Skip to main content

Accurately Computing the Shape of Sandpiles

  • Chapter
Multiscale Optimization Methods and Applications

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 82))

Summary

Using an Eikonal formulation, we model the surface of sandpiles formed in regions containing obstacles. The fast marching method is adapted to have the optimal rate of convergence. We also apply the fast marching method to an industrial problem.

This research was supported by the National Science Foundation (NSF) through grant DMS-0244488.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abgrall, Numerical discretization of the first order Hamilton-Jacobi equations on triangular meshes, Comm. Pure Appl. Math., 49 (1996), pp. 1339–1377.

    Article  MATH  MathSciNet  Google Scholar 

  2. S.A. Ahmed, R. Buckingham, P.A. Gremaud, C.D. Hauck, C.M. Kuster, M. Prodanovic, T.A. Royal, V. Silantyev, Volume determination for bulk materials in bunkers, submitted to Int. J. for Num. Meth. in Eng., Center for Research in Scientific Computation, NCSU, Technical Report CRSC-TR03-24.

    Google Scholar 

  3. C. Hu, and C.-W. Shu, A discontinuous Galerkin method for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21 (1999), pp. 666–690.

    Article  MathSciNet  Google Scholar 

  4. S. Osher, and C.-W. Shu, High-order essentially nonoscillatory schemes for Hamilton-Jacobi, SIAM J. Numer. Anal., 28 (1991), pp. 907–922.

    Article  MathSciNet  Google Scholar 

  5. J. Qian, and W.W Symes, An adaptive finite difference method for traveltimes and amplitudes, Geophysics, 67 (2002), pp. 167–176.

    Article  Google Scholar 

  6. J.A Sethian, Fast marching methods, SIAM Review, 41 (1999), pp. 199–235.

    Article  MATH  MathSciNet  Google Scholar 

  7. J.A. Sethian, and A. Vladimirsky, Fast methods for the Eikonal and related Hamilton-Jacobi equations on unstructured meshes, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 5699–5703.

    Article  MathSciNet  Google Scholar 

  8. J.A. Sethian, and A. Vladimirsky, Ordered upwind methods for static Hamilton-Jacobi equations: theory and algorithms, SIAM J. Numer. Anal., 41 (2003), pp. 325–363.

    Article  MathSciNet  Google Scholar 

  9. J.N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Trans. Automat. Control, 40 (1995), pp. 1528–1538.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.W.J Williams, Heapsort, Com. ACM, 7 (1964), pp. 347–348.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Kuster, C.M., Gremaud, P.A. (2006). Accurately Computing the Shape of Sandpiles. In: Hager, W.W., Huang, SJ., Pardalos, P.M., Prokopyev, O.A. (eds) Multiscale Optimization Methods and Applications. Nonconvex Optimization and Its Applications, vol 82. Springer, Boston, MA. https://doi.org/10.1007/0-387-29550-X_15

Download citation

Publish with us

Policies and ethics