Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 258))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McMurray J, Chopra M, Abdullah I, Smith WE, Dargie HJ. Evidence of oxidative stress in chronic heart failure in humans. Eur Heart J 1993;14:1493–8.

    PubMed  CAS  Google Scholar 

  2. Diaz-Velez CR, Garcia-Castineiras S, Mendoza-Ramos E, Hernandez-Lopez E. Increased malondialdehyde in peripheral blood of patients with congestive heart failure. Am Heart J 1996;131:146–52.

    Article  PubMed  CAS  Google Scholar 

  3. Sobotka PA, Brottman MD, Weitz Z, Birnbaum AJ, Skosey JL, Zarling EJ. Elevated breath pentane in heart failure reduced by free radical scavenger. Free Radic Biol Med 1993;14:643–7.

    Article  PubMed  CAS  Google Scholar 

  4. Mallat Z, Philip I, Lebret M, Chatel D, Maclouf J, Tedgui A. Elevated levels of 8-iso-prostaglandin F2alpha in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 1998;97:1536–9.

    PubMed  CAS  Google Scholar 

  5. Liu TZ, Stern A, Morrow JD. The isoprostanes: unique bioactive products of lipid peroxidation. An overview [In Process Citation]. J Biomed Sci 1998;5:415–20.

    PubMed  CAS  Google Scholar 

  6. Assem M, Teyssier JR, Benderitter M et al. Pattern of superoxide dismutase enzymatic activity and RNA changes in rat heart ventricles after myocardial infarction. Am J Pathol 1997;151:549–55.

    PubMed  CAS  Google Scholar 

  7. Carlsson LM, Jonsson J, Edlund T, Marklund SL. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci U S A 1995;92:6264–8.

    Article  PubMed  CAS  Google Scholar 

  8. Saavedra WF, Paolocci N, St John ME et al. Imbalance between xanthine oxidase and nitric oxide synthase signaling pathways underlies mechanoenergetic uncoupling in the failing heart. Circ Res 2002;90:297–304.

    Article  PubMed  CAS  Google Scholar 

  9. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994;74:1141–8.

    PubMed  CAS  Google Scholar 

  10. Babior BM. NADPH oxidase: an update. Blood 1999;93:1464–76.

    PubMed  CAS  Google Scholar 

  11. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000;86:494–501.

    PubMed  CAS  Google Scholar 

  12. Maytin M, Colucci WS. Molecular and cellular mechanisms of myocardial remodeling. J Nucl Cardiol 2002;9:319–27.

    Article  PubMed  Google Scholar 

  13. Ushio-Fukai M, Zafari AM, Fukui T, Ishizaka N, Griendling KK. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem 1996;271:23317–21.

    Article  PubMed  CAS  Google Scholar 

  14. Siwik DA, Tzortzis JD, Pimental DR et al. Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro. Circ Res 1999;85:147–53.

    PubMed  CAS  Google Scholar 

  15. Pimentel DR, Amin JK, Xiao L et al. Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 2001;89:453–60.

    PubMed  CAS  Google Scholar 

  16. Simpson P. Stimulation of hypertrophy of cultured neonatal rat heart cells through an alpha 1-adrenergic receptor and induction of beating through an alpha 1-and beta 1-adrenergic receptor interaction. Evidence for independent regulation of growth and beating. Circ Res 1985;56:884–94.

    PubMed  CAS  Google Scholar 

  17. Amin JK, Xiao L, Pimental DR et al. Reactive oxygen species mediate alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 2001;33:131–9.

    Article  PubMed  CAS  Google Scholar 

  18. Nakamura K, Fushimi K, Kouchi H et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 1998;98:794–9.

    PubMed  CAS  Google Scholar 

  19. Xiao L, Pimentel DR, Wang J, Singh K, Colucci WS, Sawyer DB. Role of reactive oxygen species and NAD(P)H oxidase in alpha(1)-adrenoceptor signaling in adult rat cardiac myocytes. Am J Physiol Cell Physiol 2002;282:C926–34.

    PubMed  CAS  Google Scholar 

  20. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM. Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 2002;105:293–6.

    Article  PubMed  CAS  Google Scholar 

  21. Maytin M, Siwik DA, Ito M et al. Pressure overload-induced myocardial hypertrophy in mice does not require gp91phox. Circulation 2004;109:1168–71.

    Article  PubMed  CAS  Google Scholar 

  22. Byrne JA, Grieve DJ, Bendall JK et al. Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 2003;93:802–5.

    Article  PubMed  CAS  Google Scholar 

  23. Monte FD, Hajjar RJ. Targeting calcium cycling proteins in heart failure through gene transfer. J Physiol 2003;546:49–61.

    Article  PubMed  CAS  Google Scholar 

  24. Campbell DL, Stamler JS, Strauss HC. Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 1996;108:277–93.

    Article  PubMed  CAS  Google Scholar 

  25. Xu L, Eu JP, Meissner G, Stamler JS. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 1998;279:234–7.

    Article  PubMed  CAS  Google Scholar 

  26. Adachi T, Matsui R, Xu S et al. Antioxidant improves smooth muscle sarco/endoplasmic reticulum Ca(2+)-ATPase function and lowers tyrosine nitration in hypercholesterolemia and improves nitric oxide-induced relaxation. Circ Res 2002;90:1114–21.

    Article  PubMed  CAS  Google Scholar 

  27. Adachi T, Pimentel DR, Heibeck T et al. S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J Biol Chem 2004;279:29857–62.

    Article  PubMed  CAS  Google Scholar 

  28. Kwon SH, Pimentel DR, Remondino A, Sawyer DB, Colucci WS. H(2)O(2) regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J Mol Cell Cardiol 2003;35:615–21.

    Article  PubMed  CAS  Google Scholar 

  29. Sugden PH, Clerk A. “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 1998:83:345–52.

    PubMed  CAS  Google Scholar 

  30. Jiang Y, Gram H, Zhao M et al. Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p28d. J Biol Chem 1997;272:30122–8.

    Article  PubMed  CAS  Google Scholar 

  31. Communal C, Singh K, Pimentel DR, Colucci WS. Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the b-adrenergic pathway. Circulation 1998;98:1329–34.

    PubMed  CAS  Google Scholar 

  32. Remondino A, Kwon SH, Communal C et al. Beta-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Circ Res 2003;92:136–8.

    Article  PubMed  CAS  Google Scholar 

  33. Kuster GM, Pimentel DR, Adachi T et al. Alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on Ras. Circulation 2005;111:1192–8.

    Article  PubMed  CAS  Google Scholar 

  34. Spinale FG, Coker ML, Bond BR, Zellner JL. Myocardial matrix degradation and metalloproteinase activation in the failing heart: a potential therapeutic target. Cardiovasc Res 2000;46:225–38.

    Article  PubMed  CAS  Google Scholar 

  35. Siwik DA, Pagano PJ, Colucci WS. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol 2001;280:C53–C60.

    PubMed  CAS  Google Scholar 

  36. Kinugawa S, Tsutsui H, Hayashidani S et al. Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circ Res 2000;87:392–8.

    PubMed  CAS  Google Scholar 

  37. Stamler JS, Simon DI, Osborne JA et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A 1992;89:444–8.

    Article  PubMed  CAS  Google Scholar 

  38. Haywood GA, Sneddon JF, Bashir Y, Jennison SH, Gray HH, McKenna WJ. Adenosine infusion for the reversal of pulmonary vasoconstriction in biventricular failure. A good test but a poor therapy. Circulation 1992;86:896–902.

    PubMed  CAS  Google Scholar 

  39. Habib F, Dutka D, Crossman D, Oakley CM, Cleland JG. Enhanced basal nitric oxide production in heart failure: another failed counter-regulatory vasodilator mechanism? [see comments]. Lancet 1994;344:371–3.

    Article  PubMed  CAS  Google Scholar 

  40. Habib FM, Springall DR, Davies GJ, Oakley CM, Yacoub MH, Polak JM. Tumour necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy [see comments]. Lancet 1996;347:1151–5.

    Article  PubMed  CAS  Google Scholar 

  41. Xie YW, Wolin MS. Role of nitric oxide and its interaction with superoxide in the suppression of cardiac muscle mitochondrial respiration. Involvement in response to hypoxia/reoxygenation. Circulation 1996;94:2580–6.

    PubMed  CAS  Google Scholar 

  42. Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest 1998;101:812–8.

    Article  PubMed  CAS  Google Scholar 

  43. Scherrer-Crosbie M, Ullrich R, Bloch KD et al. Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation 2001;104:1286–91.

    PubMed  CAS  Google Scholar 

  44. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996;271:C1424–37.

    PubMed  CAS  Google Scholar 

  45. Pinsky DJ, Cai B, Yang X, Rodriguez C, Sciacca RR, Cannon PJ. The lethal effects of cytokine-induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor beta. J Clin Invest 1995;95:677–85.

    PubMed  CAS  Google Scholar 

  46. Arstall MA, Sawyer DB, Fukazawa R, Kelly RA. Cytokine-mediated apoptosis in cardiac myocytes: the role of inducible nitric oxide synthase induction and peroxynitrite generation [see comments]. Circ Res 1999;85:829–40.

    PubMed  CAS  Google Scholar 

  47. Sam F, Sawyer DB, Xie Z et al. Mice lacking inducible nitric oxide synthase have improved left ventricular contractile function and reduced apoptotic cell death late after myocardial infarction. Circ Res 2001;89:351–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Sawyer, D.B., Colucci, W.S. (2006). Oxidative Stress in Heart Failure. In: Bourassa, M.G., Tardif, JC. (eds) Antioxidants and Cardiovascular Disease. Developments in Cardiovascular Medicine, vol 258. Springer, Boston, MA. https://doi.org/10.1007/0-387-29553-4_18

Download citation

  • DOI: https://doi.org/10.1007/0-387-29553-4_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-29552-7

  • Online ISBN: 978-0-387-29553-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics