Skip to main content

Biomarkers of Oxidant Stress in Vivo: Oxidative Modifications of Lipids, Proteins and DNA

  • Chapter
Book cover Antioxidants and Cardiovascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 258))

  • 987 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury. Part I: Basic mechanisms and in vivo monitoring of ROS. Circulation 2003;108:1912–6.

    Article  PubMed  Google Scholar 

  2. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury. Part II: Animal and human studies. Circulation 2003;108: 2034–40.

    Article  PubMed  Google Scholar 

  3. Meagher EA, Barry OP, Lawson JA, Rokach J, FitzGerald GA. Effects of vitamin E on lipid peroxidation in healthy persons. JAMA 2001;285:1178–82.

    Article  PubMed  CAS  Google Scholar 

  4. Porter NA. Chemistry of lipid peroxidation. Methods Enzymol 1984;105:273–82.

    PubMed  CAS  Google Scholar 

  5. Gutteridge JM, Halliwell B, The measurement and mechanism of lipid peroxidation in biological systems. Trends in Biochemical Sciences 1990;15:129–35.

    Article  PubMed  CAS  Google Scholar 

  6. Pirisino R, Di Simplicio P, Ignesti G, Bianchi G, Barbera P. Sulfhydryl groups and peroxidase-like activity of albumin as scavenger of organic peroxides. Pharmacol Res Commun 1988;20:545–52.

    PubMed  CAS  Google Scholar 

  7. Hurst R, Bao Y, Ridley S, Williamson G. Phospholipid hydroperoxide cysteine peroxidase activity of human serum albumin. Biochem J 1999; 338:723–8.

    Article  PubMed  CAS  Google Scholar 

  8. Mihaljevic B, Katusin-Razem B, Razem D. The reevaluation of the ferric thiocyanate assay for lipid hydroperoxides with special considerations of the mechanistic aspects of the response. Free Radic Biol Med 1996;21:53–63.

    Article  PubMed  CAS  Google Scholar 

  9. Holley AE, Slater TF. Measurement of lipid hydroperoxides in normal human blood plasma using HPLC-chemiluminescence linked to a diode array detector for measuring conjugated dienes. Free Radic Res Commun 1991;15:51–63.

    PubMed  CAS  Google Scholar 

  10. Kadiiska MB, Gladen BC, Baird DD, et al. Biomarkers of oxidative stress study II. Are oxidation products of lipids, proteins, and DNA markers of CC14 poisoning? Free Radic Biol Med 2005;38:698–710.

    Article  PubMed  CAS  Google Scholar 

  11. Miyazawa T, Suzuki T, Fujimoto K, Yasuda K. Chemiluminescent simultaneous determination of phosphatidylcholine hydroperoxide and phosphatidylethanolamine hydroperoxide in the liver and brain of the rat. J Lipid Res 1992;33:1051–9.

    PubMed  CAS  Google Scholar 

  12. Yamamoto Y, Frei B, Ames BN. Assay of lipid hydroperoxides using high-performance liquid chromatography with isoluminal chemiluminescence detection. Methods Enzymol 1990;l86:371–80.

    Google Scholar 

  13. Spickett CM, Rennie N, Winter H, et al. Detection of phospholipid oxidation in oxidatively stressed cells by reversed-phase HPLC coupled with positive-ionization electrospray [correction of electroscopy] MS. [erratum appears in Biochem J 2001 Aug l;357 Pt3:911]. Biochem J 2001;355:449–57.

    Article  PubMed  CAS  Google Scholar 

  14. Khaselev N, Murphy RC. Structural characterization of oxidized phospholipid products derived from arachidonate-containing plasmenyl glycerophosphocholine. J Biol Chem 1994;269:20437–40.

    Google Scholar 

  15. Horvat RJ, Lane WG, Ng H, Shepherd AD. Saturated hydrocarbons from autoxidizing methyl linoleate. Nature 1964;203: 523–4.

    PubMed  CAS  Google Scholar 

  16. Riely CA, Cohen G, Lieberman M. Ethane evolution: a new index of lipid peroxidation. Science 1974;183:208–10.

    PubMed  CAS  Google Scholar 

  17. Kivits GA, Ganguli-Swarttouw MA, Christ EJ. The composition of alkanes in exhaled air of rats as a result of lipid peroxidation in vivo. Effects of dietary fatty acids, vitamin E and selenium. Biochim Biophys Acta 1981;665:559–70.

    PubMed  CAS  Google Scholar 

  18. de Zwart LL, Meerman JH, Commandeur JN, Vermeulen NP. Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic Biol Med 1999;26:202–26.

    Article  PubMed  Google Scholar 

  19. Drury JA, Nycyk JA, Cooke RW. Pentane measurement in ventilated infants using a commercially available system. Free Radic Biol Med 1997;22:895–900.

    Article  PubMed  CAS  Google Scholar 

  20. Olopade CO, Christon JA, Zakkar M, et al. Exhaled pentane and nitric oxide levels in patients with obstructive sleep apnea. Chest 1997; 111:1500–4.

    PubMed  CAS  Google Scholar 

  21. Olopade CO, Zakkar M, Swedler WI, Rubinstein I. Exhaled pentane levels in acute asthma. Chest 1997;111:862–5.

    PubMed  CAS  Google Scholar 

  22. Mendis S, Sobotka PA, Leja FL, Euler DE. Breath pentane and plasma lipid peroxides in ischemic heart disease. Free Radic Biol Med 1995;19:679–84.

    Article  PubMed  CAS  Google Scholar 

  23. Kokoszka J, Nelson RL, Swedler WI, Skosey J, Abcarian H. Determination of inflammatory bowel disease activity by breath pentane analysis. Dis Colon Rectum 1993;36:597–601.

    Article  PubMed  CAS  Google Scholar 

  24. Zarling EJ, Mobarhan S, Bowen P, Kamath S. Pulmonary pentane excretion increases with age in healthy subjects. Mech Ageing Dev 1993;67:141–7.

    Article  PubMed  CAS  Google Scholar 

  25. Weitz ZW, Birnbaum AJ, Sobotka PA, Zarling EJ, Skosey JL. High breath pentane concentrations during acute myocardial infarction. Lancet 1991;337:933–5.

    Article  PubMed  CAS  Google Scholar 

  26. Humad S, Zarling E, Clapper M, Skosey JL. Breath pentane excretion as a marker of disease activity in rheumatoid arthritis. Free Radic Res Commun 1988;5:101–6.

    PubMed  CAS  Google Scholar 

  27. Moscarella S, Caramelli L, Mannaioni PF, Gentilini P. Effect of alcoholic cirrhosis on ethane and pentane levels in breath. Boll Soc Ital Biol Sper 1984;60:529–33.

    PubMed  CAS  Google Scholar 

  28. Corongiu FP, Milia A. An improved and simple method for determining diene conjugation in autoxidized polyunsaturated fatty acids. Chem Biol Interact 1983;44:289–97.

    Article  PubMed  CAS  Google Scholar 

  29. Situnayake RD, Crump BJ, Zezulka AV, Davis M, McConkey B, Thurnham DI. Measurement of conjugated diene lipids by derivative spectroscopy in heptane extracts of plasma. Ann Clin Biochem 1990;27:258–66.

    PubMed  CAS  Google Scholar 

  30. Corongiu FP, Milia A. An improved and simple method for determining diene conjugation in autoxidized polyunsaturated fatty acids. Chem Biol Interact 1983;44:289–97.

    Article  PubMed  CAS  Google Scholar 

  31. Ahotupa M, Asankari TJ. Baseline diene conjugation in LDL lipids: an indicator of circulating oxidized LDL. Free Radic Biol Med 1999;27:1141–50.

    Article  PubMed  CAS  Google Scholar 

  32. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991;11:81–128.

    Article  PubMed  CAS  Google Scholar 

  33. de Zwart LL, Hermanns RC, Meerman JH, Commandeur JN. Salemink PJ, Vermeulen NP. Evaluation of urinary biomarkers for radical-induced liver damage in rats treated with carbon tetrachloride. Toxicol Appl Pharmacol 1998;148:71–82.

    Article  PubMed  Google Scholar 

  34. Halliwell B, Grootveld M. The measurement of free radical reactions in humans. Some thoughts for future experimentation. FEBS Lett 1987;213:9–14.

    Article  PubMed  CAS  Google Scholar 

  35. Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 1990;9:515–40.

    Article  PubMed  CAS  Google Scholar 

  36. Zarkovic N. 4-hydroxynonenal as a bioactive marker of pathophysiological processes. Mol Aspects Med 2003;24:281–91.

    Article  PubMed  CAS  Google Scholar 

  37. Carini M, Aldini G, Facino RM. Mass spectrometry for detection of 4-hydroxy-trans-2-nonenal (HNE) adducts with peptides and proteins. Mass Spectrom Rev 2004;23:281–305.

    Article  PubMed  CAS  Google Scholar 

  38. Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH. Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology 2004;62:1758–65.

    PubMed  CAS  Google Scholar 

  39. Selley ML, Bartlett MR, McGuiness JA, Hapel AJ, Ardlie NG. Determination of the lipid peroxidation product trans-4-hydroxy-2-nonenal in biological samples by high-performance liquid chromatography and combined capillary column gas chromatography-negative-ion chemical ionisation mass spectrometry. J Chromatogr 1989;488:329–40.

