chang CJ. The protective effect of habitual tea consumption on hypertension. Arch Intern Med 2004; 164:1534–40.

    PubMed  Google Scholar 

  80. Wu CH, Lu FH, Chang CS, et al. Relationship among habitual tea consumption, percent body fat, and body fat distribution. Obes Res 2003;11:1088–95.

    PubMed  Google Scholar 

  81. Wu CH, Yang YC, Yao WJ, et al. Epidemiological evidence of increased bone mineral density in habitual tea drinkers. Arch Intern Med 2002;162:1001–6.

    PubMed  Google Scholar 

  82. Wu AH, Yu MC, Tseng CC, et al. Green tea and risk of breast cancer in Asian Americans. Int J Cancer 2003; 106:574–9.

    CAS  PubMed  Google Scholar 

  83. Rimm EB, Giovannucci EL, Willett WC, et al. Prospective study of alcohol consumption and risk of coronary disease in men. Lancet 1991;338:464–8.

    CAS  PubMed  Google Scholar 

  84. Thun MJ, Peto R, Lopez AD, et al. Alcohol consumption and mortality among middle-aged and elderly US adults. N Engl J Med 1997;337:1705–14.

    CAS  PubMed  Google Scholar 

  85. Gronbaek M, Deis A, Sorensen T, et al. Mortality associated with moderate intakes of wine, beer, or spirits. BMJ 1995;310:1165–9.

    CAS  PubMed  Google Scholar 

  86. Di Castelnuovo A, Rotondo S, Iacoviello L, Donati MB, de Gaetano G. Meta-analysis of wine and beer consumption in relation to vascular risk. Circulation 2002; 105:2836–44.

    PubMed  Google Scholar 

  87. Renaud S, de Lorgeril M. Wine, alcohol, platelet aggregation and the French Paradox for coronary heart disease. Lancet 1992;339:1523–6.

    CAS  PubMed  Google Scholar 

  88. de Lorgeril M, Salen P, Martin JL, et al. Wine drinking and risks of cardiovascular complications after recent acute myocardial infarction. Circulation 2002;106:1465–9.

    PubMed  Google Scholar 

  89. de Lorgeril M, Salen P, Guiraud A, Boucher F, de Leiris J. Resveratrol and non-ethanolic components of wine in experimental cardiology. Nutr Metab Cardiovasc Dis 2003;13:100–3.

    PubMed  Google Scholar 

  90. Hattori R, Otani H, Maulik N, Das DK. Pharmacological preconditioning with resveratrol: role of nitric oxide. Am J Physiol Heart Circ Physiol 2002;282:H1988–95.

    CAS  PubMed  Google Scholar 

  91. Imamura G, Bertelli AA, Bertelli A, et al. Pharmacological preconditioning with resveratrol: an insight with iNOS knockout mice. Am J Physiol Heart Circ Physiol 2002;282:H1996–2003.

    CAS  PubMed  Google Scholar 

  92. Wallerath T, Deckert G, Ternes T, et al. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial NO synthase. Circulation 2002; 106:1652–8.

    CAS  PubMed  Google Scholar 

  93. Leikert JF, Rathel TR, Wohlfart P, Cheynier V, Vollmar AM, Dirsch VM. Red wine polyphenols enhance endothelial NO synthase expression and subsequent NO release from endothelial cells. Circulation 2002;106:1614–7.

    CAS  PubMed  Google Scholar 

  94. Savouret JF, Berdeaux A, Casper RF. The aryl hydrocarbon receptor and its xenobiotic ligands: a fundamental trigger for cardiovascular diseases. Nutr Metab Cardiovasc Dis 2003;13:104–13.

    CAS  PubMed  Google Scholar 

  95. Pataki T, Bak I, Kovacs P, Bagchi D, Das DK, Tosaki A. Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated hearts. Am J Clin Nutr 2002;75:894–9.

    CAS  PubMed  Google Scholar 

  96. de Lorgeril M, Salen P. Is alcohol anti-inflammatory in the context of coronary heart disease? Heart 2004;90:355–7.

    PubMed  Google Scholar 

  97. Setchell KDR. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 1998;68(suppl):1333S–46S.

    CAS  PubMed  Google Scholar 

  98. Setchell KDR, Boriello SP, Hulme P, et al. Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent diseases. Am J Clin Nutr 1984;40:569–78.

    CAS  PubMed  Google Scholar 

  99. Setchell KDR, Brown NM, Lydeking-Olsen E. The clinical importance of the metabolite equol: a clue to the effectiveness of soy and its isoflavones. J Nutr 2002;132:3577–84.

    CAS  PubMed  Google Scholar 

  100. Mitchell JH, Gardner PT, McPhail DB, et al. Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Arch Biochem Biophys 1998;360:142–8.

    CAS  PubMed  Google Scholar 

  101. Wiseman H, O’Reilly JD, Adlercreutz H, et al. Isoflavone phytoestrogens consumed in soy decrease F2-isoprostane concentrations and increase resistance of low-density lipoproteins to oxidation in humans. Am J Clin Nutr 2000;72:395–400.

    CAS  PubMed  Google Scholar 

  102. Anderson JW, Hanna TJ. Whole grains and protection against coronary heart disease: what are the active components and mechanisms? Am J Clin Nutr 1999;70:307–8.

    CAS  PubMed  Google Scholar 

  103. Heinonen S, Nurmi T, Liukkonen K, et al. In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J Agric Food Chem 2001;49:3178–86.

    CAS  PubMed  Google Scholar 

  104. Vanharanta M, Voutilainen S, Rissanen TH, et al. Risk of cardiovascular disease-related and all-cause death according to serum concentrations of enterolactone: Kuopio Ischaemic Heart Disease Risk Factor Study. Arch Intern Med 2003; 163:1099–104.

    CAS  PubMed  Google Scholar 

  105. Vanharanta M, Voutilainen S, Nurmi T, et al. Association between low serum enterolactone and increased plasma F2-isoprostanes, a measure of lipid peroxidation. Atherosclerosis 2002; 160:465–9.

    CAS  PubMed  Google Scholar 

  106. Manach C, Scalbert A, Morand C, et al. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79:727–47.

    CAS  PubMed  Google Scholar 

  107. National Academy of Sciences, Committee on Diet and Health, National Research Council. Diet and health: implications for reducing chronic disease risk. Washington DC: National Academy Press, 1989.

    Google Scholar 

  108. Stevinson C, Pittler MH, Ernst E. Garlic for treating hypercholesterolemia. A meta-analysis of randomized clinical trials. Ann Intern Med 2001;133:420–9.

    Google Scholar 

  109. Amagase H, Petesch BL, Matsuura H, et al. Intake of garlic and its bioactive components. J Nutr 2001; 131:955S–62S.

    CAS  PubMed  Google Scholar 

  110. Dillon SA, Lowe GM, Billington D, Rahman K. Dietary supplementation with aged garlic extract reduces plasma and urine concentrations of 8-iso-prostaglandine F(2 alpha) in smoking and non-smoking men and women. J Nutr 2002; 132:168–71.

    CAS  PubMed  Google Scholar 

  111. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol: modifications of low-density lipoproteins that increase its atherogenicity. N Engl J Med 1989;320:915–24.

    CAS  PubMed  Google Scholar 

  112. Holvoet P, Vanhaecke J, Janssens S, et al. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation 1998;98:1487–94.

    CAS  PubMed  Google Scholar 

  113. Ambrosio G, Tritto I, Golino P. Reactive oxygen metabolites and arterial thrombosis. Cardiovasc Res 1997;34:445–52.

    CAS  PubMed  Google Scholar 

  114. Louheranta AM, Porkkala-Sarataho EK, Nyyssönen MK, et al. Linoleic acid intake and susceptibility of very-low-density and low-density lipoproteins to oxidation in men. Am J Clin Nutr 1996;63:698–703.

    CAS  PubMed  Google Scholar 

  115. de Lorgeril M, Salen P, Monjaud I, et al. The diet heart hypothesis in secondary prevention of coronary heart disease. Eur Heart J 1997;18:14–18.

    Google Scholar 

  116. Bonamone A, Pagnan A, Biffanti S et al. Effect of dietary monounsaturated and polyunsaturated fatty acids on the susceptibility of plasma low density lipoproteins to oxidative modification. Arterioscl Thromb 1992;12:529–33.

    Google Scholar 

  117. Tsimikas S, Reaven PD. The role of dietary fatty acids in lipoprotein oxidation and atherosclerosis. Curr Opin Lipidol 1998;9:301–7.

    CAS  PubMed  Google Scholar 

  118. Mata P, Alonso R, Lopez-Farre A et al. Effect of dietary fat saturation on LDL and monocyte adhesion to human endothelial cells in vitro. Arterioscler Thromb Vasc Biol 1996;16:1347–55.

    CAS  PubMed  Google Scholar 

  119. Visioli F, Bellomo G, Montedoro G et al. Low density lipoprotein oxidation is inhibited in vitro by olive oil constituents. Atherosclerosis 1995; 117:25–32.

    CAS  PubMed  Google Scholar 

  120. Boskou D. Olive oil. World Rev Nutr Diet 2000;87:56–77.

    CAS  PubMed  Google Scholar 

  121. Harris PL, Embee ND. Quantitative consideration of the effect of polyunsaturated fatty acid content of the diet upon the requirement for vitamin E. Am J Clin Nutr 1963;13:385–92.

    CAS  PubMed  Google Scholar 

  122. Kohno Y, Egawa Y, Itoh S, et al. Kinetic studies of quenching reaction of singlet oxygen and scavenging reaction of free radical by squalene in n-butanol. Biochem Biophys Acta 1995;1256:52–6.

    PubMed  Google Scholar 

  123. Papadopoulos G, Boskou D. Antioxidant effects of natural phenols in olive oil. J Am Oil Chem Soc 1991;68:669–71.

    CAS  Google Scholar 

  124. Massaro M, Carluccio MA, Ancora MA, Scoditti E, De Caterina R. Vasculoprotective effect of olive oil: epidemiological background and direct vascular antiatherogenic properties. In “Nutrition and Heart Diseases. Causation and prevention” edited by Watson RR and Preedy VR, CRC Press 2004;chap 12:193–213.

