Skip to main content

Cell Cycle Activation in Neurons

The Final Exit of Brain-Morpho-Dysregulation

  • Chapter
Cell-Cycle Mechanisms and Neuronal Cell Death

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

Conclusions

Taken together, in multicellular organisms, cell number is regulated spatially by extracellular signals through cell interactions controlling proliferation and survival in local neighbourhoods. Instructions from neighbouring cells can induce cell proliferation, differentiation or death. These stimuli include cell-cell and cell-ECM adhesion, growth factors, cytokines, neuropeptides and mechanical factors. Signals from G-protein-coupled receptors, tyrosine ki-nase receptors and integrins cooperate to integrate information from multiple stimuli that regulate cell cycle progression. To allow for a regulation of these processes a tight link is necessary between cell attachement mechanisms and control of proliferation and differentiation, i.e., the cell cycle machinery.

Contrary to most other cells that make up a multicellular organism, neurons use the molecular circuitry developed to sense their relationship to other cells to reorganize their connectivity according to the requirements for information processing within a cellular network. This puts neurons on the permanent risk to erroneously convert signals derived from plastic synaptic changes into positional cues that will activate the cell cycle. Maintaining neurons in a differentiated but still highly plastic phenotype will, thus, be the challenge to prevent neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heintz N. Cell-death and the cell-cycle-a relationship between transformation and neurodegeneration. Trends Biochem Sci 1993; 18:157–159.

    PubMed  CAS  Google Scholar 

  2. Arendt TH. Neuronal dedifferentiation and degeneration in Alzheimer’s disease. Biol Chem Hoppe-Seyler 1993; 374:911–912.

    Google Scholar 

  3. Ramón Y, Cajal S. Degeneration and regeneration of the nervous system. London: Oxford Univer sity Press, 1928.

    Google Scholar 

  4. Bouman L. Senile plaques. Brain 1934; 57:128–142.

    Google Scholar 

  5. Scheibel ME, Scheibel AB. Structural changes in the aging brain. Aging Vol. 1 Clinical, Morphologic and Neurochemical Aspects in the Aging Central Nervous System, 1975; 11–37.

    Google Scholar 

  6. Woolf NJ, Butcher LL. Dysdifferentiation of structurally plastic neurons initiates the pathologic cascade of Alzheimer’s disease: Toward a unifying hypothesis. In: Steriade M, Biesold D, eds. Brain Cholinergic Systems. Oxford University Press, 1990:387–438.

    Google Scholar 

  7. Gärtner U, Holzer M, Heumann R et al. Induction of p21ras in Alzheimer pathology. Neuroreport 1995; 6:1441–1444.

    PubMed  Google Scholar 

  8. Arendt TH, Roödel L, Gärtner U et al. Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimer’s disease. Neuroreport 1996; 7:3047–3049.

    PubMed  CAS  Google Scholar 

  9. Vincent I, Rosado M, Davies P. Mitogenic mechanisms in Alzheimer’s disease? J Cell Biol 1996; 132:413–425.

    PubMed  CAS  Google Scholar 

  10. Nagy Z, Esiri MM, Cato AM et al. Cell cycle markers in the hippocampus in Alzheimer’s disease. Acta Neuropathologica 1997; 94:6–15.

    PubMed  CAS  Google Scholar 

  11. Flechsig P. Gehirn und Seele. Druck von Alexander Edelmann, Leipzig 1896.

    Google Scholar 

  12. Vogt C, Vogt O. Importance of neuroanatomy in the field of neuropathology. Neuro 1951; 205–218.

    Google Scholar 

  13. Ashford JW, Jarvik L. Alzheimer’s disease: Does neuron plasticity predispose to axonal neurofibrillary degeneration? N Engl J Med 1985; 313:388–389.

    PubMed  CAS  Google Scholar 

  14. Butcher LL, Woolf NJ. Neurotrophic agents may exacerbate the pathologic cascade of Alzheimer’s disease. Neurobiol Aging 1989; 10:557–570.

    PubMed  CAS  Google Scholar 

  15. Cotman CW, Anderson KJ. Synaptic plasticity and functional stabilization in the hippocampal formation: Possible role in Alzheimer’s disease. Adv Neurol 1988; 47:313–335.

    PubMed  CAS  Google Scholar 

  16. DeWitt DA, Silver J. Regenerative failure: A potential mechanism for neuritic dystrophy in Alzheimer’s disease. Exp Neurol 1996; 142:103–110.

    PubMed  CAS  Google Scholar 

  17. DiPatre PL. Cytoskeletal alterations might account for the phylogenetic vulnerability of the human brain to Alzheimer’s disease. Med Hypotheses 1991; 34:165–170.

    CAS  Google Scholar 

  18. Flood DG, Coleman PD. Hippocampal plasticity in normal aging and decreased plasticity in Alzheimer’s disease. Prog Brain Res 1990; 83:435–443.

    PubMed  CAS  Google Scholar 

  19. Foster TC. Involvement of hippocampal synaptic plasticity in age-related memory decline. Brain Res Rev 1999; 30:236–249.

    PubMed  CAS  Google Scholar 

  20. Geddes JW, Cotman CW. Plasticity in Alzheimer’s disease: Too much or not enough? Neurobiol Aging 1991; 12:330–333.

    PubMed  CAS  Google Scholar 

  21. Kondo M, Imahori Y, Mori S et al. Aberrant plasticity in Alzheimer’s disease. Neuroreport 1999; 10:1481–1484.

    PubMed  CAS  Google Scholar 

  22. Masliah E, Mallory M, Hansen L et al. Patterns of aberrant sprouting in Alzheimer’s disease. Neuron 1991; 6:729–739.

    PubMed  CAS  Google Scholar 

  23. Mesulam MM. Neuroplasticity failure in Alzheimer’s disease: Bridging the gap between plaques and tangles. Neuron 1999; 24:521–529.

    PubMed  CAS  Google Scholar 

  24. Mirmiran M, van Someren EJ, Swaab DF. Is brain plasticity preserved during aging and in Alzheimer’s disease? Behav Brain Res 1996; 78:43–48.

    PubMed  CAS  Google Scholar 

  25. Neill D. Alzheimer’s disease: Maladaptive synaptoplasticity hypothesis. Neurodegeneration 1995; 4:217–232.

    PubMed  CAS  Google Scholar 

  26. Phelps CH. Neural plasticity in aging and Alzheimer’s disease: Some selected comments. Prog Brain Res 1990; 86:3–9.

    PubMed  CAS  Google Scholar 

  27. Roberts GW, Nash M, Ince PG et al. On the origin of Alzheimer’s disease: A hypothesis. Neuroreport 1993; 4:7–9.

    PubMed  CAS  Google Scholar 

  28. Swaab DF. Brain aging and Alzheimer’s disease, “wear and tear” versus “use it or lose it”. Neurobiol Aging 1991; 12:317–324.

    PubMed  CAS  Google Scholar 

  29. Teter B, Ashford W. Neuroplasticity in Alzheimer’s disease. J Neurosci Res 2002; 70:402–437.

    PubMed  CAS  Google Scholar 

  30. Walsh TJ, Opello KD. Neuroplasticity, the aging brain, and Alzheimer’s disease. Neurotoxicology 1992; 13:101–110.

    PubMed  CAS  Google Scholar 

  31. Ben-Ari Y, Represa A. Brief seizure episodes induce long-term potentiation and mossy fibre sprouting in the hippocampus. Trends Neurosci 1990; 13:312–318.

    PubMed  CAS  Google Scholar 

  32. Jeffery KJ, Reid IC. Modifiable neuronal connections: An overview for psychiatrists. Am J Psychiatry 1997; 154:156–164.

    PubMed  CAS  Google Scholar 

  33. McEachern JC, Shaw CA. An alternative to the LTP orthodoxy: A plasticity-pathology continuum model. Brain Res Rev 1996; 22:51–92.

    PubMed  CAS  Google Scholar 

  34. Abbott LF, Nelson SB. Synaptic plasticity: Taming the beast. Nat Neurosci 2000; 3(Suppl):1178–1183.

    PubMed  CAS  Google Scholar 

  35. Arendt TH. Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: The Dr. Jekyll and Mr. Hyde Concept of Alzheimer’s disease or The yin and yang of Neuroplasticity. Progress in Neurobiology 2003; 71:83–248.

    PubMed  Google Scholar 

  36. Arendt TH, Zvegintseva HG, Leontovich TA. Dendritic changes in the basal nucleus of Meynert and in the diagonal band nucleus in Alzheimer’s disease-A quantitative golgi investigation. Neuroscience 1986; 19:1265–1278.

    PubMed  CAS  Google Scholar 

  37. Arendt TH, Bruckner MK. Perisomatic sprouts immunoreactive for nerve growth factor receptor and neurofibrillary degeneration affect different neuronal populations in the basal nucleus in patients with Alzheimer’s disease. Neurosci Lett 1992; 148:63–66.

    PubMed  CAS  Google Scholar 

  38. Buell SJ, Coleman PD. Dendritic growth in the aged human brain and failure of growth in senile dementia. Science 1979; 206:854–856.

    PubMed  CAS  Google Scholar 

  39. Arendt TH, Bruckner MK, Bigl V et al. Dendritic reorganization in the basal forebrain under degenerative conditions and its defects in Alzheimer’s disease. II. Ageing, Korsakoff’s disease, Parkinson’s disease, and Alzheimer’s disease. J Comp Neurol 1995a; 351:189–222.

    PubMed  CAS  Google Scholar 

  40. Arendt TH, Bruckner MK, Bigl V et al. Dendritic reorganization in the basal forebrain under degenerative conditions and its defects in Alzheimer’s disease. III. The basal forebrain compared to other subcortical areas. J Comp Neurol 1995b; 351:223–246.

    PubMed  CAS  Google Scholar 

  41. Arendt TH, Marcova L, Bigl V et al. Dendritic reorganization in the basal forebrain under degenerative conditions and its defects in Alzheimer’s disease. I. Dendritic organisation of the normal human basal forebrain. J Comp Neurol 1995d; 351:169–188.

    PubMed  CAS  Google Scholar 

  42. McKee AC, Kowall NW, Kosik KS. Microtubular reorganization and dendritic growth response in Alzheimer’s disease. Ann Neurol 1989; 26:652–659.

    PubMed  CAS  Google Scholar 

  43. Fischer O. Miliare Necrosen mit drusigen Wucherungen der Neurofibrillen, eine regelmässige Veränderung der Hirnrinde bei seniler Demenz. Monatsschrift für Psychiatrie und Neurologie 1907; 22:361–372.

    Google Scholar 

  44. Seger R, Krebs EG. The MAPK signaling cascade. FASEB J 1995; 9:726–735.

    PubMed  CAS  Google Scholar 

  45. Greenberg SM, Koo EH, Selkoe J et al. Secreted beta amyloid precursor protein stimulates mitogen activated protein kinase and enhances tau phosphorylation. Proc Natl Acad Sci USA 1994; 91:7104–7108.

    PubMed  CAS  Google Scholar 

  46. Mills J, Charest DL, Lam F et al. Regulation of amyloid precursor protein catabolism involves the mitogen-activated protein kinase signal transduction pathway. J Neurosci 1997; 17:9415–9422.

    PubMed  CAS  Google Scholar 

  47. Sadot E, Jaaro H, Seger R et al. Ras-signaling pathways: Positive and negative regulation of tau expression in PC12 cells. J Neurochem 1998a; 70:428–431.

    PubMed  CAS  Google Scholar 

  48. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: A conserved switch for diverse cell functions. Nature 1990; 348:125–132.

    PubMed  CAS  Google Scholar 

  49. Stokoe D, MacDonald SG, Cadwallader K et al. Activation of Raf as a result of recruitment to the plasma membrane. Science 1994; 264:1463–1467.

    PubMed  CAS  Google Scholar 

  50. Arendt TH, Gärtner U, Seeger G et al. Neuronal activation of Ras regulates synaptic connectivity. Europ J Neurosci 2004; 19:2953–2966.

    Google Scholar 

  51. Borasio GD, John J, Wittinghofer A et al. Ras p21 protein promotes survival and fiber outgrowth of cultured embryonic neurons. Neuron 1989; 2:1087–1096.

    PubMed  CAS  Google Scholar 

  52. Phillips LL, Belardo ET. Increase of c-fos and ras oncoproteins in the denervated neuropil of the rat dentate gyrus. Neuroscience 1994; 58:503–514.

    PubMed  CAS  Google Scholar 

  53. Holzer M, Gärtner U, Klinz FJ et al. Activation of mitogen activated protein kinase cascade (MAPK)-cascade and phosphorylation of cytoskeletal proteins after neuron-specific activation of p21ras. I. MAPK-cascade. Neuroscience 2001; 105:1031–1040.

    PubMed  CAS  Google Scholar 

  54. Holzer M, Rödel L, Seeger G et al. Activation of mitogen activated protein kinase (MAPK)-cascade and phosphorylation of cytoskeletal proteins after neuron-specific activation of p21ras. II. Cytoskeletal proteins and dendritic morphology. Neuroscience 2001b; 105:1040–1054.

    Google Scholar 

  55. Gärtner U, Holzer M, Arendt TH. Elevated expression of p21ras is an early event in Alzheimer’s disease and precedes neurofibrillary degeneration. Neuroscience 1999; 91:1–5.

    PubMed  Google Scholar 

  56. Arendt TH, Holzer M, Großmann A et al. Increased expression and subcellular translocation of the mitogen-activated protein kinase kinase and mitogen-activated protein kinase in Alzheimer’s disease. Neuroscience 1995c; 68:5–18.

    PubMed  CAS  Google Scholar 

  57. Boulton TG, Nye SH, Robbins DJ et al. ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 1991; 65:663–675.

    PubMed  CAS  Google Scholar 

  58. Bogoyevitch MA, Court NW. Counting on mitogen-activated protein kinases ERKs 3, 4, 5, 6, 7 and 8. Cellular signalling 2004; 16:1345–1354.

    PubMed  CAS  Google Scholar 

  59. Martin KC, Michael D, Rose JC et al. MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron 1997b; 18:899–912.

    PubMed  CAS  Google Scholar 

  60. Impey S, Obrietan K, Storm DR. Making new connections: Role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 1999; 23:11–14.

    PubMed  CAS  Google Scholar 

  61. Drewes G, Lichtenberg-Kraag B, Doring F et al. Mitogen activated protein (MAP) kinase transforms tau protein into an Alzheimer-like state. EMBO J 1992; 11:2131–2138.

    PubMed  CAS  Google Scholar 

  62. Goedert M, Cohen ES, Jakes R et al. p42 MAP kinase phosphorylation sites in microtubule-associated protein tau are dephosphorylated by protein phosphatase 2A1-implication for Alzheimer’s disease. FEBS Lett 1992; 312:95–99.

    PubMed  CAS  Google Scholar 

  63. Dawson TM, Sasaki M, Gonzales-Zulueta M et al. Regulation of neuronal nitric oxide synthase and identification of novel nitric oxide signaling pathways. Progress in Brain Res 1998; 118:3–11.

    CAS  Google Scholar 

  64. Peunova N, Enikolopov G. Amplification of calcium-induced gene transcription by nitric oxide in neuronal cells. Nature 1993; 364:450–453.

    PubMed  CAS  Google Scholar 

  65. Peunova N, Enikolopov G. Nitric oxide triggers a switch to growth arrest during differentiation of neuronal cells. Nature 1995; 375:68–73.

    PubMed  CAS  Google Scholar 

  66. Bogdan C. Nitric oxide and the regulation of gene expression. Trends Cell Biol 2001; 11:66–75.

    PubMed  CAS  Google Scholar 

  67. Lüth H-J, Arendt TH. Oxyde Nitrique et maladie d’Alzheimer. Alzheimer Actualités 1998a; 132:6–11.

    Google Scholar 

  68. Gansauge S, Nussler AK, Berger HG et al. Nitric oxide-induced apoptosis in human pancreatic carcinoma cell lines is associated with a G1-arrest and increase of the cyclin-dependent kinase inhibitor P21WAF1/CIP1. Cell Growth Differ 1998; 9:611–617.

    PubMed  CAS  Google Scholar 

  69. Lüth H-J, Holzer M, Gertz H-J et al. Aberrant expression of nNOS in pyramidal neurons in Alzheimer’s disease is highly colocalized with p21ras and p16INK4a. Brain Research 2000; 852:45–55.

    PubMed  Google Scholar 

  70. Lander HM, Hajjar DP, Hempstead BL et al. A molecular redox switch on p21 (ras). Structural basis for the nitric oxide-p21 (ras) interaction. J Biol Chem 1997; 272:4323–4326.

    PubMed  CAS  Google Scholar 

  71. Yun HY, Gonzalez-Zulueta M, Dawson VL et al. Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21 ras. Proc Natl Acad Sci USA 1998; 95:5773–5778.

    PubMed  CAS  Google Scholar 

  72. Lüth H-J, Arendt TH. Nitric oxide and Alzheimer’s disease. J Brain Research 1998b; 39:245–251.

    Google Scholar 

  73. Farinelli SE, Park DS, Green LA. Nitric oxide delays the death of trophic factor-deprived PC12 cells and sympathetic neurons by a cGMP-mediated mechanism. J Neurosci 1996; 16:2325–2334.

    PubMed  CAS  Google Scholar 

  74. Heumann R, Goemans C, Bartsch D et al. Transgenic activation of ras in neurons promotes hypertrophy and protects from lesion-induced degeneration. Journal of Cell Biology 2000; 151:1537–1548.

    PubMed  CAS  Google Scholar 

  75. Arendt TH. Alzheimer’s disease as a loss of differentiation control in a subset of neurons that retain immature features in the adult brain. Neurobiology of Aging 2000; 21:783–796.

    PubMed  CAS  Google Scholar 

  76. Arendt TH. Disturbance of neuronal plasticity is a critical pathogenetic event in Alzheimer’s disease. Int J Dev Neurosci 2001a; 19:231–245.

    PubMed  CAS  Google Scholar 

  77. Arendt TH. Alzheimer’s disease as a disorder of mechanisms underlaying structural brain self-organization. Commentary Neuroscience 2001b; 102:723–765.

    CAS  Google Scholar 

  78. Bothwell M, Giniger E. Alzheimer’s disease: Neurodevelopment converges with neurodegeneration. Cell 2000; 102:271–273.

    PubMed  CAS  Google Scholar 

  79. Mehler MF, Gokhan S. Developmental mechanisms in the pathogenesis of neurodegenerative diseases. Progr Neurobiol 2001; 63:337–363.

    CAS  Google Scholar 

  80. Sherr CJ, Roberts JM. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 1995; 9:1149–1163.

    PubMed  CAS  Google Scholar 

  81. Farinelli SE, Greene LA. Cell cycle blockers mimosine, ciclopirox, and deferoxamine prevent the death of PC12 cells and postmitotic sympathetic neurons after removal of trophic support. J Neurosci 1996; 16:1150–1162.

    PubMed  CAS  Google Scholar 

  82. Park DS, Farinelli SE, Greene LA. Inhibitors of cyclin-dependent kinases promote survival of post-mitotic neuronally differentiated PC12 cells and sympathetic neurons. J Biol Chem 1996; 271:8161–8169.

    PubMed  Google Scholar 

  83. Arendt TH, Holzer M, Stöbe A et al. Activated mitogenic signalling induces a process of de-differentiation in Alzheimer’s disease that eventually results in cell death. Ann NY Acad Sci 2000; 920:249–255.

    PubMed  CAS  Google Scholar 

  84. Arendt TH, Holzer M, Gärtner U. Neuronal expression of cycline dependent kinase inhibitors of the INK4 family in Alzheimer’s disease. J Neural Transm 1998b; 105:949–960.

    PubMed  CAS  Google Scholar 

  85. Arendt TH, Holzer M, Gartner U et al. Aberrancies in signal transduction and cell cycle related events in Alzheimer’s disease. J Neural Transmission Suppl 1998c; 54:147–158.

    CAS  Google Scholar 

  86. Dranovsky A, Vincent I, Gregori L et al. Cdc2 phosphorylation of nucleolin demarcates mitotic stages and Alzheímer’s disease pathology. Neurobiol Aging 2001; 22:517–528.

    PubMed  CAS  Google Scholar 

  87. Jordan-Sciutto KL, Morgan K, Bowser R. Increased cyclin G1 immunoreactivity during Alzheimer’s disease. J Alzheimers Dis 1999; 1:409–417.

    PubMed  CAS  Google Scholar 

  88. McShea A, Harris PL, Webster KR et al. Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. Am J Pathol 1997; 150:1933–1939.

    PubMed  CAS  Google Scholar 

  89. Nagy Z, Esiri MM, Smith AD. The cell division cycle and the pathophysiology of Alzheimer’s disease. Neuroscience 1998; 87:731–739.

    PubMed  CAS  Google Scholar 

  90. Smith TW, Lippa CF. Ki-67 immunoreactivity in Alzheimer’s disease and other neurodegenerative disorders. J Neuropathol Exp Neurol 1995; 54:297–303.

    PubMed  CAS  Google Scholar 

  91. Vincent I, Jicha G, Rosado M et al. Aberrant expression of mitogenic Cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. J Neuroscience 1997; 17:3588–3598.

    CAS  Google Scholar 

  92. Vincent I, Jicha G, Rosado M et al. Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. J Neurosci 1997; 588–598.

    Google Scholar 

  93. Gill JS, Windebank AJ. Cisplatin-induced apoptosis in rat dorsal root ganglion neurons is associated with attempted entry into the cell cycle. J Clin Invest 1998; 101:2842–2850.

    PubMed  CAS  Google Scholar 

  94. Katchanov J, Harms C, Gertz K et al. Mild cerebral ischemia induces loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death. J Neurosci 2001; 21:5045–5053.

    PubMed  CAS  Google Scholar 

  95. Osuga H, Osuga S, Wang F et al. Cyclin-dependent kinases as a therapeutic target for stroke. Proc Natl Acad Sci USA 2000; 97:10254–10259.

    PubMed  CAS  Google Scholar 

  96. Sakurai M, Hayashi T, Abe K et al. Cyclin D1 and Cdk4 protein induction in motor neurons after transient spinal cord ischemia in rabbits. Stroke 2000; 31:200–207.

    PubMed  CAS  Google Scholar 

  97. Tomasevic G. Changes in proliferating cell nuclear antigen, a protein involved in DNA repair, in vulnerable hippocampal neurons following global cerebral ischemia. Brain Res Mol Brain Res 1998; 60:168–176.

    PubMed  CAS  Google Scholar 

  98. van Lookeren Campagne M, Gill R. Increased expression of cyclin G1 and p21WAF/CIP1 in neurons following transient forebrain ischemia: Comparison with early DNA damage. J Neurosci Res 1998; 53:279–296.

    PubMed  Google Scholar 

  99. Timsit S, Rivera S, Ouaghi P et al. Increased cyclin D 1 in vulnerable neurons in the hippocampus after ischaemia and epilepsy: A modulator of in vivo programmed cell death? Eur J Neurosci 1999; 11:263–278.

    PubMed  CAS  Google Scholar 

  100. Giovanni A, Wirtz-Brugger F, Keramaris E et al. Involvement of cell cycle elements, cyclin-dependent kinases, pRB, and EF2-DP, in β-amyloid induced neuronal death. J Biol Chem 1999; 274:19011–19016.

    PubMed  CAS  Google Scholar 

  101. Knockaert M, Grenngard P, Meijer L. Pharmacological inhibitors of cyclin-dependent kinases. TRENDS in Pharmacological Sciences 2002; 23:417–418.

    PubMed  CAS  Google Scholar 

  102. Kranenburg O, van der Eb A, Zantema A. Cyclin D1 is an essential mediator of apoptotic neuronal cell death. EMBO J 1996; 15:46–54.

    PubMed  CAS  Google Scholar 

  103. Padmanabhan J. Role of cell cycle regulatory proteins in cerebellar granule neuron apoptosis. J Neurosci 1997; 19:8747–8756.

    Google Scholar 

  104. Morgan D. Cyclin-dependent kinases: Engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 1997; 13:261–292.

    PubMed  CAS  Google Scholar 

  105. Pavletich NP. Mechanisms of cyclin-dependent kinase regulation: Structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol 1999; 287:821–828.

    PubMed  CAS  Google Scholar 

  106. Assoian RK, Schwartz MA. Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression. Curr Opin Genet Dev 2001; 11:48–53.

    PubMed  CAS  Google Scholar 

  107. Sherr CJ. G1 phase progression: Cycling on cue. Cell 1994; 79:551–555.

    PubMed  CAS  Google Scholar 

  108. Dulic V, Lees E, Reed SI. Association of human cyclin E with a periodic G1-S phase protein kinase. Science 1992; 257:1958–1961.

    PubMed  CAS  Google Scholar 

  109. Koff A, Giordano A, Desai D et al. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 1992; 257:1689–1694.

    PubMed  CAS  Google Scholar 

  110. Peters JM. SCF and APC: The Yin and Yang of cell cycle regulated proteolysis. Curr Opin Cell Biol 1998; 10:759–768.

    PubMed  CAS  Google Scholar 

  111. Lew DJ. Cell-cycle checkpoints that ensure coordination between nuclear and cytoplasmic events in Saccharomyces cerevisiae. Curr Opin Gen Dev 2000; 10:47–53.

    CAS  Google Scholar 

  112. Copani A, Uberti D, Sortino MA et al. Activation of cellcycle-associated proteins in neuronal death: A mandatory of dispensable path? Trends Neurosci 2001; 24:25–31.

    PubMed  CAS  Google Scholar 

  113. Evan G, Littlewood T. A matter of life and death. Science 1998; 281:1317–1322.

    PubMed  CAS  Google Scholar 

  114. Busser J, Geldmacher DS, Herrup K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain. J Neurosci 1998; 18:2801–2807.

    PubMed  CAS  Google Scholar 

  115. Ledesma MD, Correas I, Avila J et al. Implication of brain cdc2 and MAP2 kinases in the phosphorylation of tau protein in Alzheimer’s disease. FEBS Lett 1992; 308:218–224.

    PubMed  CAS  Google Scholar 

  116. Patrick GN, Zukerberg L, Nikolic M et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 1999; 402:615–622.

    PubMed  CAS  Google Scholar 

  117. Kobayashi S, Ishiguro K, Omori A et al. A cdc2-related kinase PSSALRE/cdk5 is homologous with the 30 kDa subunit of tau protein kinase II, a proline-directed protein kinase associated with microtubule. FEBS Lett 1993; 335:171–175.

    PubMed  CAS  Google Scholar 

  118. Suzuki T, Oishi M, Marshak DR et al. Cell cycle-dependent regulation of the phosphorylation and metabolism of the Alzheimer amyloid precursor protein. EMBO J 1994; 13:1114–1122.

    PubMed  CAS  Google Scholar 

  119. Copani A, Condorelli F, Caruso A et al. Mitotic signaling by beta-amyloid causes neuronal death. FASEB J 1999; 13:2225–2234.

    PubMed  CAS  Google Scholar 

  120. Gärtner U, Brückner MK, Krug S et al. Amyloid deposition in APP 23 mice is associated with the expression of cyclins in astrocytes but not in neurons. Acta Neuropath 2003; 106:535–544.

    PubMed  Google Scholar 

  121. Vidal A, Koff A. Cell-cycle inhibitors: Three families united by a common cause. Gene 2000; 247:1–15.

    PubMed  CAS  Google Scholar 

  122. Smith MZ, Nagy Z, Esiri MM. Cell cycle-related protein expression in vascular dementia and Alzheimer’s disease. Neurosci Lett 1999; 271:45–48.

    PubMed  CAS  Google Scholar 

  123. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993; 366:704–707.

    PubMed  CAS  Google Scholar 

  124. Carnero A, Hudson JD, Price CM et al. p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol 2000; 2:148–155.

    PubMed  CAS  Google Scholar 

  125. Freeman RS, Estus S, Johnson EM. Analysis of cell cycle related gene expression in postmitotic neurons. Selective induction of cyclin D1 during programmed cell death. Neuron 1994; 12:343–355.

    PubMed  CAS  Google Scholar 

  126. Cheng M, Olivier P, Diehl JA et al. The p21(Cip1) and p27(Kip1) CDK, inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 1999; 18:1571–1583.

    PubMed  CAS  Google Scholar 

  127. Kamb A, Gruis NA, Weaver-Feldhaus J et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 1994; 264:436–440.

    PubMed  CAS  Google Scholar 

  128. Lundberg AS, Weinberg RA. Functional inactivation of the retinoblastoma protein requires se quential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol 1998; 18:753–761.

    PubMed  CAS  Google Scholar 

  129. Ludlow JW, Glendening CL, Livingston DM et al. Specific enzymatic dephosphorylation of the retinoblastoma protein. Mol Cell Biol 1993; 13:367–372.

    PubMed  CAS  Google Scholar 

  130. Luo RX, Postigo AA, Dean DC. Rb interacts with histone deacetylase to repress transcription. Cell 1998; 92:463–473.

    PubMed  CAS  Google Scholar 

  131. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995; 81:323–330.

    PubMed  CAS  Google Scholar 

  132. Ewen ME. Regulation of the cell cycle by the Rb tumor suppressor family. Results Probl Cell Differ 1998; 22:149–179.

    PubMed  CAS  Google Scholar 

  133. Black AR, Azizkhan-Clifford J. Regulation of E2F: A family of transcription factors involved in proliferation control. Gene 1999; 237:281–302.

    PubMed  CAS  Google Scholar 

  134. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev 1998; 12:2245–2262.

    PubMed  CAS  Google Scholar 

  135. Nevins JR. Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ 1998; 9:585–593.

    PubMed  CAS  Google Scholar 

  136. Pardee AB. G1 events and regulation of cell proliferation. Science 1989; 246:603–608.

    PubMed  CAS  Google Scholar 

  137. Shan B, Durfee T, Lee WH. Disruption of RB/E2F-1 interaction by single point mutations in E2F-1 enhances S-phase entry and apoptosis. Proc Natl Acad Sci USA 1996; 93:679–684.

    PubMed  CAS  Google Scholar 

  138. Jordan-Sciutto KL, Malaiyandi LM, Bowser R. Altered distribution of cell cycle transcriptional regulators during alzheimer disease. Neuropathol Exp Neurol 2002; 61:358–367.

    CAS  Google Scholar 

  139. Hoozemans JJ, Veerhuis R, Rozemuller AJ et al. Neuronal COX-2 expression and phosphorylation of pRb precede p38 MAPK activation and neurofibrillary changes in AD temporal cortex. Neurobiol Dis 2004; 15:492–499.

    PubMed  CAS  Google Scholar 

  140. Assoian RK. Anchorage-dependent cell cycle progression. J Cell Biol 1997; 136:1–4.

    PubMed  CAS  Google Scholar 

  141. Wu RC, Schönthal AH. Activation of p53–p21waf1 pathway in response to disruption of cell-matrix interactions. J Biol Chem 1997; 272:29091–29098.

    PubMed  CAS  Google Scholar 

  142. Danen EHJ, Yamada KM. Fibronectin, inegrins, and growth control. J of Cell Physiology 2001; 189:1–13.

    CAS  Google Scholar 

  143. Assoian RK, Zhu X. Cell anchorage and the cytoskeleton as partners in growth factor dependent cell cycle progression. Curr Opin Cell Biol 1997; 9:93–98.

    PubMed  CAS  Google Scholar 

  144. Huang S, Chen CS, Ingber DE. Control of cyclin D1, p27(Kip1), and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol Biol Cell 1998; 9:3179–3193.

    PubMed  CAS  Google Scholar 

  145. Hansen LK, Mooney DJ, Vacanti JP et al. Integrin binding and cell spreading on extracellular matrix act at different points in the cell cycle to promote hepatocyte growth. Mol Biol Cell 1994; 5:967–975.

    PubMed  CAS  Google Scholar 

  146. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993; 260:1124–1127.

    PubMed  CAS  Google Scholar 

  147. Roovers K, Assoian RK. Integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays 2000; 22:818–826.

    PubMed  CAS  Google Scholar 

  148. Cheng M, Sexl V, Sherr CJ et al. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc Natl Acad Sci USA 1998; 95:1091–1096.

    PubMed  CAS  Google Scholar 

  149. Diehl JA, Cheng M, Roussel MF et al. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 1998; 12:3499–3511.

    PubMed  CAS  Google Scholar 

  150. Welsh CF, Roovers K, Villanueva J et al. Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nature Cell Biology 2001; 3:950–957.

    PubMed  CAS  Google Scholar 

  151. Polyak K, Lee MH, Erdjument-Bromage H et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 1994b; 78:59–66.

    PubMed  CAS  Google Scholar 

  152. Hengst L, Reed SI. Inhibitors of the Cip/Kip family. Curr Top Microbiol Immunol 1998; 227:25–41.

    PubMed  CAS  Google Scholar 

  153. Aplin AE, Howe AK, Juliano RL. Cell adhesion molecules, signal transduction and cell growth. Curr Opin Cell Biol 1999; 11:737–744.

    PubMed  CAS  Google Scholar 

  154. Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 1994; 124:619–626.

    PubMed  CAS  Google Scholar 

  155. Frisch SM, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol 1997; 9:701–706.

    PubMed  CAS  Google Scholar 

  156. McGill G, Shimamura A, Bates RC et al. Loss of matrix adhesion triggers rapid transformation-selective apoptosis in fibroblasts. J Cell Biol 1997; 138:901–911.

    PubMed  CAS  Google Scholar 

  157. Meredith Jr JE, Schwartz M. Integrins, adhesion and apoptosis. Trends Cell Biol 1997; 7:146–150.

    CAS  Google Scholar 

  158. Seth A, Gonzalez FA, Gupta S et al. Signal transduction within the nucleus by mitogen-activated protein kinase. J Biol Chem 1992; 267:24796–24804.

    PubMed  CAS  Google Scholar 

  159. Bos J. Ras oncogenes in human cancer: A review. Cancer Res 1989; 49:4682–4689.

    PubMed  CAS  Google Scholar 

  160. Khokhlatchev A, Rabizadeh S, Xavier R et al. Identification of a novel ras-regulated proapoptotic pathway. Current Biology 2002; 12:253–265.

    PubMed  CAS  Google Scholar 

  161. Serrano M, Lin AW, McCurrach ME et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88:593–602.

    PubMed  CAS  Google Scholar 

  162. Frame S, Balmain A. Integration of positive and negative growth signals during ras pathway activation in vivo. Curr Opin Genet Dev 2000; 10:106–113.

    PubMed  CAS  Google Scholar 

  163. Joneson T, Bar-Sagi D. Suppression of Ras induced apoptosis by the Rac GTPase. Mol Cell Biol 1999; 19:5892–5901.

    PubMed  CAS  Google Scholar 

  164. Liou JS, Chen CY, Chen JS et al. Oncogenic Ras mediates apoptosis in response to protein kinase C inhibition through the generation of reactive oxygen species. J Biol Chem 2000; 275:39001–390011.

    PubMed  CAS  Google Scholar 

  165. Ridley AJ, Paterson HF, Noble M et al. Ras-mediated cell cycle arrest is altered by nuclear oncogenes to induce Schwann cell transformation. EMBO J 1988; 7:1635–1645.

    PubMed  CAS  Google Scholar 

  166. Lin AW, Barradas M, Stone JC et al. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 1998; 12:3008–3019.

    PubMed  CAS  Google Scholar 

  167. Ferbeyre G, de Stanchina E, Querido E et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 2000; 14:2015–2027.

    PubMed  CAS  Google Scholar 

  168. Gottifredi V, Prives C. P53 and PML: New partners in tumor suppression. Trends Cell Biol 2001; 11:184–187.

    PubMed  CAS  Google Scholar 

  169. Guo A, Salomoni P, Luo J et al. The function of PML in p53-dependent apoptosis. Nat Cell Biol 2000; 2:730–736.

    PubMed  CAS  Google Scholar 

  170. Malumbres M, Perez De Castro I, Hernandez MI et al. Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b). Mol Cell Biol 2000; 20:2915–2925.

    PubMed  CAS  Google Scholar 

  171. Pearson M, Carbone R, Sebastiani C et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 2000; 406:207–210.

    PubMed  CAS  Google Scholar 

  172. Zhong S, Salomoni P, Pandolfi PP. The transcriptional role of PML and the nuclear body. Nat Cell Biol 2000b; 2:E85–90.

    PubMed  CAS  Google Scholar 

  173. Arendt TH, Brückner MK, Gertz HJ et al. Cortical distribution of neurofibrillary tangles in Alzheimer’s disease matches the pattern of neurones that retain their capacity of plastic remodelling in the adult brain. Neuroscience 1998a; 83:991–1002.

    PubMed  CAS  Google Scholar 

  174. Pfenninger KH, de la Houssaye BA, Helmke SM et al. Growth-regulated proteins and neuronal plasticity. A commentary Mol Neurobiol 1991; 5:143–151.

    PubMed  CAS  Google Scholar 

  175. Masliah E, Mallory M, Alford M et al. Immunoreactivity of the nuclear antigen p105 is associated with plaques and tangles in Alzheimer’s disease. Lab Invest 1993c; 69:562–569.

    PubMed  CAS  Google Scholar 

  176. Nagy Z, Esiri MM, Smith AD. Expression of cell division markers in the hippocampus in Alzheimer’s disease and other neurodegenerative conditions. Acta Neuropathol 1997b; 93:294–300.

    PubMed  CAS  Google Scholar 

  177. Vincent I, Zheng JH, Dickson DW et al. Mitotic phosphoepitopes precede paired helical filaments in Alzheimer’s disease. Neurobiol Aging 1998; 19:287–296.

    PubMed  CAS  Google Scholar 

  178. Arendt TH. Dysregulation of neuronal differentiation and cell cycle control in Alzheimer’s disease. J Neural Transm 2002; 62:77–85.

    CAS  Google Scholar 

  179. Fang F, Orend G, Watanabe N et al. Dependence of cyclin E-cdk2 kinase activity on cell anchor age. Science 1996; 271:499–502.

    PubMed  CAS  Google Scholar 

  180. Hindley S, Juurlink BH, Gysbers JW et al. Nitric oxide donors enhance neurotrophin-induced neurite outgrowth through a cGMP-dependent mechanism. J Neurosci 1997; 15:427–439.

    Google Scholar 

  181. Motonaga K, Itoh M, Hirayama A et al. Up-regulation of E2F-1 in Down’s syndrome brain exhibiting neuropathological features of Alzheimer-type dementia. Brain Res 2001; 905:250–253.

    PubMed  CAS  Google Scholar 

  182. Resnitzky D. Ectopic expression of cyclin D1 but not cyclin E induces anchorage-independent cell cycle progression. Mol Cell Biol 1997; 17:5640–5647.

    PubMed  CAS  Google Scholar 

  183. Sherr CJ, Roberts JM. CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev 1999; 13:1501–1512.

    PubMed  CAS  Google Scholar 

  184. Sweetser DA, Kapur RP, Froelick GJ et al. Oncogenesis and altered differentiation induced by activated Ras in neuroblasts of transgenic mice. Oncogene 1997; 15:2783–2794.

    PubMed  CAS  Google Scholar 

  185. Zindy F, Cunningham JJ, Sherr CJ et al. Postnatal neuronal proliferation in mice lacking Ink4d and Kip1 inhibitors of cyclin-dependent kinases. Proc Natl Acad Sci USA 1999; 96:13462–13467.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Arendt, T. (2005). Cell Cycle Activation in Neurons. In: Copani, A., Nicoletti, F. (eds) Cell-Cycle Mechanisms and Neuronal Cell Death. Neuroscience Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-29390-6_1

Download citation

Publish with us

Policies and ethics