    PubMed  CAS  Google Scholar 

  40. Luo XP, Yazdanpanah M, Bhooi N, Lehotay DC. Determination of aldehydes and other lipid peroxidation products in biological samples by gas chromatography-mass spectrometry. Anal Biochem 1995;228:294–8.

    Article  PubMed  CAS  Google Scholar 

  41. Meagher EA, Barry OP, Burke A, et al. Alcohol-induced generation of lipid peroxidation products in humans. J Clin Invest 1999;104:805–13.

    Article  PubMed  CAS  Google Scholar 

  42. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ 2nd. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A 1990;87:9383–7.

    Article  PubMed  CAS  Google Scholar 

  43. Rokach J, Khanapure SP, Hwang SW, Adiyaman M, Lawson JA, FitzGerald GA. The isoprostanes: a perspective. Prostaglandins 1997;54:823–51.

    Article  PubMed  CAS  Google Scholar 

  44. Taber DF, Morrow JD, Roberts LJ 2nd. A nomenclature system for the isoprostanes. Prostaglandins 1997;53:63–7.

    Article  PubMed  CAS  Google Scholar 

  45. Rokach J, Khanapure SP, Hwang SW, Adiyaman M, Lawson JA, FitzGerald GA. Nomenclature of isoprostanes: a proposal. Prostaglandins 1997;54:853–73.

    Article  PubMed  CAS  Google Scholar 

  46. Pratico D, Lawson JA, FitzGerald GA. Cyclooxygenase-dependent formation of the isoprostane, 8-epi prostaglandin F. J Biol Chem 1995;270:9800–8.

    Article  PubMed  CAS  Google Scholar 

  47. Pratico D, FitzGerald GA. Generation of 8-epi prostaglandin F2O by human monocytes. JBiol Chem 1996;271:8919–8924.

    CAS  Google Scholar 

  48. Reilly M, Delanty N, Lawson JA, FitzGerald GA. Modulation of oxidant stress in vivo in chronic cigarette smokers. Circulation 1996;94:19–25.

    PubMed  CAS  Google Scholar 

  49. Blair IA, Barrow SE, Waddell KA, Lewis PJ, Dollery CT. Prostacyclin is not a circulating hormone in man. Prostaglandins 1982;23:579–89.

    Article  PubMed  CAS  Google Scholar 

  50. Roberts LJ 2nd, Morrow JD. The generation and actions of isoprostanes. Biochim Biophys Acta 1997; 1345:121–35.

    PubMed  CAS  Google Scholar 

  51. Wang Z, Ciabattoni G, Creminon C, et al. Immunological characterization of urinary 8-epi-prostaglandin F excretion in man. J Pharmacol Exp Ther 1995;275:94–100.

    PubMed  CAS  Google Scholar 

  52. Morrow JD. Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arterioscler Thromb Vasc Biol 2005;25:279–86.

    Article  PubMed  CAS  Google Scholar 

  53. Waugh RJ, Morrow JD, Roberts LJ 2nd, Murphy RC. Identification and relative quantitation of F2-isoprostane regioisomers formed in vivo in the rat. Free Radic Biol Med 1997;23:943–54.

    Article  PubMed  CAS  Google Scholar 

  54. Li H, Lawson JA, Reilly M, et al. Quantitative high performance liquid chromatography/tandem mass spectrometric analysis of the four classes of F2-isoprostanes in human urine. ProcNatl Acad Sci U S A 1999;96:13381–6.

    Article  CAS  Google Scholar 

  55. Lawson JA, Li H, Rokach J, et al. Identification of two major F2 isoprostanes, 8,12-iso-and 5-epi-8, 12-iso-isoprostane F-VI, in human urine. J Biol Chem 1998;273:29295–301.

    Article  PubMed  CAS  Google Scholar 

  56. Singh G, Gutierrez A, Xu K, Blair IA. Liquid chromatography/electron capture atmospheric pressure chemical ionization/mass spectrometry: analysis of pentafluorobenzyl derivatives of biomolecules and drugs in the attomole range. Anal Chem 2000;72:3007–13.

    Article  PubMed  CAS  Google Scholar 

  57. Chiabrando C, Rivalta C, Bagnati R, et al. Identification of metabolites from type III F2-isoprostane diastereoisomers by mass spectrometry. J Lipid Res 2992;43:495–509.

    Google Scholar 

  58. Roberts LJ 2nd, Moore KP, Zackert WE, Oates JA, Morrow JD. Identification of the major urinary metabolite of the F2-isoprostane 8-iso-prostaglandin F2alpha in humans. J Biol Chem 1996;271:20617–20.

    Article  PubMed  CAS  Google Scholar 

  59. Burke A, Lawson JA, Meagher, EA, Rokach J, FitzGerald GA. Specific analysis in plasma and urine of 2,3-dinor-5, 6-dihydro-isoprostane F-III, a metabolite of isoprostane Fα-III and an oxidation product of γ-linolenic acid. J Biol Chem 2000;275:2499–504.

    Article  PubMed  CAS  Google Scholar 

  60. Stadtman ER. Protein oxidation and aging. Science 1992;257:1220–4.

    PubMed  CAS  Google Scholar 

  61. Marnett LJ, Riggins JN, West JD. Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J Clin Invest 2003;111:583–93.

    Article  PubMed  CAS  Google Scholar 

  62. Heinecke JW. Oxidized amino acids: Culprits in human atherosclerosis and indicators of oxidative stress. Free Radic Biol Med 2002;32:1090–101.

    Article  PubMed  CAS  Google Scholar 

  63. Brennan ML, Hazen SL. Amino acid and protein oxidation in cardiovascular disease. Amino Acids 2003;25:365–74.

    Article  PubMed  CAS  Google Scholar 

  64. Heinecke JW. Oxidative stress: new approaches to diagnosis and prognosis in atherosclerosis. Am J Cardiol 2003;91:12A–16A.

    Article  PubMed  CAS  Google Scholar 

  65. Shishehbor MH, Hazen SL. Inflammatory and oxidative markers in atherosclerosis: relationship to outcome. Curr Atheroscler Rep 2004;6:243–50.

    PubMed  Google Scholar 

  66. Ischiropoulos H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys 1998;356:1–11.

    Article  PubMed  CAS  Google Scholar 

  67. Turko IV. Murad F. Protein nitration in cardiovascular diseases. Pharmacol Rev 2002;54:619–34.

    Article  PubMed  CAS  Google Scholar 

  68. Shacter E, Williams JA, Lim M, Levine RL. Differential susceptibility of plasma proteins to oxidative modification: Examination by western blot immunoassay. Free Radic Biol Med 1994; 17: 429–37.

    Article  PubMed  CAS  Google Scholar 

  69. Headlam HA, Davies MJ. Markers of protein oxidation: different oxidants give rise to variable yields of bound and released carbonyl products. Free Radic Biol Med 2004;36:1175–84.

    Article  PubMed  CAS  Google Scholar 

  70. Gladstone IM Jr, Levine RL. Oxidation of proteins in neonatal lungs. Pediatrics 1994;93:764–8.

    PubMed  Google Scholar 

  71. Winterbourn CC, Chan T, Buss IH, Inder TE, Mogridge N, Darlow BA. Protein carbonyls and lipid peroxidation products as oxidation markers in preterm infant plasma: associations with chronic lung disease and retinopathy and effects of selenium supplementation. Pediatr Res 2000;48:84–90.

    PubMed  CAS  Google Scholar 

  72. Poon HF, Castegna A, Fair SA, et al. Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone mice brain. Neuroscience 2004;126:915–26.

    Article  PubMed  CAS  Google Scholar 

  73. Hollyfield JG, Salomon RG, Crabb JW. Proteomic approaches to understanding age-related macular degeneration. Adv Exp Med Biol 2003;533:83–9.

    PubMed  CAS  Google Scholar 

  74. Ghezzi P, Bonetto V. Redox proteomics: identification of oxidatively modified proteins. Proteomics 2003;3:1145–53.

    Article  PubMed  CAS  Google Scholar 

  75. Brennan ML, Wu W, Fu X, et al. A tale of two controversies: i) Defining the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase deficient mice; and ii) Defining the nature of peroxidase-generated reactive nitrogen species. J Biol Chem 2002;277:17415–27.

    Article  PubMed  CAS  Google Scholar 

  76. Shishehbor MH, Aviles RJ, Brennan ML, et al. Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA 2003;289:1675–80.

    Article  PubMed  CAS  Google Scholar 

  77. Souza JM, Daikhin E, Yudkoff M, Raman CS, Ischiropoulos H. Factors determining the selectivity of protein tyrosine nitration. Arch Biochem Biophys 1999;371:169–78.

    Article  PubMed  CAS  Google Scholar 

  78. Zheng L, Nukuna B, Brennan ML, et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest 2004;l 14:529–41.

    Article  CAS  Google Scholar 

  79. Vadseth C, Souza JM, Thomson L, et al. Pro-thrombotic state induced by post translational modification of fibrinogen by reactive nitrogen species. J Biol Chem 2004;279:8820–6.

    Article  PubMed  CAS  Google Scholar 

  80. Lee SH, Blair IA. Oxidative DNA damage and cardiovascular disease. Trends Cardiovasc Med 2001;11:148–55.

    Article  PubMed  CAS  Google Scholar 

  81. Evans MD, Dizdaroglu M, Cooke MS. Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 2004;567:1–61.

    Article  PubMed  CAS  Google Scholar 

  82. Dedon PC, Tannenbaum SR. Reactive nitrogen species in the chemical biology of inflammation. Arch Biochem Biophys 2004;423:12–22.

    Article  PubMed  CAS  Google Scholar 

  83. Singer II, Kawka DW, Scott S, et al. Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology 1996;111:871–85.

    Article  PubMed  CAS  Google Scholar 

  84. Blair IA. Lipid hydroperoxide-mediated DNA damage. Exp Geronto. 2001;36:1473–81.

    Article  CAS  Google Scholar 

  85. Marnett LJ. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 2002;181–182:219–22.

    Article  PubMed  Google Scholar 

  86. Kensler TW, Qian GS, Chen JG, Groopman JD. Translational strategies for cancer prevention in liver. Nat Rev Cancer 2003;3:321–9.

    Article  PubMed  CAS  Google Scholar 

  87. Farmer PB, Singh R, Kaur B, et al. Molecular epidemiology studies of carcinogenic environmental pollutants. Effects of polycyclic aromatic hydrocarbons (PAHs) in environmental pollution on exogenous and oxidative DNA damage. Mutat Res 2003;544:397–402.

    Article  PubMed  CAS  Google Scholar 

  88. Yen TY, Holt S, Sangaiah R, Gold A, Swenberg JA. Quantitation of 1,N6-ethenoadenine in rat urine by immunoaffmity extraction combined with liquid chromatography/electrospray ionization mass spectrometry. Chem Res Toxicol 1998;11:810–5.

    Article  PubMed  CAS  Google Scholar 

  89. Otteneder M, Scott Daniels J, Voehler M, Marnett LJ. Development of a method for determination of the malondialdehyde-deoxyguanosine adduct in urine using liquid chromatography-tandem mass spectrometry. Anal Biochem 2003;315:147–51.

    Article  PubMed  CAS  Google Scholar 

  90. Roberts DW, Churchwell MI, Beland FA, Fang JL, Doerge DR. Quantitative analysis of etheno-2′-deoxycytidine DNA adducts using on-line immunoaffinity chromatography coupled with LC/ES-MS/MS detection. Anal Chem 2001;73:303–9.

    Article  PubMed  CAS  Google Scholar 

  91. Singh R, McEwan M, Lamb JH, Santella RM, Farmer PB. An improved liquid chromatography/tandem mass spectrometry method for the determination of 8-oxo-7,8-dihydro-2′-deoxyguanosine in DNA samples using immunoaffinity column purification. Rapid Commun Mass Spectrom 2003; 17:126–34.

    Article  PubMed  CAS  Google Scholar 

  92. Hoberg AM, Otteneder M, Marnett LJ, Poulsen HE. Measurement of the malondialdehyde-2′-deoxyguanosine adduct in human urine by immuno-extraction and liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry. J Mass Spectrom 2004;39:38–42.

    Article  PubMed  CAS  Google Scholar 

  93. Porter NA, Caldwell SE, Mills KA. Mechanisms of free radical oxidation of unsaturated lipids. Lipids 1995;30:277–90.

    PubMed  CAS  Google Scholar 

  94. Brash AR. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 1999;274:23679–82.

    Article  PubMed  CAS  Google Scholar 

  95. Laneuville O, Breuer D, K, Xu N, et al. Fatty acid substrate specificities of human prostaglandin-endoperoxide H synthase-1 and-2. Formation of 12-hydroxy-(9Z, 13E/Z, 15Z)-octadecatrienoic acids from alpha-linolenic acid. J Biol Chem 1995;270:19330–6.

    Article  PubMed  CAS  Google Scholar 

  96. Ikawa H, Kamitani H, Calvo BF, Foley JF, Eling TE. Expression of 15-lipoxygenase-l in human colorectal cancer. Cancer Res 1999;59:360–366.

    PubMed  CAS  Google Scholar 

  97. Brash AR, Boeglin WE, Chang MS. Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sc U S A 1997;94:6148–52.

    Article  CAS  Google Scholar 

  98. Hamberg M. Stereochemistry of oxygenation of linoleic acid catalyzed by prostaglandin endoperoxide H synthase-2. Arch Biochem Biophys 1998;349:376–80.

    Article  PubMed  CAS  Google Scholar 

  99. Kuhn H, Borchert A. Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes. Free Radic Biol Med 2002;33:154–72.

    Article  PubMed  CAS  Google Scholar 

  100. Thuresson ED, Lakkides KM, Smith WL. Different catalytically competent arrangements of arachidonic acid within the cyclooxygenase active site of prostaglandin endoperoxide H synthase-1 lead to the formation of different oxygenated products. J Biol Chem 2000;275:8501–7.

    Article  PubMed  CAS  Google Scholar 

  101. Schneider C, Boeglin WE, Prusakiewicz JJ, et al. Control of prostaglandin stereochemistry at the 15-carbon by cyclooxygenases-1 and-2. A critical role for serine 530 and valine 349. J Biol Chem 2002;277:478–85.

    Article  PubMed  CAS  Google Scholar 

  102. Burcham PC. Internal hazards: baseline DNA damage by endogenous products of normal metabolism. Mutat Res 1999;443:11–36.

    PubMed  CAS  Google Scholar 

  103. Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis 2000;21:361–70.

    Article  PubMed  CAS  Google Scholar 

  104. Lee SH, Blair I A. Characterization of 4-oxo-2-nonenal as a novel product of lipid peroxidation. Chem Res Toxicol 2000;13:698–702.

    Article  PubMed  CAS  Google Scholar 

  105. Lee SH, Oe T, Arora JS, Blair IA. Analysis of Fell-mediated decomposition of linoleic acid-derived lipid hydroperoxide by lipid chromatography/mass spectrometry. J Mass Spectrom 2005, Web Release Date:28-Oct-2004; DOI: 10.1002/jms.838.

    Google Scholar 

  106. Lee SH, Oe T, Blair I A. Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins. Science 2001;292:2083–6.

    Article  PubMed  CAS  Google Scholar 

  107. Williams MV, Lee SH, Blair IA. Liquid chromatography/mass spectrometry analysis of bifunctional electrophiles and DNA adducts from vitamin C mediated decomposition of 15-hydroperoxyeicosatetraenoic acid. Rapid Commun Mass Spectrom 2005;19:849–58.

    Article  PubMed  CAS  Google Scholar 

  108. Chaudhary AK, Nokubo M, Marnett LJ, Blair IA. Analysis of the malondialdehyde-2′-deoxyguanosine adduct in rat liver DNA by gas chromatography/electron capture negative chemical ionization mass spectrometry. Biol Mass Spectrom 1994;23:457–64.

    Article  PubMed  CAS  Google Scholar 

  109. Chaudhary AK, Nokubo M, Reddy GR, et al. Detection of endogenous malondialdehyde-deoxyguanosine adducts in human liver. Science 1994;265:1580–2.

    PubMed  CAS  Google Scholar 

  110. Winter CK, Segall HJ, Haddon WF. Formation of cyclic adducts of deoxyguanosine with the aldehydes trans-4-hydroxy-2-hexenal and trans-4-hydroxy-2-nonenal in vitro. Cancer Res 1986;46:5682–6.

    PubMed  CAS  Google Scholar 

  111. Sodum RS, Chung FL. Structural characterization of adducts formed in the reaction of 2,3-epoxy-4-hydroxynonanal with deoxyguanosine. Chem Res Toxicol 1989;2:23–8.

    Article  PubMed  CAS  Google Scholar 

  112. Sodum RS, Chung FL. Stereoselective formation of in vitro nucleic acid adducts by 2,3-epoxy-4-hydroxynonanal. Cancer Res 1991;51:137–43.

    PubMed  CAS  Google Scholar 

  113. Chen HJC, Chung FL. Epoxidation of trans-4-hydroxy-2-nonenal by fatty acid hydroperoxides and hydrogen peroxide. Chem Res Toxicol 1996;9:306–12.

    Article  PubMed  CAS  Google Scholar 

  114. Carvalho VM, Asahara F, Di Mascio P, de Arruda Campos IP, Cadet J, Medeiros MHG. Novel 1,N6-etheno-2′-deoxyadenosine adducts from lipid peroxidation products. Chem Res Toxicol 2000;13:397–405.

    Article  PubMed  CAS  Google Scholar 

  115. Loureiro AP, Di Mascio P, Gomes OF, Medeiros MH. trans,trans-2,4-Decadienal-induced 1,N2-etheno-2′-deoxyguanosine adduct formation. Chem Res Toxicol 2000;13:601–9.

    Article  PubMed  CAS  Google Scholar 

  116. Rindgen D, Nakajima M, Wehrli S, Blair IA. Covalent modification of 2′-deoxyguanosine by products of lipid peroxidation. Chem Res Toxicol 1999; 12:1195–204.

    Article  PubMed  CAS  Google Scholar 

  117. Rindgen D, Lee SH, Nakajima M, Blair IA. Formation of a substituted 1,N6-etheno-2′-deoxyadenosine adduct by lipid hydroperoxide-mediated generation of 4-oxo-2-nonenal. Chem Res Toxicol 2000; 13:846–52.

    Article  PubMed  CAS  Google Scholar 

  118. Lee SH, Rindgen D, Bible RH Jr, Hajdu E, Blair IA. Characterization of 2′-deoxyadenosine adducts derived from 4-oxo-2-nonenal, a novel product of lipid peroxidation. Chem Res Toxicol 2000;13:565–74.

    Article  PubMed  CAS  Google Scholar 

  119. Pollack M, Oe T, Lee SH, Elipe MV, Arison BH, Blair IA. Characterization of 2′-deoxycytidine adducts derived from 4-oxo-2-nonenal, a novel lipid peroxidation product. Chem Res Toxicol 2003;16:893–900.

    PubMed  CAS  Google Scholar 

  120. Levine RL, Yang IY, Hossain M, Pandya G, Grollman AP, Moriya M. Mutagenesis induced by a single 1,N6-ethenodeoxyadenosine adduct in human cells. Cancer Res 2000;60:4098–104.

    PubMed  CAS  Google Scholar 

  121. Levine RL, Miller H, Grollman A, et al. Translesion DNA synthesis catalyzed by human pol eta and pol kappa across 1,N6-ethenodeoxyadenosine. J Biol Chem 2001;276:18717–21.

    Article  PubMed  CAS  Google Scholar 

  122. Douki T, Odin F, Caillat S, Favier A, Cadet J. Predominance of the 1,N2-propano 2′-deoxyguanosine adduct among 4-hydroxy-2-nonenal-induced DNA lesions. Free Rad Biol Med 2004;37:62–70.

    Article  PubMed  CAS  Google Scholar 

  123. Lee SH, Oe T, Blair IA. 4,5-Epoxy-2(E)-decenal-induced formation of 1,N6-etheno-2′-deoxyadenosine and 1,N2-etheno-2′-deoxyguanosine adducts. Chem Res Toxicol 2002;15:300–4.

    Article  PubMed  CAS  Google Scholar 

  124. Lee SH, Arora JS, Oe T, Blair IA. 4-Hydroperoxy-2-nonenal-induced formation of 1,N2-etheno-2′-deoxyguanosine adducts. Chem Res Toxicol 2005; In press.

    Google Scholar 

  125. Schneider C, Tallman KA, Porter NA, Brash AR. Two distinct pathways of formation of 4-hydroxynonenal. Mechanisms of nonenzymatic transformation of the 9-and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals. J Biol Chem 2001;276:20831–8.

    Article  PubMed  CAS  Google Scholar 

  126. Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 2003;42:318–43.

    Article  PubMed  CAS  Google Scholar 

  127. Gardner HW, Hamberg M. Oxygenation of 3(Z)-nonenal to 2(E)-4-hydroxy-2-nonenal in the broad bean (Vicia faba L). J Biol Chem 1993;268:6971–7.

    PubMed  CAS  Google Scholar 

  128. Gallasch BAW, Spiteller G. Synthesis of 9,12-di-oxo-10(Z)-dodecanoic acid, a new fatty acid metabolite derived from 9-hydroperoxy-10,12-octadecadienoic acid in lentil seed (Lens culinaris Medik). Lipids 2000;35:953–60.

    PubMed  CAS  Google Scholar 

  129. Loidl-Stahlhofen A, Hannemann K, Spiteller G. Generation of □-hydroxyaldehydic compounds in the course of lipid peroxidation. Biochim Biophys Acta 1994;1213:140–8.

    PubMed  CAS  Google Scholar 

  130. Mlakar A, Spiteller G. Reinvestigation of lipid peroxidation of linolenic acid. Biochim Biophys Acta 1994;1214:209–20.

    PubMed  CAS  Google Scholar 

  131. Kawai Y, Uchida K, Osawa T. 2′-deoxycytidine in free nucleosides and double-stranded DNA as the major target of lipid peroxidation products. Free Radic Biol Med 2004;36:529–41.

    Article  PubMed  CAS  Google Scholar 

  132. Lee SH, Silva Elipe MV, Arora JS. Blair I A. Dioxododecenoic acid: a lipid hydroperoxide-derived bifunctional electrophile responsible for etheno DNA-adduct formation. Chem. Res. Toxicol. Web Release Date: 22-Feb-2005; DOI: 10.1021/tx049693d.

    Google Scholar 

  133. Farmer PB. Exposure biomarkers for the study of toxicological impact on carcinogenic processes. IARC Sci Publ 2004; 157:71–90.

    PubMed  Google Scholar 

  134. Sharma RA, Farmer PB. Biological relevance of adduct detection to the chemoprevention of cancer. Clin Cancer Res 2004;10:4901–12.

    Article  PubMed  CAS  Google Scholar 

  135. Chaudhary AK, Nokubo M, Oglesby TD, Marnett LJ, Blair IA. Characterization of endogenous DNA adducts by liquid chromatography/electrospray ionization tandem mass spectrometry. J Mass Spectrom 1995;30:1157–66.

    Article  CAS  Google Scholar 

  136. Chaudhary AK, Reddy GR, Blair IA, Marnett LJ. Characterization of an N6-oxopropenyl-2′-deoxyadenosine adduct in malondialdehyde-modified DNA using liquid chromatography/electrospray ionization tandem mass spectrometry. Carcinogenesis 1996; 17:1167–70.

    PubMed  CAS  Google Scholar 

  137. Doerge DR, Churchwell MI, Fang JL, Beland FA. Quantification of etheno DNA adducts using liquid chromatography, on-line sample processing, and electrospray tandem mass spectrometry. Chem Res Toxicol 2000; 13:1259–64.

    Article  PubMed  CAS  Google Scholar 

  138. Nath RG, Chung FL. Detection of exocyclic 1,N2-propanodeoxyguanosine adducts as common DNA lesions in rodents and humans. Proc Natl Acad Sci USA 1994;91:7491–5.

    Article  PubMed  CAS  Google Scholar 

  139. Nath RG, Ocando JE, Guttenplan JB, Chung FL. 1,N2-propanodeoxyguanosine adducts: potential new biomarkers of smoking-induced DNA damage in human oral tissue. Cancer Res 1998;581:581–4.

    Google Scholar 

  140. Chen HJC, Chiang LC, Tseng MC, Zhang LL, Ni J, Chung FL. Detection and quantification of 1,N6-ethenoadenine in human placental DNA by mass spectrometry. Chem Res Toxicol 1999; 12:1119–26.

    Article  PubMed  CAS  Google Scholar 

  141. Rouzer CA, Chaudhary AK, Nokubo M, Ferguson DM, Blair I A, Marnett LJ. Analysis of the malondialdehyde-2′-deoxyguanosine adduct pyrimidopurinone in human leukocyte DNA by gas chromatography/electron capture/negative chemical ionization/mass spectrometry. Chem Res Toxicol 1997;10:181–8.

    Article  PubMed  CAS  Google Scholar 

  142. Chen HJ, Chang CM. Quantification of urinary excretion of 1,N6-ethenoadenine, a potential biomarker of lipid peroxidation, in humans by stable isotope dilution liquid chromatography-electrospray ionization-tandem mass spectrometry: comparison with gas chromatography-mass spectrometry. Chem Res Toxicol 2004;17:963–71.

    Article  PubMed  CAS  Google Scholar 

  143. Chen HJ, Wu CF, Hong CL, Chang CM. Urinary excretion of 3,N4-etheno-2′-deoxycytidine in humans as a biomarker of oxidative stress: association with cigarette smoking. Chem Res Toxicol 2004; 17:896–903.

    Article  PubMed  CAS  Google Scholar 

  144. Dedon PC, Plastaras JP, Rouzer CA, Marnett LJ. Indirect mutagenesis by oxidative DNA damage: formation of the pyrimidopurinone adduct of deoxyguanosine by base propenal. Proc Natl Acad Sci U S A 1998;95:11113–6.

    Article  PubMed  CAS  Google Scholar 

  145. Churchwell MI Beland FA Doerge DR. Quantification of multiple DNA adducts formed through oxidative stress using liquid chromatography and electrospray tandem mass spectrometry. Chem Res Toxicol 2002;15:1295–301.

    Article  PubMed  CAS  Google Scholar 

  146. Ravanat JL, Di Mascio P, Medeiros MHG, et al. Singlet oxygen induces oxidation of cellular DNA. J Biol Chem 2000;275:40601–4.

    Article  PubMed  CAS  Google Scholar 

  147. Guetens G, De Boeck G, Highley M, van Oosterom AT, de Bruijn EA. Oxidative DNA damage: biological significance and methods of analysis. Crit Rev Clin Lab Sci 2002;39:331–457.

    Article  PubMed  CAS  Google Scholar 

  148. Collins A., Cadet J, Moller L, Poulsen HE, Vina J. Are we sure we know how to measure 8-oxo-7,8-dihydroguanine in DNA from human cells? Arch Biochem Biophys 2004;423:57–65.

    Article  PubMed  CAS  Google Scholar 

  149. Gedik CM, Collins A. ESCODD (European Standards Committee on Oxidative DNA Damage). Establishing the background level of base oxidation in human lymphocyte DNA: results of an interlaboratory validation study. FASEB J 2005;19:82–4.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Blair, I.A., Lawson, J.A., Ischiropoulos, H., FitzGerald, G.A. (2006). Biomarkers of Oxidant Stress in Vivo: Oxidative Modifications of Lipids, Proteins and DNA. In: Bourassa, M.G., Tardif, JC. (eds) Antioxidants and Cardiovascular Disease. Developments in Cardiovascular Medicine, vol 258. Springer, Boston, MA. https://doi.org/10.1007/0-387-29553-4_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-29553-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-29552-7

  • Online ISBN: 978-0-387-29553-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics