Skip to main content

Cerebral Oxygenation and Push-Pull Effect

  • Conference paper
  • 829 Accesses

Part of the Advances in Experimental Medicine and Biology book series (volume 578)

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. R. R. Burton, S. D. Leverett, and E. D. Michaelson, Man at high sustained +Gz acceleration: a review, Aerosp. Med. 45, 1115–1136 (1974).

    Google Scholar 

  2. R. D. Banks, J. D. Grissett, G. T. Turnipseed, P. L. Saunders, and A. H. Rupert, The “push-pull effect”, Aviat. Space Environ. Med. 65, 699–704 (1994).

    Google Scholar 

  3. L. S. Goodman, R. D. Banks, J. D. Grisset, and P. L. Saunders, Heart rate and blood pressure responses to +Gz following varied-duration − Gz, Aviat. Space Environ. Med. 71, 137–141 (2000).

    Google Scholar 

  4. W. X. Zhang, C. L. Zhan, X. C. Geng, X. Lu, G. D. Yan, and X. Chu, Cerebral blood flow velocity by trancranial Doppler during a vertical-rotating table simulation of the push-pull effect, Aviat. Space Environ. Med. 71, 485–488 (2000).

    Google Scholar 

  5. M. Ferrari, L. Mottola, and V. Quaresima, Principles, techniques, and limitations of near infrared spectroscopy, Can. J. Appl. Physiol. 29(4): 463–487 (2004).

    Google Scholar 

  6. P.L. Madsen, and N.H. Secher, Near-infrared oximetry of the brain. Prog. Neurobiol. 58, 541–560 (1999).

    CrossRef  Google Scholar 

  7. D.H., Glaister, and Jöbsis-Vander Vliet, F.F., A near-infrared spectrophotometric method for studying brain O2 sufficiency in man during +Gz acceleration, Aviat. Space Environ. Med. 5:199–207 (1988).

    Google Scholar 

  8. A. Kobayashi, and Y. Miyamoto, In-flight cerebral oxygen status: continuous monitoring by near-infrared spectroscopy, Aviat. Space Environ. Med. 71, 177–183 (2000).

    Google Scholar 

  9. A. Kobayashi, A. Kikukawa, and A. Onozawa, Effect of muscle tensing on cerebral oxygen status during sustained high +Gz, Aviat. Space Environ. Med. 73, 597–600 (2002).

    Google Scholar 

  10. L.D. Tripp, T. Chelette, S. Savul, and R.A. Widman, Female exposure to high G: Effects of simulated sorties on cerebral and arterial O2 saturation, Aviat. Space Environ. Med. 69, 869–874 (1998).

    Google Scholar 

  11. P. van der Zee, M. Cope, S.R. Arridge, M. Essenpries, L.A. Potter, A.D. Edwards, J.S. Wyatt, D.C. McCormick, S.C. Roth, E.O.R. Reynolds, and D.T. Delpy, Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of interoptodes spacing. Adv. Exp. Med. Biol. 316, 143–153 (1992).

    Google Scholar 

  12. G. Ossard, J. M. Clère, M. Kerguelen, F. Melchior, and J. Seylaz, Response of human cerebral blood flow to +Gz accelerations, J. Appl. Physiol. 76, 2114–2118 (1994).

    Google Scholar 

  13. R. L. Bondar, P. T. Dunphy, P. Moradshahi, M. S. Kassam, A. P. Blader, F. Stein, and R. Freeman, Cerebrovascular and cardiovascular responses to graded tilt in patients with autonomic failure, Stroke 28, 1677–1685 (1997).

    Google Scholar 

  14. D. Dan, J. B. Hoag, K. A. Ellenbogen, M. A. Wood, D. L. Eckberg, and D. M. Gilligan, Cerebral blood flow velocity declines before arterial pressure in patients with orthostatic vasovagal presyncope, JACC 39, 1039–1045 (2002).

    Google Scholar 

  15. C. C. Tran, G. Florence, E. Tinet, D. Lagarde, J. C. Bouy, P. Van Beers, A. Serra, S. Avrillier, and J. P. Ollivier, Cerebral hemodynamics and brain oxygen changes related to gravity-induced loss of consciousness in rhesus monkeys. Neurosci. Lett. 338, 67–71 (2003).

    CrossRef  Google Scholar 

  16. K. Krakov, S. Ries, M. Daffertschofer, and M. Hennerici, Simultaneous assessment of brain tissue oxygenation and cerebral perfusion during orthostatic stress, European Neurology 43, 39–46 (2000).

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Tran, C.C. et al. (2006). Cerebral Oxygenation and Push-Pull Effect. In: Cicco, G., Bruley, D.F., Ferrari, M., Harrison, D.K. (eds) Oxygen Transport to Tissue XXVII. Advances in Experimental Medicine and Biology, vol 578. Springer, Boston, MA . https://doi.org/10.1007/0-387-29540-2_52

Download citation

Publish with us

Policies and ethics