Pathogenesis of Atherosclerosis

  • Juan Viles-Gonzalez
  • Juan J. Badimon
  • Valentin Fuster
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 258)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Corti R, Fuster V, Badimon JJ. Pathogenetic concepts of acute coronary syndromes. J Am Coll Cardiol 2003;41:7S–14S.PubMedGoogle Scholar
  2. 2.
    Davies MJ. A macro and micro view of coronary vascular insult in ischemic heart disease. Circulation 1990;82:II38–46.PubMedGoogle Scholar
  3. 3.
    Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92:657–71.PubMedGoogle Scholar
  4. 4.
    Falk E. Why do plaques rupture? Circulation 1992;86:III30–42.PubMedGoogle Scholar
  5. 5.
    Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 1973;180:1332–9.PubMedGoogle Scholar
  6. 6.
    Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999;340:115–26.PubMedGoogle Scholar
  7. 7.
    Corti R, Farkouh ME, Badimon JJ. The vulnerable plaque and acute coronary syndromes. Am J Med 2002; l13:668–80.Google Scholar
  8. 8.
    Fuster V, Corti R, Fayad ZA, Schwitter J, Badimon JJ. Integration of vascular biology and magnetic resonance imaging in the understanding of atherothrombosis and acute coronary syndromes. J Thromb Haemost 2003;1:1410–21.PubMedGoogle Scholar
  9. 9.
    Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 1995;15:1512–31.PubMedGoogle Scholar
  10. 10.
    Stary HC. Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol 2000;20:1177–8.PubMedGoogle Scholar
  11. 11.
    Stary HC. Macrophage foam cells in the coronary artery intima of human infants. Ann N Y Acad Sci 1985;454:5–8.PubMedGoogle Scholar
  12. 12.
    Stary HC, Blankenhorn DH, Chandler AB, et al. A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1992;85:391–405.PubMedGoogle Scholar
  13. 13.
    Stary HC. The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life. Eur Heart J 1990;11Suppl E:3–19.PubMedGoogle Scholar
  14. 14.
    Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995;92:1355–74.PubMedGoogle Scholar
  15. 15.
    Katz SS, Shipley GG, Small DM. Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques. J Clin Invest 1976;58:200–11.PubMedGoogle Scholar
  16. 16.
    Faxon DP, Fuster V, Libby P, et al. Atherosclerotic vascular disease conference: Writing Group III: pathophysiology. Circulation 2004;109:2617–25.PubMedGoogle Scholar
  17. 17.
    Kolodgie FD, Gold HK, Burke AP, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 2003;349:2316–25.PubMedGoogle Scholar
  18. 18.
    Stary HC. The development of calcium deposits in atherosclerotic lesions and their persistence after lipid regression. Am J Cardiol 2001;88:16E–19E.PubMedGoogle Scholar
  19. 19.
    Richardson PD, Davies MJ, Born GV. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989;2:941–4.PubMedGoogle Scholar
  20. 20.
    Reidy MA, Bowyer DE. Scanning electron microscopy of arteries. The morphology of aortic endothelium in haemodynamically stressed areas associated with branches. Atherosclerosis 1977;26:181–94.PubMedGoogle Scholar
  21. 21.
    Glagov S. Hemodynamic factors in localisation of atherosclerosis. Acta Cardiol 1965:Suppl 11:311+.Google Scholar
  22. 22.
    Glagov S, Zarins C, Giddens DP, Ku DN. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 1988;112:1018–31.PubMedGoogle Scholar
  23. 23.
    Davies MJ, Woolf N, Rowles PM, Pepper J. Morphology of the endothelium over atherosclerotic plaques in human coronary arteries. Br Heart J 1988;60:459–64.PubMedGoogle Scholar
  24. 24.
    Behrendt D, Ganz P. Endothelial function. From vascular biology to clinical applications. Am J Cardiol 2002;90:40L–48L.PubMedGoogle Scholar
  25. 25.
    Weiss N, Keller C, Hoffmann U, Loscalzo J. Endothelial dysfunction and atherothrombosis in mild hyperhomocysteinemia. Vasc Med 2002;7:227–39.PubMedGoogle Scholar
  26. 26.
    Callow AD. Endothelial dysfunction in atherosclerosis. Vascul Pharmacol 2002;38:257–8.PubMedGoogle Scholar
  27. 27.
    Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999;282:2035–42.PubMedGoogle Scholar
  28. 28.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262–75.PubMedGoogle Scholar
  29. 29.
    Chester AH, O’Neil GS, Moncada S, Tadjkarimi S, Yacoub MH. Low basal and stimulated release of nitric oxide in atherosclerotic epicardial coronary arteries. Lancet 1990;336:897–900.PubMedGoogle Scholar
  30. 30.
    Golino P, Piscione F, Willerson JT, et al. Divergent effects of serotonin on coronary-artery dimensions and blood flow in patients with coronary atherosclerosis and control patients. N Engl J Med 1991;324:641–8.PubMedGoogle Scholar
  31. 31.
    Yang ZH, Richard V, von Segesser L, et al. Threshold concentrations of endothelin-1 potentiate contractions to norepinephrine and serotonin in human arteries. A new mechanism of vasospasm? Circulation 1990;82:188–95.PubMedGoogle Scholar
  32. 32.
    Lerman A, Holmes DR, Jr., Bell MR, Garratt KN, Nishimura RA, Burnett JC, Jr. Endothelin in coronary endothelial dysfunction and early atherosclerosis in humans. Circulation 1995;92:2426–31.PubMedGoogle Scholar
  33. 33.
    Zeiher AM, Goebel H, Schachinger V, Ihling C. Tissue endothelin-1 immunoreactivity in the active coronary atherosclerotic plaque. A clue to the mechanism of increased vasoreactivity of the culprit lesion in unstable angina. Circulation 1995;91:941–7.PubMedGoogle Scholar
  34. 34.
    Tomasian D, Keaney JF, Vita JA. Antioxidants and the bioactivity of endothelium-derived nitric oxide. Cardiovasc Res 2000;47:426–35.PubMedGoogle Scholar
  35. 35.
    Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000;87:840–4.PubMedGoogle Scholar
  36. 36.
    Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004; 109:III27–32.PubMedGoogle Scholar
  37. 37.
    Libby P. Inflammation in atherosclerosis. Nature 2002;420:868–74.PubMedGoogle Scholar
  38. 38.
    Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002;105:1135–43.PubMedGoogle Scholar
  39. 39.
    Steinberg D. Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 2002;8:1211–7.PubMedGoogle Scholar
  40. 40.
    Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation 2003;108:1912–6.PubMedGoogle Scholar
  41. 41.
    Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part II: animal and human studies. Circulation 2003; 108:2034–40.PubMedGoogle Scholar
  42. 42.
    Khatri JJ, Johnson C, Magid R, et al. Vascular oxidant stress enhances progression and angiogenesis of experimental atheroma. Circulation 2004; 109:520–5.PubMedGoogle Scholar
  43. 43.
    Zeiffer U, Schober A, Lietz M, et al. Neointimal smooth muscle cells display a proinflammatory phenotype resulting in increased leukocyte recruitment mediated by P-selectin and chemokines. Circ Res 2004;94:776–84.PubMedGoogle Scholar
  44. 44.
    Navab M, Hama SY, Nguyen TB, Fogelman AM. Monocyte adhesion and transmigration in atherosclerosis. Coron Artery Dis 1994;5:198–204.PubMedGoogle Scholar
  45. 45.
    Pan JH, Sukhova GK, Yang JT, et al. Macrophage migration inhibitory factor deficiency impairs atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 2004.Google Scholar
  46. 46.
    Libby P, Ridker PM. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med 2004; 116Suppl 6A:9S–16S.PubMedGoogle Scholar
  47. 47.
    Boullier A, Bird DA, Chang MK, et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann N Y Acad Sci 2001;947:214–22; discussion 222–3.PubMedGoogle Scholar
  48. 48.
    Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A 1979;76:333–7.PubMedGoogle Scholar
  49. 49.
    Orbe J, Rodriguez JA, Arias R, et al. Antioxidant vitamins increase the collagen content and reduce MMP-1 in a porcine model of atherosclerosis: implications for plaque stabilization. Atherosclerosis 2003;167:45–53.PubMedGoogle Scholar
  50. 50.
    Schafers M, Riemann B, Kopka K, et al. Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 2004; 109:2554–9.PubMedGoogle Scholar
  51. 51.
    Shah PK, Falk E, Badimon JJ, et al. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation 1995;92:1565–9.PubMedGoogle Scholar
  52. 52.
    Ross R. Atherosclerosis is an inflammatory disease. Am Heart J 1999;138:S419–20.PubMedGoogle Scholar
  53. 53.
    Libby P. Vascular biology of atherosclerosis: overview and state of the art. Am J Cardiol 2003;91:3A–6A.PubMedGoogle Scholar
  54. 54.
    Maseri A, Fuster V. Is there a vulnerable plaque? Circulation 2003;107:2068–71.PubMedGoogle Scholar
  55. 55.
    Dwyer JH, Allayee H, Dwyer KM, et al. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med 2004;350:29–37.PubMedGoogle Scholar
  56. 56.
    Schwartz SM, Heimark RL, Majesky MW. Developmental mechanisms underlying pathology of arteries. Physiol Rev 1990;70:1177–209.PubMedGoogle Scholar
  57. 57.
    Fuster V, Stein B, Ambrose JA, Badimon L, Badimon JJ, Chesebro JH. Atherosclerotic plaque rupture and thrombosis. Evolving concepts. Circulation 1990;82:II47–59.PubMedGoogle Scholar
  58. 58.
    Herrmann J, Lerman LO, Rodriguez-Porcel M, et al. Coronary vasa vasorum neovascularization precedes epicardial endothelial dysfunction in experimental hypercholesterolemia. Cardiovasc Res 2001;51:762–6.PubMedGoogle Scholar
  59. 59.
    Kwon HM, Sangiorgi G, Ritman EL, et al. Adventitial vasa vasorum in balloon-injured coronary arteries: visualization and quantitation by a microscopic three-dimensional computed tomography technique. J Am Coll Cardiol 1998;32:2072–9.PubMedGoogle Scholar
  60. 60.
    Kwon HM, Sangiorgi G, Spagnoli LG, et al. Experimental hypercholesterolemia induces ultrastructural changes in the internal elastic lamina of porcine coronary arteries. Atherosclerosis 1998; 139:283–9.PubMedGoogle Scholar
  61. 61.
    Kwon HM, Sangiorgi G, Ritman EL, et al. Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia. J Clin Invest 1998;101:1551–6.PubMedGoogle Scholar
  62. 62.
    Badimon L, Steele P, Badimon JJ, Bowie EJ, Fuster V. Aortic atherosclerosis in pigs with heterozygous von Willebrand disease. Comparison with homozygous von Willebrand and normal pigs. Arteriosclerosis 1985;5:366–70.PubMedGoogle Scholar
  63. 63.
    Cai W, Devaux B, Schaper W, Schaper J. The role of Fas/APO 1 and apoptosis in the development of human atherosclerotic lesions. Atherosclerosis 1997; 131:177–86.PubMedGoogle Scholar
  64. 64.
    Kockx MM, De Meyer GR, Buyssens N, Knaapen MW, Bult H, Herman AG. Cell composition, replication, and apoptosis in atherosclerotic plaques after 6 months of cholesterol withdrawal. Circ Res 1998;83:378–87.PubMedGoogle Scholar
  65. 65.
    Kockx MM, Herman AG. Apoptosis in atherogenesis: implications for plaquedestabilization. Eur Heart J 1998;19Suppl G:G23–8.PubMedGoogle Scholar
  66. 66.
    Martin SJ, Reutelingsperger CP, McGahon AJ, et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 1995;182:1545–56.PubMedGoogle Scholar
  67. 67.
    Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 1998;5:551–62.PubMedGoogle Scholar
  68. 68.
    Mallat Z, Tedgui A. Current perspective on the role of apoptosis in atherothrombotic disease. Circ Res 2001;88:998–1003.PubMedGoogle Scholar
  69. 69.
    Mallat Z, Benamer H, Hugel B, et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 2000; 101:841–3.PubMedGoogle Scholar
  70. 70.
    Bombeli T, Karsan A, Tait JF, Harlan JM. Apoptotic vascular endothelial cells become procoagulant. Blood 1997;89:2429–42.PubMedGoogle Scholar
  71. 71.
    Flynn PD, Byrne CD, Baglin TP, Weissberg PL, Bennett MR. Thrombin generation by apoptotic vascular smooth muscle cells. Blood 1997;89:4378–84.PubMedGoogle Scholar
  72. 72.
    Rauch U, Nemerson Y. Circulating tissue factor and thrombosis. Curr Opin Hematol 2000;7:273–7.PubMedGoogle Scholar
  73. 73.
    Hutter R, Valdiviezo C, Sauter BV, et al. Caspase-3 and tissue factor expression in lipid-rich plaque macrophages: evidence for apoptosis as link between inflammation and atherothrombosis. Circulation 2004;109:2001–8.PubMedGoogle Scholar
  74. 74.
    Mallat Z, Hugel B, Ohan J, Leseche G, Freyssinet JM, Tedgui A. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation 1999;99:348–53.PubMedGoogle Scholar
  75. 75.
    Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Forster R, Muller-Berghaus G, Kroczek RA. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998;391:591–4.PubMedGoogle Scholar
  76. 76.
    Mach F, Schonbeck U, Sukhova GK, Atkinson E, Libby P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 1998;394:200–3.PubMedGoogle Scholar
  77. 77.
    Schonbeck U, Sukhova GK, Shimizu K, Mach F, Libby P. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc Natl Acad Sci U S A 2000;97:7458–63.PubMedGoogle Scholar
  78. 78.
    Andre P, Prasad KS, Denis CV, et al. CD40L stabilizes arterial thrombi by a beta3 integrin—dependent mechanism. Nat Med 2002;8:247–52.PubMedGoogle Scholar
  79. 79.
    Lindmark E, Tenno T, Siegbahn A. Role of platelet P-selectin and CD40 ligand in the induction of monocytic tissue factor expression. Arterioscler Thromb Vasc Biol 2000;20:2322–8.PubMedGoogle Scholar
  80. 80.
    Slupsky JR, Kalbas M, Willuweit A, Henn V, Kroczek RA, Muller-Berghaus G. Activated platelets induce tissue factor expression on human umbilical vein endothelial cells by ligation of CD40. Thromb Haemost 1998;80:1008–14.PubMedGoogle Scholar
  81. 81.
    Bavendiek U, Libby P, Kilbride M, Reynolds R, Mackman N, Schonbeck U. Induction of tissue factor expression in human endothelial cells by CD40 ligand is mediated via activator protein 1, nuclear factor kappa B, and Egr-1. J Biol Chem 2002;277:25032–9.PubMedGoogle Scholar
  82. 82.
    Schonbeck U, Mach F, Sukhova GK, et al. CD40 ligation induces tissue factor expression in human vascular smooth muscle cells. Am J Pathol 2000;156:7–14.PubMedGoogle Scholar
  83. 83.
    Henn V, Steinbach S, Buchner K, Presek P, Kroczek RA. The inflammatory action of CD40 ligand (CD 154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood 2001;98:1047–54.PubMedGoogle Scholar
  84. 84.
    Aukrust P, Muller F, Ueland T, et al. Enhanced levels of soluble and membrane-bound CD40 ligand in patients with unstable angina. Possible reflection of T lymphocyte and platelet involvement in the pathogenesis of acute coronary syndromes. Circulation 1999;100:614–20.PubMedGoogle Scholar
  85. 85.
    Viallard JF, Solanilla A, Gauthier B, et al. Increased soluble and platelet-associated CD40 ligand in essential thrombocythemia and reactive thrombocytosis. Blood 2002;99:2612–4.PubMedGoogle Scholar
  86. 86.
    Heeschen C, Dimmeler S, Hamm CW, et al. Soluble CD40 ligand in acute coronary syndromes. N Engl J Med 2003;348:1104–11.PubMedGoogle Scholar
  87. 87.
    Lutgens E, Gorelik L, Daemen MJ, et al. Requirement for CD 154 in the progression of atherosclerosis. Nat Med 1999;5:1313–6.PubMedGoogle Scholar
  88. 88.
    Ambrose JA, Tannenbaum MA, Alexopoulos D, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988; 12:56–62.PubMedGoogle Scholar
  89. 89.
    Fuster V, Badimon L, Cohen M, Ambrose JA, Badimon JJ, Chesebro J. Insights into the pathogenesis of acute ischemic syndromes. Circulation 1988;77:1213–20.PubMedGoogle Scholar
  90. 90.
    Ambrose JA, Hjemdahl-Monsen CE, Borrico S, Gorlin R, Fuster V. Angiographic demonstration of a common link between unstable angina pectoris and non-Q-wave acute myocardial infarction. Am J Cardiol 1988;61:244–7.PubMedGoogle Scholar
  91. 91.
    Moise A, Lesperance J, Theroux P, Taeymans Y, Goulet C, Bourassa MG. Clinical and angiographic predictors of new total coronary occlusion in coronary artery disease: analysis of 313 nonoperated patients. Am J Cardiol 1984;54:1176–81.PubMedGoogle Scholar
  92. 92.
    Giroud D, Li JM, Urban P, Meier B, Rutishauer W. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol 1992;69:729–32.PubMedGoogle Scholar
  93. 93.
    Little WC, Constantinescu M, Applegate RJ, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 1988;78:1157–66.PubMedGoogle Scholar
  94. 94.
    Fuster V, Fayad ZA, Badimon JJ. Acute coronary syndromes: biology. Lancet 1999;353Suppl 2:SII5–9.PubMedGoogle Scholar
  95. 95.
    Solberg LA, Strong JP. Risk factors and atherosclerotic lesions. A review of autopsy studies. Arteriosclerosis 1983;3:187–98.PubMedGoogle Scholar
  96. 96.
    Alderman EL, Corley SD, Fisher LD, et al. Five-year angiographic follow-up of factors associated with progression of coronary artery disease in the Coronary Artery Surgery Study (CASS). CASS Participating Investigators and Staff. J Am Coll Cardiol 1993;22:1141–54.PubMedGoogle Scholar
  97. 97.
    Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 1993;69:377–81.PubMedGoogle Scholar
  98. 98.
    Davies MJ, Thomas AC. Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 1985;53:363–73.PubMedGoogle Scholar
  99. 99.
    Fernandez-Ortiz A, Badimon JJ, Falk E, et al. Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture. J Am Coll Cardiol 1994;23:1562–9.PubMedGoogle Scholar
  100. 100.
    Falk E. Coronary thrombosis: pathogenesis and clinical manifestations. Am J Cardiol 1991;68:28B–35B.PubMedGoogle Scholar
  101. 101.
    Loree HM, Kamm RD, Stringfellow RG, Lee RT. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 1992;71:850–8.PubMedGoogle Scholar
  102. 102.
    Lee RT, Schoen FJ, Loree HM, Lark MW, Libby P. Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture. Arterioscler Thromb Vasc Biol 1996; 16:1070–3.PubMedGoogle Scholar
  103. 103.
    Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 1994;90:775–8.PubMedGoogle Scholar
  104. 104.
    Geng YJ, Libby P. Progression of atheroma: a struggle between death and procreation. Arterioscler Thromb Vasc Biol 2002;22:1370–80.PubMedGoogle Scholar
  105. 105.
    Geng YJ, Libby P. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol 1995; 147:251–66.PubMedGoogle Scholar
  106. 106.
    Isner JM, Kearney M, Bortman S, Passed J. Apoptosis in human atherosclerosis and restenosis. Circulation 1995;91:2703–11.PubMedGoogle Scholar
  107. 107.
    Lee RT, Grodzinsky AJ, Frank EH, Kamm RD, Schoen FJ. Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 1991;83:1764–70.PubMedGoogle Scholar
  108. 108.
    Lendon CL, Davies MJ, Born GV, Richardson PD. Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 1991;87:87–90.PubMedGoogle Scholar
  109. 109.
    van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994;89:36–44.PubMedGoogle Scholar
  110. 110.
    Matrisian LM. The matrix-degrading metalloproteinases. Bioessays 1992;14:455–63.PubMedGoogle Scholar
  111. 111.
    Henney AM, Wakeley PR, Davies MJ, et al. Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc Natl Acad Sci U S A 1991;88:8154–8.PubMedGoogle Scholar
  112. 112.
    Kaartinen M, Penttila A, Kovanen PT. Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of atheromatous rupture. Circulation 1994;90:1669–78.PubMedGoogle Scholar
  113. 113.
    Weiss SJ. Tissue destruction by neutrophils. N Engl J Med 1989;320:365–76.PubMedGoogle Scholar
  114. 114.
    Stein PD, Hamid MS, Shivkumar K, Davis TP, Khaja F, Henry JW. Effects of cyclic flexion of coronary arteries on progression of atherosclerosis. Am J Cardiol 1994;73:431–7.PubMedGoogle Scholar
  115. 115.
    Muller JE, Toiler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 1989;79:733–43.PubMedGoogle Scholar
  116. 116.
    Tofler GH, Stone PH, Maclure M, et al. Analysis of possible triggers of acute myocardial infarction (the MILIS study). Am J Cardiol 1990;66:22–7.PubMedGoogle Scholar
  117. 117.
    Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 1993;87:1179–87.PubMedGoogle Scholar
  118. 118.
    Rubanyi GM, Romero JC, Vanhoutte PM. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 1986;250:H1145–9.PubMedGoogle Scholar
  119. 119.
    Gertz SD, Uretsky G, Wajnberg RS, Navot N, Gotsman MS. Endothelial cell damage and thrombus formation after partial arterial constriction: relevance to the role of coronary artery spasm in the pathogenesis of myocardial infarction. Circulation 1981;63:476–86.PubMedGoogle Scholar
  120. 120.
    Osende JI, Badimon JJ, Fuster V, et al. Blood thrombogenicity in type 2 diabetes mellitus patients is associated with glycemic control. J Am Coll Cardiol 2001;38:1307–12.PubMedGoogle Scholar
  121. 121.
    Rauch U, Crandall J, Osende JI, et al. Increased thrombus formation relates to ambient blood glucose and leukocyte count in diabetes mellitus type 2. Am J Cardiol 2000;86:246–9.PubMedGoogle Scholar
  122. 122.
    Sambola A, Osende J, Hathcock J, et al. Role of risk factors in the modulation of tissue factor activity and blood thrombogenicity. Circulation 2003;107:973–7.PubMedGoogle Scholar
  123. 123.
    Badimon L, Chesebro JH, Badimon JJ. Thrombus formation on ruptured atherosclerotic plaques and rethrombosis on evolving thrombi. Circulation 1992;86:III74–85.PubMedGoogle Scholar
  124. 124.
    Wilcox JN, Smith KM, Schwartz SM, Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci U S A 1989;86:2839–43.PubMedGoogle Scholar
  125. 125.
    Toschi V, Gallo R, Lettino M, et al. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 1997;95:594–9.PubMedGoogle Scholar
  126. 126.
    Viles-Gonzalez JF, Badimon JJ. Atherothrombosis: the role of tissue factor. Int J Biochem Cell Biol 2004;36:25–30.PubMedGoogle Scholar
  127. 127.
    Lassila R, Badimon JJ, Vallabhajosula S, Badimon L. Dynamic monitoring of platelet deposition on severely damaged vessel wall in flowing blood. Effects of different stenoses on thrombus growth. Arteriosclerosis 1990; 10:306–15.PubMedGoogle Scholar
  128. 128.
    Badimon L, Badimon JJ, Turitto VT, Vallabhajosula S, Fuster V. Platelet thrombus formation on collagen type I. A model of deep vessel injury. Influence of blood rheology, von Willebrand factor, and blood coagulation. Circulation 1988;78:1431–42.PubMedGoogle Scholar
  129. 129.
    Fuster V, Badimon L, Badimon JJ, Ip JH, Chesebro JH. The porcine model for the understanding of thrombogenesis and atherogenesis. Mayo Clin Proc 1991;66:818–31.PubMedGoogle Scholar
  130. 130.
    Larsson PT, Wallen NH, Hjemdahl P. Norepinephrine-induced human platelet activation in vivo is only partly counteracted by aspirin. Circulation 1994;89:1951–7.PubMedGoogle Scholar
  131. 131.
    Willich SN, Linderer T, Wegscheider K, Leizorovicz A, Alamercery I, Schroder R. Increased morning incidence of myocardial infarction in the ISAM Study: absence with prior beta-adrenergic blockade. ISAM Study Group. Circulation 1989;80:853–8.PubMedGoogle Scholar
  132. 132.
    Gelernt MD, Hochman JS. Acute myocardial infarction triggered by emotional stress. Am J Cardiol 1992;69:1512–3.PubMedGoogle Scholar
  133. 133.
    Ridker PM, Manson JE, Buring JE, Muller JE, Hennekens CH. Circadian variation of acute myocardial infarction and the effect of low-dose aspirin in a randomized trial of physicians. Circulation 1990;82:897–902.PubMedGoogle Scholar
  134. 134.
    Loscalzo J. Lipoprotein(a). A unique risk factor for atherothrombotic disease. Arteriosclerosis 1990; 10:672–9.PubMedGoogle Scholar
  135. 135.
    Ridker PM, Hennekens CH, Stampfer MJ. A prospective study of lipoprotein(a) and the risk of myocardial infarction. Jama 1993;270:2195–9.PubMedGoogle Scholar
  136. 136.
    Lerman A, Webster MW, Chesebro JH, et al. Circulating and tissue endothelin immunoreactivity in hypercholesterolemic pigs. Circulation 1993;88:2923–8.PubMedGoogle Scholar
  137. 137.
    Bogaty P, Hackett D, Davies G, Maseri A. Vasoreactivity of the culprit lesion in unstable angina. Circulation 1994;90:5–11.PubMedGoogle Scholar
  138. 138.
    Leary T. The genesis of coronary sclerosis. N Engl J Med 1951;245:397–402.PubMedGoogle Scholar
  139. 139.
    Etsuda H, Mizuno K, Arakawa K, Satomura K, Shibuya T, Isojima K. Angioscopy in variant angina: coronary artery spasm and intimal injury. Lancet 1993;342:1322–4.PubMedGoogle Scholar
  140. 140.
    Nobuyoshi M, Tanaka M, Nosaka H, et al. Progression of coronary atherosclerosis: is coronary spasm related to progression? J Am Coll Cardiol 1991;18:904–10.PubMedGoogle Scholar
  141. 141.
    Fuster V. 50th anniversary historical article. Acute coronary syndromes: the degree and morphology of coronary stenoses. J Am Coll Cardiol 2000;35:52B–54B.PubMedGoogle Scholar
  142. 142.
    Falk E. Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation 1985;71:699–708.PubMedGoogle Scholar
  143. 143.
    Fuster V, Fallon JT, Badimon JJ, Nemerson Y. The unstable atherosclerotic plaque: clinical significance and therapeutic intervention. Thromb Haemost 1997;78:247–55.PubMedGoogle Scholar
  144. 144.
    Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med 1992;326:310–8.PubMedGoogle Scholar
  145. 145.
    Cohen M, Sherman W, Rentrop KP, Gorlin R. Determinants of collateral filling observed during sudden controlled coronary artery occlusion in human subjects. J Am Coll Cardiol 1989;13:297–303.PubMedGoogle Scholar
  146. 146.
    Fuster V, Frye RL, Kennedy MA, Connolly DC, Mankin HT. The role of collateral circulation in the various coronary syndromes. Circulation 1979;59:1137–44.PubMedGoogle Scholar
  147. 147.
    Braunwald E, Antman EM, Beasley JW, et al. ACC/AHA guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction—2002: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Unstable Angina). Circulation 2002;106:1893–900.PubMedGoogle Scholar
  148. 148.
    Braunwald E. Application of current guidelines to the management of unstable angina and non-ST-elevation myocardial infarction. Circulation 2003;108:III28–37.PubMedGoogle Scholar
  149. 149.
    DeWood MA, Stifter WF, Simpson CS, et al. Coronary arteriographic findings soon after non-Q-wave myocardial infarction. N Engl J Med 1986;315:417–23.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Juan Viles-Gonzalez
    • 1
  • Juan J. Badimon
    • 1
  • Valentin Fuster
    • 1
  1. 1.Mount Sinai Medical CenterCardiovascular InstituteNew York

Personalised recommendations