Skip to main content

Oxidative Stress in the Development of Diabetes and its Complications

  • Chapter
  • 956 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 258))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025. Prevalence, numerical estimates, and projections. Diabetes Care 1998;21:1414–31.

    PubMed  CAS  Google Scholar 

  2. Eastman RC, Javitt JC, Herman WH et al. Model of complications of NIDDM. I. Model construction and assumptions. Diabetes Care 1997;20:725–34.

    PubMed  CAS  Google Scholar 

  3. Caputo GM, Cavanagh PR, Ulbrecht JS, Gibbons GW, Karchmer AW. Assessment and management of foot disease in patients with diabetes. N Engl J Med 1994;331:854–60.

    Article  PubMed  CAS  Google Scholar 

  4. Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998;339:229–34.

    Article  PubMed  CAS  Google Scholar 

  5. Geiss LS, Herman WH, Smith PJ. Mortality in non-insulin-dependent diabetes. Diabetes in America. National Institutes of Health, 1995:233–55.

    Google Scholar 

  6. American Diabetes Association. Economic consequences of diabetes mellitus in the U.S. in 1997. Diabetes Care 1998;21:296–309.

    Google Scholar 

  7. DCCT Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–86.

    Article  Google Scholar 

  8. UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–53.

    Article  Google Scholar 

  9. Coutinho M, Gerstein HC, Wang Y, Yusuf S. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 1999;22:233–40.

    PubMed  CAS  Google Scholar 

  10. The DECODE Study Group EDEG. Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. Diabetes Epidemiology: Collaborative analysis of diagnostic criteria in Europe. Lancet 1999;354:617–21.

    Article  Google Scholar 

  11. Malmberg K. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Group (see comments). BMJ 1997;314:1512–5.

    PubMed  CAS  Google Scholar 

  12. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813–20.

    Article  PubMed  CAS  Google Scholar 

  13. Du XL, Edelstein D, Rossetti L et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Spl glycosylation. Proc Natl Acad Sci USA 2000;97:12222–6.

    Article  PubMed  CAS  Google Scholar 

  14. Nishikawa T, Edelstein D, Du XL et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000;404:787–90.

    Article  PubMed  CAS  Google Scholar 

  15. Ceriello A, Giugliano D, Quatraro A, Dello RP, Lefebvre PJ. Metabolic control may influence the increased superoxide generation in diabetic serum. Diabet Med 1991;8:540–2.

    Article  PubMed  CAS  Google Scholar 

  16. Berg TJ, Nourooz-Zadeh J, Wolff SP et al. Hydroperoxides in plasma are reduced by intensified insulin treatment. A randomized controlled study of IDDM patients with microalbuminuria. Diabetes Care 1998;21:1295–300.

    PubMed  CAS  Google Scholar 

  17. Marfella R, Quagliaro L, Nappo F, Ceriello A, Giugliano D. Acute hyperglycemia induces an oxidative stress in healthy subjects. J Clin Invest 2001;108:635–6.

    Article  PubMed  CAS  Google Scholar 

  18. Quagliaro L, Piconi L, Assaloni R et al. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes 2003;52:2795–804.

    PubMed  CAS  Google Scholar 

  19. Ceriello A, Quagliaro L, Piconi L et al. Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes 2004;53:701–10.

    PubMed  CAS  Google Scholar 

  20. Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997;46:3–10.

    PubMed  CAS  Google Scholar 

  21. Carpentier A, Zinman B, Leung N et al. Free fatty acid-mediated impairment of glucose-stimulated insulin secretion in nondiabetic Oji-Cree individuals from the Sandy Lake community of Ontario, Canada: a population at very high risk for developing type 2 diabetes. Diabetes 2003;52:1485–95.

    PubMed  CAS  Google Scholar 

  22. Zimmet P. Globalization, coca-colonization and the chronic disease epidemic: can the Doomsday scenario be averted? J Intern Med 2000;247:301–10.

    Article  PubMed  CAS  Google Scholar 

  23. Gorden ES. Non-esterified fatty acids in blood of obese and lean subjects. Am J Clin Nutr 1960;8:740–7.

    Google Scholar 

  24. Reaven GM, Hollenbeck C, Jeng C-Y, Wu MS, Chen Y-D. Measurement of plasma glucose, free fatty acid, lactate and insulin for 24 hour in patients with NIDDM. Diabetes 1988;37:1020–4.

    PubMed  CAS  Google Scholar 

  25. Bjorntorp P, Bergman H, Varnauskas E. Plasma free fatty acid turnover rate in obesity. Acta Med Scand 1969;185:351–6.

    Article  PubMed  CAS  Google Scholar 

  26. Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles JM. Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest 1989;83:1168–73.

    PubMed  CAS  Google Scholar 

  27. Paolisso G, Tagliamonte MR, Rizzo MR et al. Lowering fatty acids potentiates acute insulin response in first degree relatives of people with type II diabetes. Diabetologia 1998;41:1127–32.

    Article  PubMed  CAS  Google Scholar 

  28. Carpentier A, Mittelman SD, Bergman RN, Giacca A, Lewis GF. Prolonged elevation of plasma free fatty acids impairs pancreatic beta-cell function in obese nondiabetic humans but not in individuals with type 2 diabetes. Diabetes 2000;49:399–408.

    PubMed  CAS  Google Scholar 

  29. McGarry JD. Banting Lecture 2001: Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002;51:7–18.

    PubMed  CAS  Google Scholar 

  30. Wojtczak L, Schonfeld P. Effect of fatty acids on energy coupling processes in mitochondria. Biochim Biophys Acta 1993;1183:41–57.

    Article  PubMed  CAS  Google Scholar 

  31. Bakker SJ, IJzerman RG, Teerlink T et al. Cytosolic triglycerides and oxidative stress in central obesity: the missing link between excessive atherosclerosis, endothelial dysfunction, and beta-cell failure? Atherosclerosis 2000;148:17–21.

    Article  PubMed  CAS  Google Scholar 

  32. Srivastava AK. High glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: A potential role in the pathogenesis of vascular dysfunction in diabetes (review). Intern J Mol Med 2001;9:85–9.

    Google Scholar 

  33. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 2003;52:1–8.

    PubMed  CAS  Google Scholar 

  34. Grankvist K, Marklund SL, Taljedal IB. CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 1981;199:393–8.

    PubMed  CAS  Google Scholar 

  35. Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 2003;52:581–7.

    PubMed  CAS  Google Scholar 

  36. Sakuraba H, Mizukami H, Yagihashi N et al. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia 2002;45:85–96.

    Article  PubMed  CAS  Google Scholar 

  37. Brown JP, Josse RG. 2002 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada. CMAJ 2002;167(Suppl):S 1–34.

    Google Scholar 

  38. Ceriello A, Quagliaro L, Catone B et al. Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care 2002;25:1439–43.

    PubMed  CAS  Google Scholar 

  39. Ceriello A, Mercuri F, Quagliaro L et al. Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress. Diabetologia 2001;44:834–8.

    Article  PubMed  CAS  Google Scholar 

  40. Ceriello A. The possible role of postprandial hyperglycaemia in the pathogenesis of diabetic complications. Diabetologia 2003;46Suppl 1:M9–16.

    PubMed  CAS  Google Scholar 

  41. Diwadkar VA, Anderson JW, Bridges SR, Gowri MS, Oelgten PR. Postprandial low-density lipoproteins in type 2 diabetes are oxidized more extensively than fasting diabetes and control samples. Proc Soc Exp Biol Med 1999;222:178–84.

    Article  PubMed  CAS  Google Scholar 

  42. Ceriello A, Bortolotti N, Motz E et al. Meal-generated oxidative stress in diabetes. The protective effect of red wine. Diabetes Care 1999;22:2084–5.

    PubMed  CAS  Google Scholar 

  43. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care 1996;19:257–67.

    PubMed  CAS  Google Scholar 

  44. Ceriello A, Bortolotti N, Crescentini A et al. Antioxidant defences are reduced during the oral glucose tolerance test in normal and non-insulin-dependent diabetic subjects. Eur J Clin Invest 1998;28:329–33.

    Article  PubMed  CAS  Google Scholar 

  45. Mullarkey CJ, Edelstein D, Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun 1990;173:932–9.

    Article  PubMed  CAS  Google Scholar 

  46. Skott P, Vaag A, Hother-Nielsen O et al. Effects of hyperglycaemia on kidney function, atrial natriuretic factor and plasma renin in patients with insulin-dependent diabetes mellitus. Scand J Clin Lab Invest 1991;51:715–27.

    PubMed  CAS  Google Scholar 

  47. Remuzzi A, Viberti G, Ruggenenti P et al. Glomerular response to hyperglycemia in human diabetic nephropathy. Am J Physiol 1990;259:F545–52.

    PubMed  CAS  Google Scholar 

  48. Takeuchi A, Throckmorton DC, Brogden AP et al. Periodic high extracellular glucose enhances production of collagens III and IV by mesangial cells. Am J Physiol 1995;268:F13–9.

    PubMed  CAS  Google Scholar 

  49. Steffes MW, Bilous RW, Sutherland DE, Mauer SM. Cell and matrix components of the glomerular mesangium in type I diabetes. Diabetes 1992;41:679–84.

    PubMed  CAS  Google Scholar 

  50. Shichiri M, Kishikawa H, Ohkubo Y, Wake N. Long-term results of the Kumamoto Study on optimal diabetes control in type 2 diabetic patients. Diabetes Care 2000;23Suppl 2:B21–9.

    PubMed  Google Scholar 

  51. Hasslacher C, Ritz E. Effect of control of diabetes mellitus on progression of renal failure. Kidney Int Suppl 1987;22:S53–6.

    PubMed  CAS  Google Scholar 

  52. Grunwald JE, Brucker AJ, Schwartz SS et al. Diabetic glycemic control and retinal blood flow. Diabetes 1990;39:602–7.

    PubMed  CAS  Google Scholar 

  53. Ward JD, Barnes CG, Fisher DJ, Jessop JD, Baker RW. Improvement in nerve conduction following treatment in newly diagnosed diabetics. Lancet 1971;1:428–30.

    Article  PubMed  CAS  Google Scholar 

  54. Gregersen G. Variations in motor conduction velocity produced by acute changes of the metabolic state in diabetic patients. Diabetologia 1968;4:273–7.

    Article  PubMed  CAS  Google Scholar 

  55. Ceriello A. The post-prandial state and cardiovascular disease: relevance to diabetes mellitus. Diabetes Metab Res Rev 2000;16:125–32.

    Article  PubMed  CAS  Google Scholar 

  56. Bonora E. Postprandial peaks as a risk factor for cardiovascular disease: epidemiological perspectives. Int J Clin Pract Suppl 2002:5–11.

    Google Scholar 

  57. Groot PH, van Stiphout WA, Krauss XH et al. Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease. Arterioscler Thromb 1991;11:653–62.

    PubMed  CAS  Google Scholar 

  58. Patsch JR, Miesenbock G, Hopferwieser T et al. Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler Thromb 1992;12:1336–45.

    PubMed  CAS  Google Scholar 

  59. McKeone BJ, Patsch JR, Pownall HJ. Plasma triglycerides determine low density lipoprotein composition, physical properties, and cell-specific binding in cultured cells. J Clin Invest 1993;91:1926–33.

    Article  PubMed  CAS  Google Scholar 

  60. Ceriello A, Taboga C, Tonutti L et al. Post-meal coagulation activation in diabetes mellitus: the effect of acarbose. Diabetologia 1996;39:469–73.

    PubMed  CAS  Google Scholar 

  61. Ceriello A. Fibrinogen and diabetes mellitus: is it time for intervention trials? Diabetologia 1997;40:731–4.

    Article  PubMed  CAS  Google Scholar 

  62. Ceriello A, Falleti E, Bortolotti N et al. Increased circulating intercellular adhesion molecule-1 levels in type II diabetic patients: the possible role of metabolic control and oxidative stress. Metabolism 1996;45:498–501.

    Article  PubMed  CAS  Google Scholar 

  63. Giugliano D, Marfella R, Coppola L et al. Vascular effects of acute hyperglycemia in humans are reversed by L-arginine. Evidence for reduced availability of nitric oxide during hyperglycemia. Circulation 1997;95:1783–90.

    PubMed  CAS  Google Scholar 

  64. Pan XR, Li G-W, Hu Y-H et al. The Da Qing IGT and Diabetes Study. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. Diabetes Care 1997;20:537–44.

    PubMed  CAS  Google Scholar 

  65. Tuomilehto J, Lindstrom J, Eriksson JG et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001;344:1343–50.

    Article  PubMed  CAS  Google Scholar 

  66. Knowler WC, Barrett-Connor E, Fowler SE et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346:393–403.

    Article  PubMed  CAS  Google Scholar 

  67. Chiasson JL, Josse RG, Gomis R et al. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 2002;359:2072–7.

    Article  PubMed  CAS  Google Scholar 

  68. Buchanan TA, Xiang AH, Peters RK et al. Response of pancreatic beta-cells to improved insulin sensitivity in women at high risk for type 2 diabetes. Diabetes 2000;49:782–8.

    PubMed  CAS  Google Scholar 

  69. Torgerson JS, Hauptman J, Boldrin MN, Sjostrom L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 2004;27:155–61.

    PubMed  CAS  Google Scholar 

  70. Vermes E, Ducharme A, Bourassa MG et al. Enalapril reduces the incidence of diabetes in patients with chronic heart failure: insight from the Studies Of Left Ventricular Dysfunction (SOLVD). Circulation 2003;107:1291–6.

    Article  PubMed  CAS  Google Scholar 

  71. Freeman DJ, Norrie J, Sattar N et al. Pravastatin and the development of diabetes mellitus: evidence for a protective treatment effect in the West of Scotland Coronary Prevention Study. Circulation 2001;103:357–62.

    PubMed  CAS  Google Scholar 

  72. Dahlof B, Devereux RB, Kjeldsen SE et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002;359:995–1003.

    Article  PubMed  CAS  Google Scholar 

  73. Reaven P. Dietary and pharmacologic regimens to reduce lipid peroxidation in non-insulin-dependent diabetes mellitus. Am J Clin Nutr 1995;62(Suppl):1483S–9.

    PubMed  CAS  Google Scholar 

  74. de Lorgeril M, Renaud S, Mamelle N et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 1994;343:1454–9.

    Article  PubMed  Google Scholar 

  75. Lawson DL, Chen L, Mehta JL. Effects of exercise-induced oxidative stress on nitric oxide release and antioxidant activity. Am J Cardiol 1997;80:1640–2.

    Article  PubMed  CAS  Google Scholar 

  76. Takemoto M, Node K, Nakagami H et al. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest 2001;108:1429–37.

    Article  PubMed  CAS  Google Scholar 

  77. Shishehbor MH, Aviles RJ, Brennan ML et al. Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA 2003;289:1675–80.

    Article  CAS  PubMed  Google Scholar 

  78. Dzau VJ. Theodore Cooper Lecture: Tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension 2001;37:1047–52.

    PubMed  CAS  Google Scholar 

  79. Dornhorst A, Powell SH, Pensky J. Aggravation by propranolol of hyperglycaemic effect of hydrochlorothiazide in type II diabetics without alteration of insulin secretion. Lancet 1985;1:123–6.

    Article  PubMed  CAS  Google Scholar 

  80. Yusuf S. Two decades of progress in preventing vascular disease. Lancet 2002;360:2–3.

    Article  PubMed  Google Scholar 

  81. El Midaoui A, Wu R, De Champlain J. Prevention of hypertension, hyperglycemia and vascular oxidative stress by aspirin treatment in chronically glucose-fed rats. J Hypertens 2002;20:1407–12.

    Article  PubMed  Google Scholar 

  82. Chiasson JL, Josse RG, Gomis R et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance. The STOP-NIDDM Trial. JAMA 2003;290:486–94.

    Article  PubMed  CAS  Google Scholar 

  83. Hanefeld M, Cagatay M, Petrowitsch T et al. Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J 2004;25:10–6.

    Article  PubMed  CAS  Google Scholar 

  84. Hanefeld M, Chiasson JL, Koehler C et al. Acarbose slows progression of intima-media thickness of the carotid arteries in subjects with impaired glucose tolerance. Stroke 2004;35:1073–8.

    Article  PubMed  CAS  Google Scholar 

  85. Heart Outcomes Prevention Evaluation Study Investigators. Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med 2000;42:154–60.

    Article  Google Scholar 

  86. Bowry VW, Ingold KU, Stocker R. Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. Biochem J 1992;288:341–4.

    PubMed  CAS  Google Scholar 

  87. Levine GN, Frei B, Koulouris SN et al. Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1996;93:1107–13.

    CAS  PubMed  Google Scholar 

  88. Gokce N, Keaney JF, Jr., Frei B et al. Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1999;99:3234–40.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Chiasson, JL., Rabasa-Lhoret, R., Srivastava, A.K. (2006). Oxidative Stress in the Development of Diabetes and its Complications. In: Bourassa, M.G., Tardif, JC. (eds) Antioxidants and Cardiovascular Disease. Developments in Cardiovascular Medicine, vol 258. Springer, Boston, MA. https://doi.org/10.1007/0-387-29553-4_16

Download citation

  • DOI: https://doi.org/10.1007/0-387-29553-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-29552-7

  • Online ISBN: 978-0-387-29553-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics