Skip to main content

Indocyanine Green Laser Retinal Oximetry: Preliminary Report

  • Conference paper
  • 828 Accesses

Part of the Advances in Experimental Medicine and Biology book series (volume 578)

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. Delori FC, Noninvasive technique for oximetry of blood in retinal vessels. Applied Optics 1988; 27: 1113–1125.

    CrossRef  ADS  Google Scholar 

  2. Beach JM, Schwenzer KJ, Srinivas S, Kim D, Tiedman JS, Oximetry of retinal vessels by dual wavelength imaging: calibration and influence of pigmentation. Journal of Applied Physiology 1999; 86(2): 748–758 (Abstract).

    Google Scholar 

  3. Cohen AJ, Laing RA, Multiple scattering analysis of retinal blood oximetry. IEEE Transactions on Biomedical Engineering 1976; bme-23: 391–400.

    CrossRef  Google Scholar 

  4. Smith M, Optimum wavelength combinations for retinal vessel oximetry. Applied Optics 1999; 38: 258.

    CrossRef  ADS  Google Scholar 

  5. Ashman RA, Reinholz F, Eikelboom RH. Oximetry with a multiple wavelength SLO. International Ophthalmology 23: 343–346, 2001.

    CrossRef  Google Scholar 

  6. Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961 Jul;24:82–6.

    Google Scholar 

  7. Khoobehi B, Beach JM, Kawano H. Hyperspectral imaging for measurement of oxygen saturation in the optic nerve head. Invest Ophthalmol Vis Sci. 2004;45(5):1464–72

    CrossRef  Google Scholar 

  8. Singh JK, Dhawahir FE, Hamid AF, Chell PB. The use of dye in ophthalmology. J Audiov Media Med. 2004 Jun;27(2):62–7

    CrossRef  Google Scholar 

  9. Sander B, Larsen M, Moldow B, Lund-Andersen H: Diabetic macular edema: passive and active transport of fluorescein through the blood-retina barrier. Invest Ophthalmol Vis Sci 42:433–8, 2001

    Google Scholar 

  10. Merin LM. Fluorescein angiography printouts. Ann Ophthalmol. 1980 Apr;12(4):441–3

    Google Scholar 

  11. Trindade-Porto C, Alonso-Llamazares A, Robledo T, Chamorro M, Dominguez J, Plaza A, Martinez-Cocera C. Fluorescein-induced adverse reaction. Allergy. 1999;54(11):1230.

    CrossRef  Google Scholar 

  12. A. Richter et al., Photosensitizing potency of structural analogues of benzoporphyrin derivative (BPD) in a mouse tumor model, Br. J. Cancer 63 (1991) 87.

    CrossRef  Google Scholar 

  13. Aveline B, Hasant T, Redmond RW. Photophysical and photosensitizing properties of Benzoporphyrin derivate monoacid ring A (BPD-MA). Photochemistry and Photobiology, 1994: 59 328–335

    CrossRef  Google Scholar 

  14. D. Husain et al., Effects of photodynamic therapy using verteporfin on experimental choroidal neovascularization and normal retina and choroid up to 7 weeks after treatment. Invest. Ophthalmol. Vis. Sci. 40 (1999) 2322–2331.

    Google Scholar 

  15. Flower RW, Hochheimer BF. Clinical infrared absorption angiography of the choroid [letter]. Am J Ophthalmol 1972; 73:458.

    Google Scholar 

  16. Bischoff PM, Flower RW. Ten years experience with choroidal angiography using indocyanine green dye: a new routine examination or an epilogue? Doc Ophthalmol 1985;60:235–91.

    CrossRef  Google Scholar 

  17. Hope-Ross M, Yannuzzi LA, Gragoudas ES, et al. Adverse reactions due to indocyanine green. Ophthalmology 1994;101:529–33.

    Google Scholar 

  18. Bonte CA, Ceuppens J, Leys AM. Hypotensive shock as a complication of indocyanine green injection. Retina 1998;18:476–7.

    Google Scholar 

  19. Olsen TW, Lim JI, Capone A Jr, et al. Anaphylactic shock following indocyanine green angiography. Arch Ophthalmol 1996;114:97.

    Google Scholar 

  20. Fox IJ, Wood EH. Indocyanine green: physical and physiological properties. Mayo Clin Proc 1960;35:732.

    Google Scholar 

  21. Thamm E, Schweitzer D, Hammer M, A data reduction scheme for improving the accuracy of oxygen saturation calculations from spectroscopic in vivo measurements. Phys Med Biol. 1998 Jun;43(6):1401–11

    CrossRef  Google Scholar 

  22. Desmettre T, Devoisselle JM, Mordon S. Fluorescence Properties and Metabolic Features of Indocyanine Green (ICG) as Related to Angiography. Surv Ophthalmol 2000;45:15–27

    CrossRef  Google Scholar 

  23. Devoisselle JM, Mordon S, Soulie S, Desmettre T, Maillols H: Fluorescence properties of indocyanin green/part 1: in vitro study with micelles and liposomes, in Lakowicz JR, Thompson JB (eds): Advances in Fluorescence Sensing Technology III; 1997. Bellingham, CA, USA, SPIE, 1997, pp. 530–37

    Google Scholar 

  24. West W, Pearce S: The dimeric state of cyanine dyes. J Phys Chem 69:1894–903, 1965

    CrossRef  Google Scholar 

  25. Landsman ML, Kwant G, Mook GA, Zijlstra WG: Light-absorbing properties, stability, and spectral stabilization of Indocyanine green. J Appl Physiol 40:575–83, 1976

    Google Scholar 

  26. Philip R, Penzkofer A, Baumler W, Szeimies RM, Abels C. Absorption and fluorescence spectroscopic investigation of indocyanine green. J Photochem and Photobiol A: Chem 1996; 137–148

    Google Scholar 

  27. Mordon S, Devoisselle JM, Soulie-Begu S, Desmettre T: Indocyanine green: physicochemical factors affecting its fluorescence in vivo. Microvasc Res 55:146–52, 1998

    CrossRef  Google Scholar 

  28. Desmettre T, Devoisselle JM, Soulie-Begu S, Mordon S: Propriétés de fluorescence et particularitiés métaboliques du vert d’indocyanine (ICG). J Fr Ophtalmol. 1999 Nov;22(9):1003–16

    Google Scholar 

  29. van Assendelft OW. Spectrophotometvy of Haemogtobin Derivatives. Assen. The Netherlands: Royal Vangorcum Ltd 1970.

    Google Scholar 

  30. Horecker BL. The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions. J Biol Chem. 1943:148:173.

    Google Scholar 

  31. Wilson D. F. e al., “A versatile and sensitive method for measuring oxygen”, Adv. Exp. Med. Biol. 215, 71 (1987).

    Google Scholar 

  32. Gilbert A., Barrott J., “Essentials of Molecular Photochemistry”, Blackwell Science (1990) ISBN: 0632024283.

    Google Scholar 

  33. Wilson D. F., Rumsey W. L., Green T. J., Vanderkooi J. M., “The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration”, J. Biol. Chem. 263, 2712 (1988).

    Google Scholar 

  34. Shonat R. D., Wilson D. F., Riva C. E., Pawlowski M., “Oxygen distribution in the retinal and choroidal vessels of the cat as measured by a new phosphorescence imaging method”, Applied Optics 31(19), 3711 (1992).

    CrossRef  ADS  Google Scholar 

  35. Yu I-Ju, Hsies W.-F., “Lasing spectral blue shifts of fluorescent saturable absorbing dye in microdroplets”, Chinese Journal of Physics, 36(3) (1998).

    Google Scholar 

  36. Bjornsson OG, Murphy R, Chadwick VS, Bjornsson S. Physiochemical studies on indocyanine green: molar lineic absorbance, pH tolerance, activation energy and rate of decay in various solvents. J Clin Chem Clin Biochem. 1983;21(7):453–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Cardascia, N., Tommasi, R., Vetrugno, M., Sborgia, G., Lugarà, P.M., Sborgia, C. (2006). Indocyanine Green Laser Retinal Oximetry: Preliminary Report. In: Cicco, G., Bruley, D.F., Ferrari, M., Harrison, D.K. (eds) Oxygen Transport to Tissue XXVII. Advances in Experimental Medicine and Biology, vol 578. Springer, Boston, MA . https://doi.org/10.1007/0-387-29540-2_23

Download citation

Publish with us

Policies and ethics