    Google Scholar 

  125. Attele AS, Wu JA, Yuan CS. Multiple pharmacological effects of ginseng. Biochem Pharmacol 1999;58:1685–93.

    CAS  PubMed  Google Scholar 

  126. Zhou W, Chai H, Lin PH, et al. Molecular mechanisms and clinical applications of ginseng root for cardiovascular disease. Med Sci Monit 2004; 10:187–92.

    Google Scholar 

  127. Fu Y, Ji LL. Chronic ginseng consumption attenuates age-associated oxidative stress in rats. J Nutr 2003;133:3603–9.

    CAS  PubMed  Google Scholar 

  128. Liu ZQ, Luo XY, Liu GZ, et al. In vitro study of the relationship between the structure of ginsenosides and its antioxidative or prooxidative activity in free radical-induced hemolysis of human erythrocyte. J Agric Food Chem 2003;51:2555–8.

    CAS  PubMed  Google Scholar 

  129. Shao ZH, Xie JT, Vanden Hoek TL, et al. Antioxidant effect of American ginseng berry extract in cardiomyocyte exposed to acute oxidant stress. Biochim Biophys Acta 2004;1670:165–71.

    CAS  PubMed  Google Scholar 

  130. Vogler BK, Pittler MH, Ernst E. The efficacy of ginseng. A systematic review of randomised clinical trials. Eur J Clin Pharmacol 1999;55:567–75.

    CAS  PubMed  Google Scholar 

  131. Yuan C, Wu JA, Osinski J. Ginsenoside variability in American ginseng samples. J Nutr2002;75:600–1.

    CAS  Google Scholar 

  132. Mantle D, Wilkins RM, Gok MA. Comparison of antioxidant activity in commercial Ginkgo biloba preparations. J Altern Complement Med 2003;9:625–9.

    PubMed  Google Scholar 

  133. Bedir E, Tatli II, Khan RA, et al. Biologically active secondary metabolites from Ginkgo biloba. J Agric Food Chem 2002;50:3150–5.

    CAS  PubMed  Google Scholar 

  134. Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 2001;49:5165–70.

    CAS  PubMed  Google Scholar 

  135. Exarchou V, Nenadis N, Tsimidou M, et al. Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory. J Agric Food Chem 2002;50:5294–9.

    CAS  PubMed  Google Scholar 

  136. Parejo I, Viladomat F, Bastida J, et al. Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled Mediterranean herbs and aromatic plants. J Agric Food Chem 2002;50:6882–90.

    CAS  PubMed  Google Scholar 

  137. Gheldof N, Wang XH, Engeseth NJ. Identification and quantification of antioxidant components of honeys from various floral sources. J Agric Food Chem 2002;50:5870–7.

    CAS  PubMed  Google Scholar 

  138. Gheldof N, Engeseth NJ. Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. J Agric Food Chem 2002;50:3050–5.

    CAS  PubMed  Google Scholar 

  139. de Lorgeril M, Salen P. Modified Mediterranean diet in the prevention of coronary heart disease and cancer. World Rev Nutr Diet 2000;87:1–23.

    PubMed  Google Scholar 

  140. de Lorgeril M, Renaud S, Mamelle N, et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 1994;343:1454–9.

    PubMed  Google Scholar 

  141. de Lorgeril M, Salen P, Martin JL, et al. Effect of a Mediterranean-type of diet on the rate of cardiovascular complications in coronary patients. Insights into the cardioprotective effect of certain nutriments. J Am Coll Cardiol 1996;28:1103–8.

    PubMed  Google Scholar 

  142. de Lorgeril M, Salen P, Caillat-Vallet E, et al. Control of bias in dietary trial to prevent coronary recurrences. The Lyon Diet Heart Study. Eur J Clin Nutr 1997;51:116–22.

    PubMed  Google Scholar 

  143. de Lorgeril M, Salen P, Martin JL et al. Mediterranean diet, traditional risk factors and the rate of cardiovascular complications after myocardial infarction. Final report of the Lyon Diet Heart Study. Circulation 1999;99:779–85.

    PubMed  Google Scholar 

  144. Singh RB, Dubnov G, Niaz M, et al. Effect of an Indo-Mediterranean diet on progression of coronary artery disease in high-risk patients (Indo-Mediterranean Diet Heart Study): a randomised single-blind trial. Lancet 2002;360:1455–61.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

de Lorgeril, M., Salen, P. (2006). Antioxidant Nutrients and Antioxidant Nutrient-Rich Foods Against Coronary Heart Disease. In: Bourassa, M.G., Tardif, JC. (eds) Antioxidants and Cardiovascular Disease. Developments in Cardiovascular Medicine, vol 258. Springer, Boston, MA. https://doi.org/10.1007/0-387-29553-4_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-29553-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-29552-7

  • Online ISBN: 978-0-387-29553-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics