Skip to main content

Abstract

Del.ta.pro.te.o.bac.te′ri.a. Gr. n. delta name of fourth letter of Greek alphabet; Gr. n. Proteus ocean god able to change shape; Gr. n. bakterion a small rod; M.L. fem. pl. n. Deltaproteobacteria class of bacteria having 16S rRNA gene sequences related to those of the members of the order Myxococcales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    1. The most commonly used of Postgate’s media (often referred to as medium B) has the following composition (g/l of tap water): KH2PO4, 0.5; NH4Cl, 1; CaSO4, 1; MgSO4·7H2O, 2; sodium lactate, 3.5; yeast extract, 1; ascorbic acid, 0.1; thio-glycollic acid (fresh), 0.1; FeSO4·7H2O, 0.5. pH is adjusted between 7 and 7.5. For marine strains, addition of 25 g/l NaCl is recommended. Agar may be used up to 10 g/l for gelling. One modification is a low-iron medium (0.004 g/l FeSO4·7H2O) with or without sodium citrate dihydrate (0.3 g/l). For details see Postgate (1984a). The reducing capacity of thioglycollic acid and ascorbic acid is best maintained if these are not directly dissolved and autoclaved in the medium, but rather dissolved separately in 10 ml water, filter sterilized, and added to the medium after auto-claving. Also, preparation of medium and solutions under nitrogen (instead of air) favors maintenance of anoxic conditions.

  2. 2.

    1. Lactate medium (g/l of the basal medium described in Enrichment and Isolation Procedures): bio-Trypcase (Biomérieux, Craponne, France), 1.0; yeast extract, 1.0; and NaCl, 100.0; sodium lactate (instead of sodium acetate), 1.0.

  3. 3.

    2. Anaerobic medium of Ollivier et al. (1991) (per liter of distilled water): NH4Cl, 1.0 g; K2HPO4, 0.3 g; KH2PO4, 0.3 g; Na2SO4, 3.0 g; NaCl, 100.0 g; sodium acetate, 1.0 g; resazurin, 0.001 g; MgCl2·6H2O, 20.0 g; KCl, 4.0 g; trace element solution of Imhoff-Stuckle and Pfennig (1983), 1 ml; sodium selenite solution of Pfennig et al. (1981), 1 ml. After autoclaving, 0.2 ml of 2% (w/v) Na2S·9H2O and 1 ml of 10% (w/v) NaHCO3 (sterile, anaerobic solutions), as well as 0.2 ml of the vitamin solution of Pfennig et al. (1981) and 0.1 ml of a 0.2% (w/v) sodium dithionite solution (filter-sterilized solutions), are injected into the 60-ml serum bottles (20 ml of medium) before inoculation. In the case of roll tubes, 2% agar is added to the medium in Hungate tube (5 ml). A gas mixture containing H2/CO2 (80:20) is added at a pressure of 200 kPa after sterilization.

  4. 4.

    1. Medium II has the following composition (g/l distilled water): NaHCO3, 15.0; Na2CO3, 10.0; NaCl, 10.0; Na2SO4, 3.0; NH4Cl, 0.5; KCl, 0.2; K2HPO4, 0.2; Na2S·9H2O, 0.5; yeast extract, 0.5; and 1 ml trace element solution (Whitman et al., 1982).

  5. 5.

    1. Medium no.1 has the following composition (per liter ofdistilled water):Na2CO3, 2.76 g; NaCl, 10.0 g; Na2SO4, 3.0 g; NH4Cl, 0.5 g; KCl, 0.2 g; K2HPO4, 0.2 g; Na2S·9H2O, 0.5 g; yeast extract, 0.5 g; substrate (electron donor), 5.0 g; and 1 ml of trace element solution (Whitman et al., 1982).

  6. 6.

    1. The defined medium has the following composition (g/l of distilled water): Na2SO4, 3.0; KH2PO4, 0.2; NH4Cl, 0.3; NaCl, 7.0 (for brackish water strains) or 20.0 (for marine strains); MgCl2·6H2O, 1.2 (for brackish water strains) or 3.0 (for marine strains); KCl, 0.5; CaCl2·2H2O, 0.15. After the medium has been autoclaved and cooled under an atmosphere of N2/CO2 (90:10), the following components are added per liter of medium from sterile stock solutions, while access of air is prevented by continuous flushing with a mixture of N2/CO2 (90:10): acetate solution (CH3COONa·3H2O, 280 g/l), 10.0 ml; trace element solution (see below), 1.0 ml; bicarbonate solution (NaHCO3, 84 g/l, saturated with CO2 and autoclaved under a CO2 atmosphere), 30.0 ml; sulfide solution (Na2S·9H2O, 120 g/l, autoclaved under an N2 atmosphere), 3.0 ml; vitamin solution (p-aminobenzoic acid, 40 mg/l, and biotin, 10 mg/l), 1.0 ml. Trace element solution (without chelating agent) contains (per liter): HCl (25% solution), 10 ml; FeSO4·7H2O, 2.1 g; CoCl2·6H2O, 190 mg; ZnSO4, 144 mg; MnCl2·4H2O, 100 mg; Na2MoO4·2H2O, 36 mg; NiCl2·6H2O, 24 mg; H3BO3, 6 mg; CuCl2·2H2O, 2 mg. The FeSO4 is initially dissolved in the HCl solution and distilled water is added, followed by the other components. The pH of the complete defined medium is adjusted to 7.0–7.3. After the medium is inoculated, sodium dithionite (10–30 mg/l) is added from a freshly prepared 5% solution sterilized by filtration under anaerobic conditions; alternatively, dry crystals can be added with a sterile spatula.

  7. 7.

    *Editorial Note: The type species of the genus is Desulfobacterium autotrophicum and not Desulfobacterium indolicum, as indicated in List No. 24 in International Journal of Systematic Bacteriology (1988).

  8. 8.

    1. For cultivation of D. sapovorans, the mineral medium described in the Desulfobacter section (this Manual) is first prepared without NaCl and MgCl2. The sodium salt of palmitic acid is added from a stock solution (26 g/l of palmitic acid plus 4 g/l NaOH, heated in a boiling water bath until the solution is clear; sterilized by autoclaving. The solutions must be remelted by heating before use; prewarmed pipettes should be used to take aliquots). Added volumes per liter of medium: 10–20 ml palmitate solution, followed by 1.0 ml of MgCl2 solution (400 g/l MgCl2·6H2O) and 4.0 ml of NaCl solution β00 g/l). Pure cultures can be alternatively grown on soluble monocarboxylic acids. For instance, 5–10ml ofabutyrate–caproate–caprylate mixture (containing per liter: 6.0, 2.5, and 1.0 g, respectively, of acids neutralized with NaOH) may be added per liter of medium.

  9. 9.

    1. The defined medium is prepared as described in the Desulfobacter section (this Manual), with the following additions (g/l): NaCl, 7.0; MgCl2·6H2O, 1.2. After autoclaving, the following components are added aseptically from sterile stock solutions (per liter of medium): sodium benzoate solution (150 g/l), 5.0 ml; vitamin solution (p-aminobenzoate, 40 mg/l; biotin, 10 mg/l; thiamine hydrochloride, 100 mg/l; solution sterilized by filtration), 1.0 ml; sodium selenite solution (Na2SeO3·5H2O, 3 mg/l; NaOH, 0.5 g/l), 1.0 ml. The pH of the medium is adjusted to 7.2–7.4. For stimulation of growth on benzoate, 50–200 lM n-valerate (or a mixture of propionate, n-butyrate, isobutyrate, n-valerate, 2-methylbutyrate, 3-methylbutyrate and n-caproate; approximately 50 μM each) may be added from a sterile stock solution.

  10. 10.

    1. Defined medium has the following composition (in g/l distilled water): Na2SO4, 4.0; KH2 PO4, 0.2; NH4Cl, 0.2; NaCl, 20; KCl, 0.5; MgCl2·6H2O, 3.0 for D. limicola and 5.0 for D. magnum; and CaCl2·2H2O, 0.15 for D. limicola and 1.4 for D. magnum. The dissolved salts are autoclaved. For the preparation of soft agar medium that supports homogeneous growth and gliding movement, 2 g of repeatedly washed (with cold H2O), separately autoclaved agar in 70 ml H2O are added per liter (final volume) of the hot autoclaved medium and mixed immediately; agar is omitted if artificial sediment is added later (see below). After the medium is cooled under an anaerobic atmosphere, the following volumes from separately sterilized stock solutions are added per liter medium while access of air is prevented by flushing with a mixture of N2/CO2 (CO2 content: 5–20%, depending on the desired pH): solution of 84 g/l NaHCO3 (autoclaved under CO2 atmosphere), 30 ml; trace element solution (see below), 1 ml; solution of 3 mg/l Na2SeO3·5H2O + 0.5 g/l NaOH, 1 ml; solution of 120 g/l Na2S·9H2O (autoclaved under N2 atmosphere), 3 ml; filter-sterilized vitamin mixture (see below), 1 ml; filter-sterilized thiamin solution (100 mg/l of 25 mM NaH2PO4/H3PO4 buffer, pH 3.4), 1 ml; and filter-sterilized B12 solution (50 mg/l), 1 ml. The pH of the mixed medium is adjusted with sterile HCl or Na2CO3 solution to 7.6 for D. limicola and to 7.0 for D. ishimotonii and D. magnum. The medium may be dispensed into tubes (10ml) or culture bottles (50 or 100 ml); bottles are completely filled and tightly sealed with screw caps or are provided with an anaerobic gas phase and sealed with butyl rubber stoppers. The desired organic substrates are added from sterile stock solutions. For D. limicola, 5–ml from a solution of 280 g/l sodium acetate trihydrate are added per liter of medium. Growth on acetate is stimulated by the addition of 1 ml from a mixture of organic acids (see below) per liter of culture medium. For D. ishimotonii, 5–10 ml from a solution of 140 g/l sodium acetate trihydrate and 22 g/l sodium isobutyrate are added per liter of medium. The substrates for D. limicola are also suitable for D. ishimotonii, and vice versa. For D. magnum, 3–5 ml from a solution of 150 g/l sodium benzoate are added per liter of medium. A sediment of aluminum phosphate per liter of medium is precipitated before inoculation: 5 ml of an autoclaved solution of 48 g/l AlCl3·6H2O are added, and the pH is readjusted with 1.6 ml from a solution of 106 g/l Na2CO2.

    Trace element solution (without complexing agent) as described for Desulfobacter should be used.

    Vitamin mixture contains per liter 10 mM Na2HPO4/NaH2PO4 buffer (pH7.1): 4-aminobenzoic acid, 40 mg; d( + )-biotin, 10 mg; nicotinic acid, 100 mg; calcium d( + )-pantothenate, 50 mg; pyridoxine hydrochloride, 150 mg.

    Mixture of organic acids (modified after Bryant, 1973) contains (per l): iso-butyric acid, 5 g; valeric acid, 5 g; isovaleric acid, 5 g; 2-methylbutyric acid, 5 g; caproic acid, 2 g; heptanoic acid, 2 g; octanoic acid, 2 g; and succinic acid, 45 g. The acids are neutralized with NaOH.

  11. 11.

    1. The defined medium is prepared as described in the footnote of the section on the genus Desulfobacter. The following additions are recommended (g/l): NaCl, 13.0 and MgCl2·6H2O, 2.0. After autoclaving of the medium, the following additional components are added aseptically from sterile stock solutions (per liter of medium): sodium benzoate solution (150 g/l), 5.0 ml; sodium selenite solution (Na2SeO3·5H2O, 3 mg/l and NaOH, 0.5 g/l), 1.0 ml. The pH of the medium is adjusted to 7.3–7.5.

  12. 12.

    1. The defined medium is prepared as described in the footnote on the genus Desulfobacter, with the following additions (g/l): NaCl, 1.0 (for freshwater strains) or 20.0 (for marine strains); MgCl2·6H2O, 0.5 (for freshwater strains) or 3.0 (for marine strains). Sodium propionate (final concentration, 1.5 g/l) is added asep-tically from a sterile stock solution to provide an organic substrate; however, the best growth occurs with sodium lactate (final concentration, 2.0–4.0 g/l) in the presence of sulfate. The only growth factor required by Desulfobulbus is p-amino-benzoic acid. The pH of the complete medium is adjusted to 7.3–7.4.

  13. 13.

    1. The defined medium is prepared as described for Desulfobacter, with the following additions (g/l): NaCl, 3.0; MgCl2·2H2O, 3.0; vitamin solution (p-aminobenzoic acid, 40 mg/l; biotin, 10 mg/l; nicotinic acid, 100 mg/l; Ca-D-( + ) pantothenate, 50 mg/l; pyridoxamine HCl, 150 mg/l; thiamine dichloride, 100 mg/l; folic acid, 30 mg/l; DL-α-liponic acid; solutions sterilized by filtration), and cyanocobalamin (100 mg/l), 1 ml/liter each; sodium selenite-tungsten solution (Na2SeO3·2H2O, 3 mg/l; Na2WO4·2H2O, 4 mg/l; KOH, 0.7 g/l), 1 ml/l. Sodium glycolate (10 mM final concentration) is added from a filter-sterilized stock solution as organic substrate.

  14. 14.

    1. For cultivation of D. baarsii, the mineral medium described in the Desulfobacter section (this Manual) is first prepared without NaCl and MgCl2. The sodium salt of stearic acid is added from a stock solution (28 g of stearic acid plus 4 g/l NaOH, heated in a boiling water bath until the solution is clear; sterilized by autoclaving. The solution must be remelted by heating before use; prewarmed pipettes should be used to take aliquots). Volumes added per liter of medium: 10 ml stearate solution, followed by 3.0 ml of MgCl2 solution (400 g/l MgCl2-6H2O) and 25 ml of NaCl solution (300 g/l NaCl). Pure cultures can be grown alternatively on soluble monocarboxylic acids. For instance, 5–10 ml of sodium formate solution (100 g/l) or a butyrate–caproate–caprylate mixture (containing per liter: 6.0, 2.5, and 1.0 g, respectively, of acids neutralized with NaOH) may be added per liter of medium.

  15. 15.

    1. Defined basal medium has the following composition (per liter of distilled water): KH2PO4, 0.5 g; NH4Cl, 0.3 g; CaCl2-2H2O, 0.1 g; NaCl, 0.5 g (for salt water strains, 20.0 g); MgCl2-6H2O, 0.4 g (for salt water strains, 3.0 g); trace element solution (see chapter on Desulfobacter), 1.0 ml. After the medium has been autoclaved and cooled under anoxic conditions, the following components are added aseptically from sterile stock solutions: 20 ml of a solution of 84 g/l NaHCO3 (saturated with CO2 and autoclaved under a CO2 atmosphere), 2–3 ml of a solution of 120 g/l Na2S-9H2O (autoclaved under an N2 atmosphere), and 1 ml of a vitamin solution containing 4 mg of p-aminobenzoic acid and 1 mg of biotin per 100 ml. The pH of the medium is adjusted to 7.1–7.3 with sterile 1 M HCl or 0.5 M Na2CO3 solution (autoclaved in closed bottles with gas head phase). The medium is then distributed aseptically into sterile screw-capped bottles or test tubes and sealed against air.

  16. 16.

    2. Highly purified sulfur flower is ground thoroughly in a mortar together with distilled water. The slurry is autoclaved for 30 min at 112°C in a screw-capped bottle. The excess water is then decanted.

  17. 17.

    1. Freshwater Fe(III)-oxide basal medium contains (per liter): 30 ml amorphous Fe(III)-oxide, 0.25 g NH4Cl, 0.60 g NaH2PO4, 1.36 g CH3COONa-3H2O, 2.5 g NaHCO3 (primary buffer with CO2), 0.1 g KCl, 10 ml each of vitamin and mineral solutions (Lovley and Phillips, 1988). The medium is dispensed into tubes before sparging with 80% N2 and 20% CO2 (at least 6 min, the last minute with the stopper in place). The amorphous Fe(III)-oxide can be replaced with alternative Fe(III) forms as needed.

  18. 18.

    1. The basal medium has the following composition (g/l distilled water): KH2PO4, 0.5 g; MgCl2·6H2O, 0.3 g; NaCl, 0.4 g; NH4Cl, 0.4 g; CaCl2·2H2O, 0.5 g; resazurin, 0.001 g; clarified rumen fluid, 50 ml; B-vitamin solution, 5 ml; trace metal solution, 20 ml. The medium is boiled under a stream of N2/CO2 (80:20 v/v) gas mixture. Solid NaHCO3 (3.5 g/l) is slowly added, and the medium is stoppered and brought inside an anaerobic chamber. The medium is dispensed into serum tubes, which are then stoppered and sealed. The gas phase is replaced by vacuuming and re-pressurizing each tube with an N2/CO2 (80:20 v/v) gas mixture using a gassing station (Balch and Wolfe, 1976). The medium is then autoclaved. Before use, the medium is reduced with a cysteine–sulfide reducing solution (0.2 ml/10 ml medium). Additions to the medium and inoculation are done using sterile needles and syringes that have been flushed with an anaerobic gas. The trace metal solution contains (g/l): nitrilotriacetic acid, 2.0; pH is then adjusted to 6 with KOH before addition of the other components (g/l): MnSO4·H2O, 1.0, Fe(NH4)2(SO4)2·6H2O, 0.8; CoCl2·6H2O, 0.2; ZnSO4·7H2O, 0.2; CuCl2·6H2O, 0.02; NiCl2·6H2O, 0.02; Na2MoO4·2H2O, 0.02; Na2SeO4, 0.02; Na2WO4, 0.02. The B-vitamin solution contains (mg/l): pyridoxine-HCl, 10; thiamin-HCl, 5; riboflavin, 5; calcium panto-thenate, 5; p-aminobenzoic acid, 5, thiotic acid, 5; nicotinic acid, 5; vitamin B12, 5; biotin, 2; folic acid, 2. Cysteine–sulfide solution contains (g/l); cysteine, 12.5, neutralized with NaOH before the addition of sodium sulfide; and NaS·9H2O, 12.5. The solution is boiled and dispensed under a 100% nitrogen gas phase and then autoclaved. The sodium sulfide solution contains 25 g/l of NaS·9H2O and is boiled and dispensed under a 100% nitrogen gas phase.

  19. 19.

    1. Phosphate-buffered, thioglycollate/ascorbic acid-reduced medium is prepared as described in the footnote of the section on Desulfovibrio, with the following additions (g/l): NaCl, 10; MgCl2·6H2O, 3.1. Sodium lactate (3.0–4.0 g/l) is added as the carbon and energy source.

  20. 20.

    2. The bicarbonate-buffered, sulfide-reduced medium is prepared as described in the footnote of the section on Desulfobacter, with the following addition (g/l): NaCl, 10; MgCl2·6H2O, 3.1. Sodium lactate (3.0–4.0 g/l) is added as the carbon and energy source.

  21. 21.

    1. Defined basal medium consists of (per liter of distilled water): PIPES (piperazine-N,N′;-bis-[2-ethanesulfonic acid]) dipotassium salt, 1.5 g; NaCl, 0.8 g; NH4Cl, 1.0 g; KCl, 0.1 g; KH2PO4, 0.1 g; MgCl2·6H2O, 0.2 g; CaCl2·2H2O, 0.02 g; NaHCO3, 3.0 g; trace element solution, 10 ml; and resazurin solution (0.1%), 1.0 ml. The pH of the solution is adjusted to 7.8. Medium is prepared and dispensed using strict anaerobic technique and the gas phase is N2/CO2 (4:1) at 138 kPa positive pressure. After the medium has been autoclaved and cooled, the following components are added aseptically from filter sterilized, anoxic stock solutions: vitamin solution, 10 ml; sodium pyruvate (1 M), 40 ml; 3-chlorobenzoate (0.2 M in 0.2 M NaOH), 10 ml; and dithionite (10 mM), 10 ml. The pH of the autoclaved medium is 6.9–7.1. Trace element solution (per liter): nitrilotriacetic acid, 2.0 g; MnSO4·H2O, 1.0 g; Fe(NH4)2(SO4)2·6H2O, 0.8 g; CoC12·6H2O, 0.2 g; ZnSO4·7H2O, 0.2 g; CuCl2·2H2O, 0.02 g; NiCI2·6H2O, 0.02 g; Na2MoO4·2H2O, 0.02 g; Na2SeO4, 0.02 g; Na2WO4, 0.02 g; pH adjusted to 6.0 with KOH. Vitamin solution (per liter): nicotinamide, 50.0 mg; 1,4-napthoquinone, 20.0 mg; thiamine, 5.0 mg; hemin, 5.0 mg; D-biotin, 5.0 mg; folic acid, 5.0 mg; pyridine-HCI, 5.0 mg; riboflavin, 5.0 mg, D-pantothenic acid, 5.0 mg; cyanocobalamin, 5.0 mg; p-aminobenzoate, 5.0 mg; lipoic acid (DL-6,8-thioctic acid), 5.0 mg. The 1,4-naphthoquinone and hemin are dissolved in 0.1 M NaOH to solubilize prior to addition to vitamin solution. The vitamin solution must be sterilized by filtration and not by autoclaving. Both the pyruvate stock solution and the dithionate stock solution should be freshly prepared and filter sterilized prior to use.

  22. 22.

    *Editorial Note: The previous edition of Bergey’s Manual of Systematic Bacteriology described three species of Bdellovibrio: B. bacteriovorus, B. starrii, and B. stolpii (Burnham and Conti, 1984). However, the authors acknowledged that variability in physiological, biochemical, and genetic properties stressed the single-genus concept for these organisms. As a result of these and other differences revealed more recently by molecular studies, two of the species, B. starrii and B. stolpii, have been reclassified into a new genus, Bacteriovorax, to be described in the following chapter.

  23. 23.

    1. NB/500 is nutrient broth (Difco) at 1/500 normal strength (equals 0.016 g of dehydrated broth/liter).

  24. 24.

    2. DNB is a dilute nutrient broth, consisting of (per liter): nutrient broth (Difco), 0.8 g; yeast extract (Difco), 0.1 g; vitamin-free Casamino acids, 0.5 g; 2 mM CaCl2; and 1 mM MgCl2. The pH is adjusted to 7.2 with 1 M NaOH.

  25. 25.

    3. PYE is peptone-yeast extract medium (Seidler and Starr, 1969) and consists of (per liter): peptone (Bacto), 10.0 g; and yeast extract (Difco), 3.0 g. The pH is adjusted to 7.2 with 1 M NaOH.

  26. 26.

    4. Pp20 is polypeptone 20 medium and consists of (g/l) polypeptone (Bacto), 1.0 g, and agar (Difco), 18.0 g. These ingredients are dissolved in 1l of 70% artificial sea water. The 70% artificial sea water (ASW) consists of 26 g of Instant Ocean dissolved in 1 l of distilled water; the pH is adjusted to 8.0 with 1 M NaOH.

  27. 27.

    5. MPY/10 is a basal salt medium and consists of (per l basal salt solution) peptone (Bacto), 0.5 g; yeast extract, 0.3 g. The pH is adjusted to 7.4. Basal salt solution consists of (g/l) MgSO4·7H2O, 6.92; NaCl, 28.15; MgCl2·6H2O, 5.51; CaCl2·H2O, 1.45; KCl, 0.67.

  28. 28.

    6. NB/500 is nutrient broth (Difco) at 1/500 normal strength (equals 0.016 g of dehydrated broth/l).

  29. 29.

    7. DNB is a dilute nutrient broth, consisting of (per l) nutrient broth (Difco), 0.8 g; yeast extract (Difco), 0.1 g; vitamin-free casamino acids, 0.5 g; 2 mM CaCl2; and 1 mM MgCl2. The pH is adjusted to 7.2 with 1 M NaOH.

  30. 30.

    8. SWYE is salt water yeast extract medium and consists of (per l) peptone (Bacto), 10 g; yeast extract, 3.0 g dissolved in 1 l of 70% artificial seawater (ASW).

  31. 31.

    *Editorial Note: The neuter form, minus, which was correct with Polyangium, has been used by mistake for Cystobacter, which is a masculine noun; however, according to the Bacteriological Code, the name cannot be corrected.

  32. 32.

    *Editorial Note: The name given to the organism in the original description was “Podangium alboracemum”, which was later corrupted to alboraceum (McCurdy, 1971b); however, according to the Bacteriological Code, it cannot be corrected.

  33. 33.

    *Editorial Note: Readers are advised that the type material of Polyangium rugiseptum and Polyangium minor (sic) are not available as cited. As such, the proposals for new combinations presented here may result in illegitimate names.

  34. 34.

    *Editorial Note: After this chapter was finished, a genus Haliangium with two new species H. ochraceum and H. tepidum, was proposed for the marine organisms belonging to this family (Fudou et al., 2002).

Further Reading

  • Postgate, J.R. 1984. The Sulfate-Reducing Bacteria, 2nd ed., Cambridge University Press, Cambridge; New York.

    Google Scholar 

Further Reading

  • Ollivier, B., C.E. Hatchikian, G. Prensier, J. Guezennec and J.-L. Garcia. 1991. Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int. J. Syst. Bacteriol. 41: 74–81.

    Article  CAS  Google Scholar 

Further Reading

  • Pikuta, E.V., A.M. Lysenko and T.N. Zhilina. 1997. Distribution of Desulfonatronovibrio hydrogenovorans in soda lakes of Tuva. Mikrobiologiya 66: 216–221.

    CAS  Google Scholar 

  • Zhilina, T.N., G.A. Zavarzin, F.A. Rainey, E.N. Pikuta, G.A. Osipov and N.A. Kostrikina. 1997. Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int. J. Syst. Bacteriol. 47: 144–149.

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Rueter, P., R. Rabus, H. Wilkes, F. Aeckersberg, F.A. Rainey, H.W.Jannasch and F. Widdel. 1994. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372: 455–458.

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Pikuta, E.V., A.M. Lysenko and T.N. Zhilina. 1997. Distribution of Desulfonatronovibrio hydrogenovorans in soda lakes of Tuva. Mikrobiologiya 66: 216–221.

    CAS  Google Scholar 

  • Pikuta, E.V., T.N. Zhilina, G.A. Zavarzin, N.A. Kostrikina, G.A. Osipov and F.A. Rainey. 1998. Desulfonatronum lacustre gen. nov., sp. nov.: a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Mikrobiologiya 67: 105–113.

    CAS  Google Scholar 

Further Reading

  • Widdel, F. andN. Pfennig. 1981. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129: 395–400.

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Brysch, K., C. Schneider, G. Fuchs and F. Widdel. 1987. Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch. Microbiol. 148: 264–274.

    Article  CAS  Google Scholar 

Further Reading

  • Bak, F. and F. Widdel. 1986. Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfobacteriumindolicumgen. nov., sp. nov. Arch. Microbiol. 146: 170–176.

    Article  CAS  Google Scholar 

  • Kuever, J., M. Könneke, A. Galushko and O. Drzyzga. 2001. Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 51: 171–177.

    PubMed  CAS  Google Scholar 

  • Rabus, R., R. Nordhaus, W. Ludwig and F. Widdel. 1993. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol. 59: 1444–1451.

    PubMed  CAS  Google Scholar 

Further Reading

  • Platen, H., A. Temmes and B. Schin. 1990. Anaerobic degradation of acetone by Desulfosarcina biacutus spec. nov. Arch. Microbiol. 154: 355–361.

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Knoblauch, C, K. Sahm and B.B. Jørgensen. 1999. Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desul-fotalea psychrophila gen. nov., sp. nov and Desulfotalea arctica sp. nov. Int. J. Syst. Bacteriol. 49: 1631–1643.

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Knoblauch, C, K. Sahm and B.B.Jørgensen. 1999. Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov and Desulfotalea arctica sp. nov. Int. J. Syst. Bacteriol. 49: 1631–1643.

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Fukui, M., A. Teske, B. Assmus, G. Muyzer and F. Widdel. 1999. Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (genus Desulfonema). Arch. Microbiol. 172: 193–203.

    Article  PubMed  CAS  Google Scholar 

  • Widdel, F 1983. Methods for enrichment and pure culture isolation of filamentous gliding sulfate-reducing bacteria. Arch. Microbiol. 134: 282–285.

    Article  Google Scholar 

  • Widdel, F, G.-W. Kohring and F. Mayer. 1983. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids III. Characterization of the filamentous gliding Desulfonema limnicola gen. nov. sp. nov., and Desulfonema magnumsp. nov. Arch. Microbiol. 134: 286–294.

    Article  CAS  Google Scholar 

Further Reading

  • Galushko, A.S. and E.P. Rosanova. 1991. Desulfobacterium cetonicum spec. nov., a sulfate-reducing bacterium oxidizing fatty acids and ketones. Mikrobiologiya 60: 102–107.

    CAS  Google Scholar 

Further Reading

  • Kuever, J., M. Konneke, A. Galushko and O. Drzyzga. 2001. Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticumgen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 51: 171–177.

    PubMed  CAS  Google Scholar 

Further Reading

  • Widdel, F. and N. Pfennig. 1982. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty-acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch. Microbiol. 131: 360–365.

    Article  CAS  Google Scholar 

Further Reading

  • Finster, K., W. Liesack and B. Thamdrup. 1998. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfexigens sp. nov., anew anaerobic bacterium isolated from marine surface sediment. Appl. Environ. Microbiol. 64: 119–125.

    PubMed  CAS  Google Scholar 

  • Janssen, P.H., A. Schuhmann, F. Bak and W. Liesack. 1996. Dispropor-tionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. Arch. Microbiol. 166: 184–192.

    Article  CAS  Google Scholar 

Further Reading

  • Isaksen, M.F. and A. Teske. 1996. Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch. Microbiol. 166: 160–168.

    Article  CAS  Google Scholar 

Further Reading

  • Knoblauch, C, K. Sahm and B.B. Jørgensen. 1999. Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov, Desulfotalea psychrophila gen. nov, sp. nov. and Desulfotalea arctica sp. nov. Int. J. Syst. Bacteriol. 49: 1631–1643.

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Pfennig, N. 1978. Rhodocyclus purpureus gen. nov. and sp. nov. a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int. J. Syst. Bacteriol. 28: 283–288.

    Article  CAS  Google Scholar 

Further Reading

  • Finster, K. and F. Bak. 1993. Complete oxidation of propionate, valerate, succinate, and other organic compounds by newly isolated types of marine, anaerobic, mesophilic, Gram-negative, sulfur-reducing eu-bacteria. Appl. Environ. Microbiol. 59: 1452–1640.

    PubMed  CAS  Google Scholar 

  • Liesack, W. and K. Finster. 1994. Phylogenetic analysis of five strains of Gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov. and Desulfuromusa succinoxidans sp. nov. Int. J. Syst. Bacteriol. 44: 753–758.

    Article  Google Scholar 

Further Reading

  • Dehning, I. and B. Schink. 1989. Malonomonas rubra gen. nov. sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Arch. Microbiol. 151: 427–433.

    Article  CAS  Google Scholar 

Further Reading

  • Schink, B. 1984. Fermentation of 2,3-butanediol by Pelobacter carbinolicus, new species and Pelobacter propionicus, new species and evidence for propionate formation from C-2 compounds. Arch. Microbiol. 137: 33–41.

    Article  CAS  Google Scholar 

  • Schink, B. 1985. Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus, new species. Arch. Microbiol. 142: 295–301.

    Article  CAS  Google Scholar 

  • Schink, B., D.R. Kremer and T.A. Hansen. 1987. Pathway of propionate formation from ethanol in Pelobacter propionicus. Arch. Microbiol. 147: 321–327.

    Article  CAS  Google Scholar 

  • Schink, B. and N. Pfennig. 1982. Fermentation of trihydroxybenzenes by Pelobacter acidigallici, new genus new species: a new strictly anaerobic, non-spore-forming bacterium. Arch. Microbiol. 133: 195–201.

    Article  CAS  Google Scholar 

  • Schink, B. and M. Stieb. 1983. Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, non-spore-forming bacterium, Pelobacter venetianus, sp. nov. Appl. Environ. Microbiol. 45: 1905–1913.

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E., U. Wehmeyer and B. Schink. 1989. The phylogenetic status of Pelobacter acidigallici, Pelobacter venetianus, and Pelobacter carbinolicus. Syst. Appl. Microbiol. 11: 257–260.

    Article  CAS  Google Scholar 

  • Widdel, F. and N. Pfennig. 1981. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129: 395–400.

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Oude Elferink, S.H J.W., A. Visser, L.W. Hulshoff Pol and A.J.M. Stams. 1994. Sulfate reduction in methanogenic bioreactors. FEMS Microbiol. Rev. 15: 119–126.

    CAS  Google Scholar 

  • Schink, B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61: 262–280.

    PubMed  CAS  Google Scholar 

  • Stams, A.M. 1994. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Leeuwenhoek 66: 271–294.

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Rees, G., G.N. Grassia, A.J. Sheehy, P.P. Dwivedi and B.K.C. Patel. 1995. Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int. J. Syst. Bacteriol. 45: 85–89.

    Article  Google Scholar 

  • Sievert, S.M. and J. Kuever. 2000. Desulfacinum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium from geothermally heated sediments near Milos Island (Greece). Int. J. Syst. Bacteriol. 50: 1239–1246.

    CAS  Google Scholar 

Further Reading

  • Oude Elferink, S.J.W.H., R.N. Maas, H.J.M. Harmsen and A.J.M. Stams. 1995. Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Arch. Microbiol. 164: 119–124.

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Tanaka, K., E. Stackebrandt, S. Tohyama andT. Eguchi. 2000. Desulfovirga adipica gen. nov., sp. nov. an adipate-degrading, Gram-negative, sulfate-reducing bacterium. Int. J. Syst. Evol. Bacteriol. 50: 639–644.

    CAS  Google Scholar 

Further Reading

  • Baer, M.L., J. Ravel, S.A. Pineiro, D. Guether-Borg and H.N. Williams. 2004. Reclassification of salt-water Bdellovibrio spp. as Bacteriovorax marinus sp. nov. and Bacteriovorax litoralis sp. nov. Int. J. Syst. Evol. Microbiol. 54:: 1011–1016.

    Article  PubMed  CAS  Google Scholar 

  • Guerrero, R., C. Pedros-Alio, I. Esteve, J. Mas, D. Chase and L. Margulis. 1986. Predatory prokaryotes: predation and primary consumption evolved in bacteria. Proc. Natl. Acad. Sci. U.S.A. 83: 2138–2142.

    Article  PubMed  CAS  Google Scholar 

  • Jurkevitch E. 2000. The genus Bdellovibrio. In Dworkin., Flakow, Rosenberg, Schleifer and Stackebrandt (Editors), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd Ed., release 3.1, Springer-Verlag, New York.

    Google Scholar 

  • Rittenberg, S.C. 1983. Bdellovibrio: attack, penetration, and growth on its prey. ASM News. 49: 435–439.

    Google Scholar 

  • Ruby, E.G. 1991. The genus Bdellovibrio. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes, 2nd Ed., Vol. 4, Springer-Verlag, New York. pp. 3400–3415.

    Google Scholar 

Further Reading

  • Baer, M.L., J. Ravel, S.A. Pineiro, D. Guether-Borg and H.N. Williams. 2004. Reclassification of salt-water Bdellovibrio spp. as Bacteriovorax marinus sp. nov. and Bacteriovorax litoralis sp. nov. Int. J. Syst. Evol. Microbiol. 54:: 1011–1016.

    Article  PubMed  CAS  Google Scholar 

References

  • Aamand, J., T. Ahl and E. Spieck. 1996. Monoclonal antibodies recognizing nitrite oxidoreductase of Nitrobacter hamburgensis, N winogradskyi, and N. vulgaris. Appl. Environ. Microbiol. 62: 2352–2355.

    PubMed  CAS  Google Scholar 

  • Abadie, M. 1967. Formations intracytoplasmique du type “mésome ”chez Chondromyces crocatus Berkeley et Curtis. C.R. Acad. Sci. Paris 265: 2132–2134.

    CAS  Google Scholar 

  • Abadie, M. 1968. Sur l ’organisation des masses cellulairesvégétativeschez les Chondromyces: Importance de la “matrice ” initiale et de la trame muqueuse résiduelle. C.R. Acad. Sci. Paris 267: 2037–2040.

    CAS  Google Scholar 

  • Abadie, M. 1971. Contribution a la connaissance des myxobactéries supérieures. II. Données ultrastructurales et morphogénétiques sur le Chondromyces crocatus. Ann. Sci. Nat. Bot. Biol. Veg. 12: 345–428.

    Google Scholar 

  • Abram, D., J. Castro e Melo and D. Chou. 1974. Penetration of Bdellovibrio bacteriovorus into host cells. J. Bacteriol. 118: 663–680.

    PubMed  CAS  Google Scholar 

  • Afinogenova, A.V, S.M. Konovalova and VA. Lambina. 1986. The loss of monospecificity of exoparasitic bacteria of the Micavibrio genus. Mikrobiologiya 55: 487–489.

    Google Scholar 

  • Agnihothrudu, V, G.C.S. Barua and K.C. Barua. 1959. Occurrence of Chondromyces in the rhizosphere of plants. Indian Phytopathol. 12: 158–160.

    Google Scholar 

  • Ahring, B.K., N. Christiansen, I. Mathrani, H.V. Hendriksen, A.J.L. Macario and E. Conway De Macario. 1992. Introduction of a de novo bioremediation ability, aryl reductive dechlorination, into anaerobic granular sludge by inoculation of sludge with Desulfomonile tiedjei. Appl. Environ. Microbiol. 58: 3677–3682.

    PubMed  CAS  Google Scholar 

  • Akoum, A., R. Guidoin, M.W. King, Y. Marois, M. Sigot and M.F. Sigotluizard. 1992. A new bioactive molecule for improving vascular graft patency—exploratory trials in dogs. Med. Clin. Exp. 15: 318–330.

    CAS  Google Scholar 

  • Althauser, M., W.A. Samsonoff, C. Anderson and S.F. Conti. 1972. Isolation and preliminary characterization of bacteriophages for Bdellovibrio bacteriovorus. J. Virol. 10: 516–523.

    PubMed  CAS  Google Scholar 

  • Andrews, K.T. and B.K.C. Patel. 1996. Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int. J. Syst. Bacteriol. 46: 265–269.

    Article  PubMed  CAS  Google Scholar 

  • Arendsen, A.F., M.F.J.M. Verhagen, R.B.G. Wolbert, A.J. Pierik, A.J.M. Stams, M.S.M. Jetten and W.R. Hagen. 1993. The dissimilatory sulfite reductase from Desulfosarcina variabilis is a desulforubidin containing uncoupled metalated sirohemes and S /2 iron-sulfur clusters. Biochemistry 32: 10323–10330.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, J.W. and L.J. Shimkets. 1988. Cell-surface properties correlated with cohesion in Myxococcus xanthus. J. Bacteriol. 170: 5771–5777.

    PubMed  CAS  Google Scholar 

  • Auburger, G. and J. Winter. 1995. Isolation and physiological characterization of Syntrophus buswellii strain GA from a syntrophic benzoate degrading strictly anaerobic coculture. Appl. Microbiol. Biotechnol. 44: 241–248.

    Article  CAS  Google Scholar 

  • Auburger, G. and J. Winter. 1996. Activation and degradation of benzoate, 3-phenylpropianate and crotonate by Syntrophus buswellii strain GA. Evidence for electron transport phosphorylation during crotonate respiration. Appl. Microbiol. Biotechnol. 44: 807–815.

    PubMed  CAS  Google Scholar 

  • Bacon, K. and F.A. Eiserling. 1967. A unique structure in microcysts of Myxococcus xanthus. J. Ultrastruct. Res. 21: 378–382.

    Article  PubMed  CAS  Google Scholar 

  • Baena, S., M.L. Fardeau, M. Labat, B. Ollivier, J.L. Garcia and B.K.C. Patel. 1998. Desulfovibrio aminophilus sp. nov., a novel amino acid degrading and sulfate reducing bacterium from an anaerobic dairy wastewater lagoon. Syst. Appl. Microbiol. 21: 498–504.

    Article  PubMed  CAS  Google Scholar 

  • Baer, M.L. 1998. Molecular Characterization of the Bacterial Predator Bdellovibrio, Doctoral thesis, University of Maryland, Baltimore, Maryland.

    Google Scholar 

  • Baer, M.L.,J. Ravel, J. Chun, R.T. Hill and H.N. Williams. 2000. A proposal for the reclassification of Bdellovibrio stolpii and Bdellovibrio starrii into a new genus, Bacteriovorax gen. nov. as Bacteriovorax stolpii comb. nov. and Bacteriovorax starrii comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 50: 219–224.

    Article  PubMed  CAS  Google Scholar 

  • Baer, M.L., J. Ravel, A.J. Schoeffield, R.T. Hill and H.N. Williams. 1998. Analysis of Bdellovibrio spp. by arbitrarily primed PCR, pulsed field electrophoresis, ribotyping and 16S rDNA analysis. 98th Annual Meeting of the American Society for Microbiology, p. 481.

    Google Scholar 

  • Baer, M.L., A.J. Schoeffield, D. Serio, C. Frederick, W. Buchanan, M. Challmes and H.N. Williams. 1994. Interaction of halophilic bdello-vibrios with an attached Vibrio vulnificus community. 94th Annual Meeting of the American Society for Microbiology, p. 322.

    Google Scholar 

  • Bak, F. and N. Pfennig. 1987. Chemolithotrophic growth of Desulfovibrio sulfodismutans, new species by disproportionation of inorganic sulfur compounds. Arch. Microbiol. 147: 184–189.

    Article  CAS  Google Scholar 

  • Bak, F and N. Pfennig. 1988. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 24. Int. J. Syst. Bacteriol. 38: 136–137.

    Article  Google Scholar 

  • Bak, F and F. Widdel. 1986. Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfo-bacterium indolicum gen. nov., sp. nov. Arch. Microbiol. 146: 170–176.

    Article  CAS  Google Scholar 

  • Bak, F and F Widdel. 1988. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 24. Int. J. Syst. Bacteriol. 38: 136–137.

    Article  Google Scholar 

  • Balch, W.E. and R.S. Wolfe. 1976. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-de-pendent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl. Environ. Microbiol. 32: 781–791.

    PubMed  CAS  Google Scholar 

  • Bale, S.J., K. Goodman, P.A. Rochelle, J.R. Marchesi, J.C. Fry, A.J. Weightman and R.J. Parkes. 1997. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int. J. Syst. Bacteriol. 47: 515–521.

    Article  PubMed  CAS  Google Scholar 

  • Balsalobre, J.M., R.M. Ruizvazquez and F.J. Murillo. 1987. Light induction of gene expression in Myxococcus xanthus. Proc. Natl. Acad. Sci. U.S.A. 84: 2359–2362.

    Article  PubMed  CAS  Google Scholar 

  • Barel, G. and E. Jurkevitch. 2001. Analysis of phenotypic diversity among hostindependent mutants of Bdellovibrio bacteriovorus 109 J. Arch. Microbiol. 176: 211–216.

    Article  CAS  Google Scholar 

  • Baron, E.J. 1997. Bilophila wadsworthia: a unique gram-negative anaerobic rod. Anaerobe 3: 83–86.

    Article  PubMed  CAS  Google Scholar 

  • Baron, E.J., G. Ropers, P. Summanen and R.J. Courcol. 1993. Bactericidal activity of selected antimicrobial agents against Bilophila wadsworthia and Bacteroides gracilis. Clin. infect. Dis. 16: S339–S343.

    Article  PubMed  CAS  Google Scholar 

  • Baron, E.J., P. Summanen, J. Downes, M.C. Roberts, H. Wexler and S.M. Finegold. 1989. Bilophila wadsworthia, gen. nov. and sp. nov., a unique Gram-negative anaerobic rod recovered from appendicitis specimens and human faeces. J. Gen. Microbiol. 135: 3405–3411.

    PubMed  CAS  Google Scholar 

  • Bartosch, S., I. Wolgast, E. Spieck and E. Bock. 1999. Identification of nitrite-oxidizing bacteria with monoclonal antibodies recognizing the nitrite oxidoreductase. Appl. Environ. Microbiol. 65: 4126–4133.

    PubMed  CAS  Google Scholar 

  • Baur, E. 1905. Myxobakterien studien. Arch. Protistenkd. 5: 92–121.

    Google Scholar 

  • Beeder, J., T. Torsvik and T. Lien. 1995. Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch. Microbiol. 164: 331–336.

    Article  PubMed  CAS  Google Scholar 

  • Beeder, J., T. Torsvik and T. Lien. 1996. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 57. Int. J. Syst. Bacteriol. 46: 625–626.

    Article  Google Scholar 

  • Behmlander, R.M. and M. Dworkin. 1991. Extracellular fibrils and contact-mediated cell interactions in Myxococcus xanthus. J. Bacteriol. 173: 7810–7821.

    PubMed  CAS  Google Scholar 

  • Behrens, H., J. Flossdorf and H. Reichenbach. 1976. Base composition of deoxyribonucleic acid from Nannocystis exedens (Myxobacterales). Int. J. Syst. Bacteriol. 26: 561–562.

    Article  Google Scholar 

  • Beijerinck, M.W. 1895. Uber Spirillum desulfuricans als Ursache von Sulfatreduktion. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I Orig. 1: 1–9; 49–59; 104–114.

    Google Scholar 

  • Bell, R.G. and D.J. Latham. 1975. Influence of NaCl, Ca2+. and Mg2+ on the growth of marine Bdellovibrio spp. Estuar. Coast. Mar. Sci. 3: 381–384.

    Article  CAS  Google Scholar 

  • Bender, H. 1963. Untersuchungen an Myxococcus xanthus. II. Mitteilung. Partielle Lyse von Pullularia pullulans und einigen echten Hefen durch ein extracelluläres Enzymsystem. Arch. Microbiol. 45: 407–422.

    CAS  Google Scholar 

  • Berkeley, M.J. 1857. Introduction to Cryptogamic Botany, H. Bailliere, London. 313, 315.

    Google Scholar 

  • Berkeley, M.J. 1874. Notices of North American fungi. Grevillea 3: 4–64.

    Google Scholar 

  • Berkeley, M.J. and C.E. Broome. 1873. Enumeration of the fungi of Ceylon. J. Linn. Soc. Lond. Bot. 14: 96.

    Google Scholar 

  • Bernard, D., G. Verschraegen, G. Claeys, S. Lauwers and P. Rosseel. 1994. Bilophila wadsworthia bacteremia in a patient with gangrenous appendicitis. Clin. Infect. Dis. 18: 1023–1024.

    Article  PubMed  CAS  Google Scholar 

  • Bernheimer, J., A.J. Schoeffield, M. Baer and B.D. Tall. 1993. Predation of a biofilm community by halophilic bdellovibrios. 93rd Annual Meeting of the American Society for Microbiology, p. 301.

    Google Scholar 

  • Beyer, P. and H. Kleinig. 1985. In vitro synthesis of C15–C60 polyprenols in a cell-free system of Myxococcus fulvus and determination of chain length by high performance liquid chromatography. Methods En-zymol. 110: 299–303.

    Article  CAS  Google Scholar 

  • Biebl, H. and N. Pfennig. 1977. Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch. Microbiol. 112: 115–117.

    Article  PubMed  CAS  Google Scholar 

  • Biebl, H. and N. Pfennig. 1978. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117: 9–16.

    Article  CAS  Google Scholar 

  • Bock, E. and H.-P., Koops. 1992. The genus Nitrobacter and related genera. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Pro-karyotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Vol. 3, Springer-Verlag, New York. pp. 2302–2309.

    Google Scholar 

  • Bock, E., H. Sundermeyer-Klinger and E. Stackebrandt. 1983. New facultative lithoautotrophic nitrite-oxidizing bacteria. Arch. Microbiol. 136: 281–284.

    Article  CAS  Google Scholar 

  • Bojary, M.R. and S.A. Dhala. 1989. Coagulase of Myxococcus fulvus NK-35. 1. Purification and partial characterization. Zentbl. Mikrobiol. 144: 347–354.

    CAS  Google Scholar 

  • Bonch-Osmolovskaya, E.A., T.G. Sokolova, N.A. Kostrikina and G.A. Zavarzin. 1990. Desulfurella acetivorans gen. nov. and sp. nov.—a new thermophilic sulfur-reducing eubacterium. Arch. Microbiol. 153: 151–155.

    Article  Google Scholar 

  • Bonch-Osmolovskaya, E.A., T.G. Sokolova, N.A. Kostrikina and G.A. Zavarzin. 1993. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB, List No. 46. Int. J. Syst. Bacteriol. 43: 624–625.

    Article  Google Scholar 

  • Boone, D.R. and M.P. Bryant. 1980. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40: 626–632.

    PubMed  CAS  Google Scholar 

  • Boone, D.R. and M.P. Bryant. 1984. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 15. Int. J. Syst. Bacteriol. 34: 355–357.

    Article  Google Scholar 

  • Boone, D.R., R.L. Johnson and Y. Liu. 1989. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl. Environ. Microbiol. 55: 1735–1741.

    PubMed  CAS  Google Scholar 

  • Boone, D.R. and L. Xun. 1987. Effects of pH, temperature, and nutrients on propionate degradation by a methanogenic enrichment culture. Appl. Environ. Microbiol. 53: 1589–1592.

    PubMed  CAS  Google Scholar 

  • Borchers, M. 1982. Isolierung und charakterisierung hefelytischer Enzyme aus dem gleitenden Bakterium Myxococcus fulvus MX f80 (Myxobacterales), Thesis, Technical University Braunschweig, Germany, 90 pp..

    Google Scholar 

  • Brandis-Heep, A., N.A. Gebhardt, R.K. Thauer, F. Widdel and N. Pfennig. 1983. Anaerobic acetate oxidation to carbon dioxide by Desulfobacter postgatei. 1. Demonstration of all enzymes required for the operation of the citric acid cycle. Arch. Microbiol. 136: 222–229.

    Article  CAS  Google Scholar 

  • Brandt, K.K. and K. Ingvorsen. 1997. Desulfobacter halotolerans sp. nov., a halotolerant acetate-oxidizing sulfate-reducing bacterium isolated from sediments of Great Salt Lake, Utah. Syst. Appl. Microbiol. 20: 366–373.

    Article  Google Scholar 

  • Brandt, K.K. and K. Ingvorsen. 1998. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 64. Int. J. Syst. Bacteriol. 48: 327–328.

    Article  Google Scholar 

  • Brandt, K.K., F. Vester, A.N. Jensen and K. Ingvorsen. 2001. Sulfate reduction dynamics and enumeration of sulfate-reducing bacteria in hypersaline sediments of the Great Salt Lake (Utah, USA). Microb. Ecol. 41: 1–11.

    PubMed  CAS  Google Scholar 

  • Brandt K., K., B.K.C. Patel and K. Ingvorsen. 1999. Desulfocella halophila gen. nov., sp. nov., a halophilic, fatty-acid-oxidizing, sulfate-reducing bacterium isolated from sediments of the Great Salt Lake. Int. J. Syst. Bacteriol. 49: 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Brauman, A., J.F. Köenig, J. Dutreix and J.L. Garcia. 1990. Characterization of two sulfate-reducing bacteria from the gut of the soil-feeding termite, Cubitermes speciosus. Antonie Leeuwenhoek 58: 271–275.

    Article  PubMed  CAS  Google Scholar 

  • Bremaud, L., S. Laalami, B. Derijard and Y. Cenatiempo. 1997. Translation initiation factor IF2 of the myxobacterium Stigmatella aurantiaca: Presence of a single species with an unusual N-terminal sequence. J. Bacteriol. 179: 2348–2355.

    PubMed  CAS  Google Scholar 

  • Brentlinger, K.L., S. Hafenstein, C.R. Novak, B.A. Fane, R. Borgon, R. McKenna and M. Agbandje-McKenna. 2002. Microviradae, a family divided: Isolation, characterization and genome sequence of phiMH2K, a bacteriophage of the obligate intracellular parasite bacterium Bdellovibrio bacteriovorus. J. Bacteriol. 184: 1089–1094.

    Article  PubMed  CAS  Google Scholar 

  • Breton, A.M. and J.F. Guespin-Michel. 1987. Escherichia coli pH 2.5 acid phosphate and β-lactamase TEM2 are secreted into the medium by Myxococcus xanthus. FEMS Microbiol. Lett. 40: 183–188.

    CAS  Google Scholar 

  • Breton, A.M., S. Jaoua and J. Guespin-Michel. 1985. Transfer of plasmid RP4 to Myxococcus xanthus and evidence for its integration into the chromosome. J. Bacteriol. 161: 523–528.

    PubMed  CAS  Google Scholar 

  • Bretscher, A.P. and D. Kaiser. 1978. Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J. Bacteriol. 133: 763–768.

    PubMed  CAS  Google Scholar 

  • Breznak, J.A. and R.N. Costilow. 1994. Physiochemical factors in growth. In Gerhardt, Murray, Wood and Krieg (Editors), Methods for General and Molecular Bacteriology, American Society for Microbiology,Washington, D.C. pp. 137–154.

    Google Scholar 

  • Brown, N.L., R.P. Burchard, D.W. Morris, J.H. Parish, N.D. Stow and C. Tsopanakis. 1976. Phage and defective phage of strains of Myxococcus. Arch. Microbiol. 108: 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Brown, N.L. and J.H. Parish. 1976. Extrachromosomal DNA in chloramphenicol resistant Myxococcus strains. J. Gen. Microbiol. 93: 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Bryant, M.P. 1972. Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutr. 25: 1324–1328.

    PubMed  CAS  Google Scholar 

  • Bryant, M.P. 1973. Nutritional requirements of the predominant rumen cellulolytic bacteria. Fed. Proc. 32: 1809–1813.

    PubMed  CAS  Google Scholar 

  • Brysch, K., C. Schneider, G. Fuchs and F. Widdel. 1987. Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch. Microbiol. 148: 264–274.

    Article  CAS  Google Scholar 

  • Brysch, K., C. Schneider, G. Fuchs and F. Widdel. 1988. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 26. Int. J. Syst. Bacteriol. 38: 328–329.

    Article  Google Scholar 

  • Burchard, R.P. and M. Dworkin. 1966. A bacteriophage for Myxococcus xanthus: isolation, characterization and relation of infectivity to host morphogenesis. J. Bacteriol. 91: 1305–1313.

    PubMed  CAS  Google Scholar 

  • Burchard, R.P. and H. Voelz. 1972. Bacteriophage infection of Myxococcus xanthus during cellular differentiation and vegetative growth. Virology 48: 555–566..

    Article  PubMed  CAS  Google Scholar 

  • Burger, A., G. Drews and R. Ladwig. 1968. Host range and infection cycle of a newly isolated strain of Bdellovibrio bacteriovorus. Arch. Mikrobiol. 61: 261–279.

    Article  PubMed  CAS  Google Scholar 

  • Burnham, J.C., S.A. Collart and M.J. Daft. 1984. Myxococcal predation of the cyanobacterium Phormidium luridum in aqueous environments. Arch. Microbiol. 137: 220–225.

    Article  Google Scholar 

  • Burnham, J.C., S.A. Collart and B.W. Highison. 1981. Entrapment and lysis of the cyanobacterium Phormidium luridum by aqueous colonies of Myxococcus xanthus PCO2. Arch. Microbiol. 129: 285–294.

    Article  Google Scholar 

  • Burnham, J.C. and S.F. Conti. 1984. Genus Bdellovibrio. In Krieg and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st Ed., Vol. 1, The Williams & Wilkins Co., Baltimore. pp. 118–124.

    Google Scholar 

  • Burnham, J.C., T. Hashimoto and S.F. Conti. 1968. Electron microscopic observations on the penetration of Bdellovibrio bacteriovorus into Gramnegative bacterial hosts. J. Bacteriol. 96: 1366–1381.

    PubMed  CAS  Google Scholar 

  • Burnham, J.C., T. Hashimoto and S.F. Conti. 1970. Ultrastructure and cell division of a facultatively parasitic strain of Bdellovibrio bacteriovorus. J. Bacteriol. 101: 997–1004.

    PubMed  CAS  Google Scholar 

  • Caccavo, F., Jr., D.J. Lonergan, D.R. Lovley, M. Davis, J.F. Stolz and M.J. McInerney. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60: 3752–3759.

    PubMed  CAS  Google Scholar 

  • Caillon, E., B. Lubochinsky and D. Rigomier. 1983. Occurrence of dialkyl ether phospholipids in Stigmatella aurantiaca DW4. J. Bacteriol. 153: 1348–1351.

    PubMed  CAS  Google Scholar 

  • Cammack, R., G. Fauque, J.J.G. Moura andJ. LeGall. 1984. ESR studies of cytochrome c 3 from Desulfovibrio desulfuricans strain Norway 4: midpoint potentials of the 4 hemes and interactions with ferredoxin and colloidal sulfur. Biochim. Biophys. Acta 784: 68–74.

    Article  CAS  Google Scholar 

  • Campbell, L.L., M.A. Kasprzycki and J.R. Postgate. 1966. Desulfovibrio africanus sp. n., a new dissimilatory sulfate-reducing bacterium. J. Bacteriol. 92: 1122–1127.

    PubMed  CAS  Google Scholar 

  • Campos, J.M., J. Geisselsoder and D.R. Zusman. 1978. Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J. Mol. Biol. 119: 167–178.

    Article  PubMed  CAS  Google Scholar 

  • Campos, J.M. and D.R. Zusman. 1975. Regulation of development in Myxococcus xanthus: Effect of 3′:5′-cyclic AMP, ADP, and nutrition. Proc. Natl. Acad. Sci. U.S.A. 72: 518–522.

    Article  PubMed  CAS  Google Scholar 

  • Caumette, P. 1993. Ecology and physiology of phototrophic bacteria and sulfate-reducing bacteria in marine salterns. Experientia (Basel) 49: 473–481.

    Article  CAS  Google Scholar 

  • Chemeris, N.A., A.V. Afinogenova and T.S. Tsarikaeva. 1984. Role of carbohydrate-protein recognition in the process of Bdellovibrio attachment to host bacterial cells. Mikrobiologiya 53: 556–558.

    CAS  Google Scholar 

  • Christensen, B., T. Torsvik and T. Lien. 1992. Immunomagnetically captured thermophilic sulfate-reducing bacteria from North Sea oil field waters. Appl. Environ. Microbiol. 58: 1244–1248.

    PubMed  CAS  Google Scholar 

  • Claros, M.C., U. Schumacher, M. Jacob, S. Hunt Gerardo, N. Kleinkauf, E.J.C. Goldstein, S.M. Finegold and A.C. Rodloff. 1999. Characterization of Bilophila wadsworthia isolates using PCR fingerprinting. Anaerobe 5: 589–593.

    Article  CAS  Google Scholar 

  • Claussen, P. 1942. Eduard Jahn. Ber. Dtsch. Bot. Gesellsch. 60: (164)–(176).

    Google Scholar 

  • Coates, J.D., V.K. Bhupathiraju, L.A. Achenbach, M.J. McInerney and D.R. Lovley. 2001. Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae—three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int. J. Syst. Evol. Microbiol. 51: 581–588.

    PubMed  CAS  Google Scholar 

  • Coates, J.D., D.J. Ellis, E.L. Blunt-Harris, C.V. Gaw, E.E. Roden and D.R. Lovley. 1998. Recovery of humic-reducing bacteria from a diversity of environments. Appl. Environ. Microbiol. 64: 1504–1509.

    PubMed  CAS  Google Scholar 

  • Coates, J.D., D.J. Lonergan, E.J. Philips, H. Jenter and D.R. Lovley. 1995. Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Arch. Microbiol. 164: 406–413.

    Article  PubMed  CAS  Google Scholar 

  • Coates, J.D., E.J. Phillips, D.J. Lonergan, H. Jenter and D.R. Lovley. 1996. Isolation of Geobacter species from diverse sedimentary environments. Appl. Environ. Microbiol. 62: 1531–1536.

    PubMed  CAS  Google Scholar 

  • Coder, D.M. and L.J. Goff. 1986. The host range of the chlorellavorous bacterium (“Vampirovibrio chlorellavorus”). J. Phycol. 22: 543–546.

    Article  Google Scholar 

  • Coder, D.M. and M.P. Starr. 1978. Antagonistic association of the chlorellavorus bacterium (”Bdellovibrio” chlorellavorus) with Chlorella vulgaris. Curr. Microbiol. 1: 59–64.

    Article  Google Scholar 

  • Cohn, F. 1875. Untersuchungen uber Bakterien II. Beitr. Biol. Pflanz. 1875 1 (Heft 3): 141–207.

    Google Scholar 

  • Coletta, P.L. and P.G.G. Miller. 1986. The extracellular proteases of Myxo-coccus xanthus. FEMS Microbiol. Lett. 37: 203–207.

    Article  CAS  Google Scholar 

  • Collins, M.D. and F. Widdel. 1986. Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. Syst. Appl. Microbiol. 8: 8–18.

    Article  CAS  Google Scholar 

  • Cook, A.M., H. Laue and F. Junker. 1999. Review — microbial desulfonation. FEMS Microbiol. Rev. 22: 399–419.

    Article  Google Scholar 

  • Cooper, D.M. and C.J. Gebhart. 1998. Comparative aspectsof proliferative enteritis. J. Am. Vet. Med. Assoc. 212: 1446–1451.

    PubMed  CAS  Google Scholar 

  • Cooper, D.M., D.L. Swanson, S.M. Barns and C.J. Gebhart. 1997. Comparison of the 16S ribosomal DNA sequences from the interacellular agents of proliferative enteritis in a hamster, deer, and ostrich with the sequence of a porcine isolate of Lawsonia intracellularis. Int. J. Syst. Bacteriol. 47: 635–639.

    Article  PubMed  CAS  Google Scholar 

  • Cord-Ruwisch, R., B. Ollivier and J.L. Garcia. 1986. Fructose degradation by Desulfovibrio sp. in pure culture and in coculture with Methanospirillum hungatei. Curr. Microbiol. 13: 285–289.

    Article  CAS  Google Scholar 

  • Coucke, P. and J.P. Voets. 1967. The mineral requirements of Polyangium cellulosum. Z. Allg. Mikrobiol. 7: 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Coucke, P.L. and J.P. Voets. 1968. Etude de la cellulolyse enzymatique par Sorangium compositum. Ann. Inst. Pasteur 115: 549–560.

    CAS  Google Scholar 

  • Daft, M.J., J.C. Burnham and Y. Yamamoto. 1985. Lysis of Phormidium luridum by Myxococcus fulvus in continuous flow cultures. J. Appl. Bacteriol. 59: 73–80.

    Article  CAS  Google Scholar 

  • Dale, C.J.H., E.K. Moses, C.C. Ong, C.J. Morrow, M.B. Reed, D. Hasse and R.A. Strugnell. 1998. Identification and sequencing of the groE operon and flanking genes of Lawsonia intracellularis: use in phylogeny. Microbiology 144: 2073–2084.

    Article  PubMed  CAS  Google Scholar 

  • Dawid, W. 1977. Fruchtkörperbildende Myxobakterien. V. Die Polyangium-Arten: P. cellulosum, P. fumosum, P. sorediatum, P. vitellinum. Mikrokosmos 12: 364–373.

    Google Scholar 

  • Dawid, W. 1978. Fruchtkorperbildende Myxobacterien VI. Die Stigmatella-Arten: S. erecta, S. aurantiaca. Mikrokosmos 67: 43–50.

    Google Scholar 

  • Dawid, W. 1980. Fruchtkörperbildende Myxobakterien. VII. Die Chondromyces-Arten: Ch. apiculatus und Ch. lanuginosus. Mikrokosmos 69: 73–79.

    Google Scholar 

  • Dawid, W. 2000. Biology and global distribution of myxobacteria in soils. FEMS Microbiol. Rev. 24: 403–427.

    Article  PubMed  CAS  Google Scholar 

  • Dawid, W., C.A. Gallikowski and P. Hirsch. 1988. Psychrophilic myxobacteria from Antarctic soils. Polarforschung. 58: 271–278.

    Google Scholar 

  • de Bok, F.A.M., A.J.M. Stams, C. Dijkema and D.R. Boone. 2001. Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl. Environ. Microbiol. 67: 1800–1804.

    Article  PubMed  Google Scholar 

  • de Kruyff, E. 1908. Die lebensgeschichte von Myxococcus javanensis sp.n. Zentbl. Bakteriol. 21: 385–386.

    Google Scholar 

  • De Soete, G. 1983. A least squares alogorithm for fitting additive trees to proximity data. Psychometrika. 48: 621–626.

    Article  Google Scholar 

  • De Wever, H., J.R. Cole, M.R. Fettig, D.A. Hogan and J.M. Tiedje. 2000. Reductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogenes gen. nov., sp. nov. Appl. Environ. Microbiol. 66: 2297–2301.

    Article  PubMed  Google Scholar 

  • Dehning, I. and B. Schink. 1990. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 34. Int. J. Syst. Bacteriol. 40: 320–321.

    Article  Google Scholar 

  • Dérijard, B., M. Benaissa, B. Lubochinsky and Y. Cenatiempo. 1989. Evidence for a membrane-associated GTP-binding protein in Stigmatella aurantiaca, a prokaryotic cell. Biochem. Biophys. Res. Commun. 158: 562–568.

    Article  PubMed  Google Scholar 

  • DerVartanian, D.V. 1994. Desulforubidin: dissimilatory, high-spin sulfite reductase of Desulfomicrobium species. Methods Enzymol. 243: 270– 276.

    Article  PubMed  CAS  Google Scholar 

  • Deutsch, A. 1999. Principles of biological pattern formation: swarming and aggregation viewed as self-organization phenomena. J. Biosci. 24: 115–120.

    Article  Google Scholar 

  • Devereux, R., M. Delaney, F. Widdel and D.A. Stahl. 1989. Natural relationships among sulfate-reducing eubacteria. J. Bacteriol. 171: 6689–6695.

    PubMed  CAS  Google Scholar 

  • Devereux, R., S.H. He, C.L. Doyle, S. Orkland, D.A. Stahl, J. Le Gall and W.B. Whitman. 1990. Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J. Bacteriol. 172: 3609–3619.

    PubMed  CAS  Google Scholar 

  • Devereux, R., M.D. Kane, J. Winfrey and D.A. Stahl. 1992. Genus- and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria. Syst. Appl. Microbiol. 15: 601–609.

    Article  CAS  Google Scholar 

  • Dhundale, A.R., T. Furuichi, S. Inouye and M. Inouye. 1985. Distribution of multicopy single-stranded-DNA among Myxobacteria and related species. J. Bacteriol. 164: 914–917.

    PubMed  CAS  Google Scholar 

  • Dhundale, A., M. Inouye and S. Inouye. 1988. A new species of multicopy single-stranded-DNA from Myxococcus xanthus with conserved structural features. J. Biol. Chem. 263: 9055–9058.

    PubMed  CAS  Google Scholar 

  • Diedrich, D.L., C.A. Portnoy and S.F. Conti. 1983. Bdellovibrio possesses a prey-derived OmpF protein in its outer membrane. Curr. Micriobiol. 8: 51–56.

    Article  CAS  Google Scholar 

  • Dill, D., H. Eckau and H. Budzikiewicz. 1985. Neuartige cerebroside aus Cystobacter fuscus (Myxobacterales). Z. Naturforsch. 40b: 1738–1746.

    CAS  Google Scholar 

  • Dilling, W. and H. Cypionka. 1990. Aerobic respirationin sulfate-reducing bacteria. FEMS Microbiol. Lett. 71: 123–127.

    CAS  Google Scholar 

  • Dong, X., C.M. Plugge and A.J.M. Stams. 1994. Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl. Environ. Microbiol. 60: 2834–2838.

    PubMed  CAS  Google Scholar 

  • Donze, D., J.A. Mayo and D.L. Diedrich. 1991. Relationships among the Bdellovibrios revealed by partial sequences of 16S ribosomal RNA. Current Microbiology 23: 115–120.

    Article  CAS  Google Scholar 

  • Dowling, N.J.E., F. Widdel and D.C. White. 1986. Phospholipid esterlinked fatty acid biomarkers of acetate-oxidizing sulfate-reducers and other sulfide-forming bacteria. J. Gen. Microbiol. 132: 1815–1825.

    CAS  Google Scholar 

  • Downes, J., J.I. Mangels, J. Holden, M.J. Ferraro and E.J. Baron. 1990. Evaluation of two single-plate incubation systems and the anaerobic chamber for the cultivation of anaerobic bacteria. J. Clin. Microbiol. 28: 246–248.

    PubMed  CAS  Google Scholar 

  • Drzyzga, O., A. Schmidt and K.-H. Blotevogel. 1996. Cometabolic transformation and cleavage of nitrodiphenylamines by three newly isolated sulfate-reducing bacterial strains. Appl. Environ. Microbiol. 62: 1710–1716.

    PubMed  CAS  Google Scholar 

  • Dumont, L., B. Verneuil, R. Julien and J. Wallach. 1994. Elastolytic activity of Map1, a protease from Myxococcus xanthus. Biochem. Mol. Biol. Int. 33: 535–542.

    PubMed  CAS  Google Scholar 

  • Dworkin, M. 1962. Nutritional requirements for vegetative growth of Myxococcus xanthus. J. Bacteriol. 84: 250–257.

    PubMed  CAS  Google Scholar 

  • Dworkin, M. 1966. Biology of the myxobacteria. Annu. Rev. Microbiol. 20: 75–106.

    Article  PubMed  CAS  Google Scholar 

  • Dworkin, M. 1969. Sensitivity of gliding bacteria to actinomycin D. J. Bacteriol. 98: 851–852.

    PubMed  CAS  Google Scholar 

  • Dworkin, M. 1983. Tactic behavior of Myxococcus xanthus. J. Bacteriol. 154: 452–459.

    PubMed  CAS  Google Scholar 

  • Dworkin, M. 1996. Recent advances in the social and developmental biology of the myxobacteria. Microbiol. Rev. 60: 70–102.

    PubMed  CAS  Google Scholar 

  • Dworkin, M. 1999. Fibrils as extracellular appendages of bacteria: their role in contact mediated cell-cell interactions in Myxococcus xanthus. Bioessays 21: 590–595.

    Article  PubMed  CAS  Google Scholar 

  • Dworkin, M. and D. Eide. 1983. Myxococcus xanthus does not respond chemotactically to moderate concentration gradients. J. Bacteriol. 154: 437–442.

    PubMed  CAS  Google Scholar 

  • Dworkin, M. and S.M. Gibson. 1964. A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus. Science (Wash. D. C.) 146: 243–244.

    Article  CAS  Google Scholar 

  • Dworkin, M. and D. Kaiser. 1993. Myxobacteria II, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Dworkin, M. and D.J. Niederpruem. 1964. Electron transport system in vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 87: 316–322.

    PubMed  CAS  Google Scholar 

  • Eckau, H., D. Dill and H. Budzikiewicz. 1984. Neuartige ceramide aus Cystobacter fuscus (Myxobacterales). Z. Naturforsch. 39c: 1–9. Eckersley, K. and C.S. Dow. 1980. Rhodopseudomonas blastica sp. nov.—a member of the Rhodospirillaceae. J. Gen. Microbiol. 119: 465–473.

    CAS  Google Scholar 

  • Ehrenreich, P. 1996. Anaerobes Wachstum neuartiger sulfatreduzierender und nitarreduzierender Bakterien auf n-Alkanen und Erdöl, University of Bremen. Shaker Verlag, Aachen.

    Google Scholar 

  • Ehrich, S., D. Behrens, E. Lebedeva, W. Ludwig and E. Bock. 1995. A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch. Microbiol. 164: 16–23.

    Article  PubMed  CAS  Google Scholar 

  • Eksztejn, J. and M. Varon. 1977. Elongation and cell division in Bdellovibrio bacteriovorus. Arch. Microbiol. 114: 175–181.

    Article  PubMed  CAS  Google Scholar 

  • El Fantroussi, S., J. Mahillon, H. Naveau and S.N. Agathos. 1997. Introduction of anaerobic dechlorinating bacteria into soil slurry microcosms and nested PCR monitoring. Appl. Environ. Microbiol.63: 806– 811.

    PubMed  CAS  Google Scholar 

  • El Fantroussi, S., H. Naveau and S.N. Agathos. 1998. Anaerobic dechlor-inating bacteria. Biotechnol. Prog. 14: 167–188.

    Article  PubMed  CAS  Google Scholar 

  • Evers, S., M. Weizenegger, W. Ludwig, B. Schink and K.H. Schleifer. 1993. The phylogenetic positions of Pelobacter acetylenicus and Pelobacter propionicus. Syst. Appl. Microbiol. 16: 216–218.

    Article  Google Scholar 

  • Falkler, W.A.J., H.N. Williams and C.N. Smoot. 1979. Antigenicity of marine and terrestrial bdellovibrios. 79th Annual Meeting of the American Society for Microbiology, p. 188.

    Google Scholar 

  • Fardeau, M.L., B. Ollivier, A. Soubrane, P. Sauve, G. Prensier, J.L. Garcia and J.P. Belaich. 1993. Determination of the G + C content of 2 Syntrophus buswellii strains by ultracentrifugation techniques. Curr. Microbiol. 26: 185–189.

    Article  CAS  Google Scholar 

  • Farez-Vidal, M.E., A. Fernandez-Vivas andJ.M. Arias. 1990. Amylase programming during the life cycle of Myxococcus coralloides. J. Appl. Bacteriol. 69: 119–124.

    Article  CAS  Google Scholar 

  • Fauque, G., D. Herve and J. LeGall. 1979. Structure-function relationship in hemoproteins: the role of cytochrome c 3 in the reduction of colloidal sulfur by sulfate-reducing bacteria. Arch. Microbiol. 121: 261–264.

    Article  PubMed  CAS  Google Scholar 

  • Fautz, E., G. Rosenfelder and L. Grotjahn. 1979. Iso-branched 2-hydroxy and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria. J. Bacteriol. 140: 852–858.

    PubMed  CAS  Google Scholar 

  • Feio, M.J., I.B. Beech, M. Carepo, J.M. Lopes, C.W.S. Cheung, R. Franco, J. Guezennec, J.R. Smith, J.I. Mitchell, J.J.G. Moura and A.R. Lino. 1998. Isolation and characterization of a novel sulphate-reducing bacterium of the Desulfovibrio genus. Anaerobe 4: 117–130.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package), Version 3.5c. Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  • Fernandez-Vivas, A., C. de Haro, J.M. ARias and E. Montoya. 1983. Detection of guanosine 5′-diphosphate 3′-diphosphate in Myxococcus coralloides D vegetative cells. FEMS Microbiol. Lett. 20: 17–22.

    CAS  Google Scholar 

  • Filer, D., E. Rosenberg and S.H. Kindler. 1973. Aspartokinase of Myxococcus xanthus: “Feedback stimulation” by required amino acids. J. Bacteriol. 115: 23–28.

    PubMed  CAS  Google Scholar 

  • Finck, G. 1950. Biologische und stoffwechselphysiologische Studien an Myxococcaceen. Arch. Microbiol. 15: 358–388.

    Google Scholar 

  • Fink, J.M. and J.F. Zissler. 1989. Characterization of lipopolysaccharide from Myxococcus xanthus by use of monoclonal antibodies. J. Bacteriol. 171: 2028–2032.

    PubMed  CAS  Google Scholar 

  • Finster, K. and F. Bak. 1993. Complete oxidation of propionate, valerate, succinate, and other organic compounds by newly isolated types of marine, anaerobic, mesophilic, gram-negative, sulfur-reducing eubac-teria. Appl. Environ. Microbiol. 59: 1452–1460.

    PubMed  CAS  Google Scholar 

  • Finster, K., F. Bak and N. Pfennig. 1994. Desulfuromonas acetexigens sp. nov., a dissimilatory sulfur-reducing eubacterium from anoxic freshwater sediments. Arch. Microbiol. 161: 328–332.

    Article  CAS  Google Scholar 

  • Finster, K., W. Liesack and B. Thamdrup. 1998. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl. Environ. Microbiol. 64: 119–125.

    PubMed  CAS  Google Scholar 

  • Finster, K., W. Liesack and B. Thamdrup. 2000. In Validation of the publication of new names and new combinations previously published outside the IJSB. List No. 76. Int. J. Syst. Bacteriol. 50: 1699–1700.

    Google Scholar 

  • Fluegel, W. 1963. Simple method for demonstrating myxobacterial slime. J. Bacteriol. 85: 1173–1174.

    PubMed  CAS  Google Scholar 

  • Foster, H.A. andJ.H. Parish. 1973. Ribosomes, ribosomal subunits and ribosomal proteins from Myxococcus xanthus. J. Gen. Microbiol. 75: 391–400.

    Article  CAS  Google Scholar 

  • Fraleigh, P.C. and J.C. Burnham. 1988. Myxococcal predation on cyanobacterial populations—Nutrient effects. Limnol. Oceanogr. 33: 476– 483.

    Article  CAS  Google Scholar 

  • Freese, A., H. Reichenbach and H. Lünsdorf. 1997. Further characterization and in situ localization of chain-like aggregates of the gliding bacteria Myxococcus fulvus and Myxococcus xanthus. J. Bacteriol. 179: 1246–1252.

    PubMed  CAS  Google Scholar 

  • Friedberg, D. 1977. Effect of light on Bdellovibrio bacteriovorus. J. Bacteriol. 131: 399–404.

    PubMed  CAS  Google Scholar 

  • Friedrich, M. and B. Schink. 1995. Isolation and characterization of a desulforubidin-containing sulfate-reducing bacterium growing with glycolate. Arch. Microbiol. 164: 271–279.

    Article  CAS  Google Scholar 

  • Friedrich, M., N. Springer, W. Ludwig and B. Schink. 1996. Phylogentic positions of Desulfofustis glycolicus gen. nov., sp. nov., and Syntrophobotulus glycolicus gen. nov., sp. nov., two new strict anaerobes growing with glycolic acid. Int. J. Syst. Bacteriol. 46: 1065–1069.

    Article  PubMed  CAS  Google Scholar 

  • Frisk, C.S. and J.E. Wagner. 1977. Experimental hamster enteritis: an electron microscopic study. Am. J. Vet. Res. 38: 1861–1868.

    PubMed  CAS  Google Scholar 

  • Fründ, C. and Y. Cohen. 1992. Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl. Environ. Microbiol. 58: 70–77.

    PubMed  Google Scholar 

  • Fry, J.C. and D.G. Staples. 1974. The occurrence and role of Bdellovibrio bacteriovorus in polluted river water. Water Res. 8: 1029–1035.

    Article  Google Scholar 

  • Fry, J.C. and D.G. Staples. 1976. Distribution of Bdellovibrio bacteriovorus in sewage works, river waters, and sediments. Appl. Environ. Microbiol. 31: 469–474.

    PubMed  CAS  Google Scholar 

  • Fudou, R., Y. Jojima, T. Iizuka and S. Yamanaka. 2002. Haliangium ochraceum gen. nov., sp. nov. and Haliangium tepidum sp. nov.: novel moderately halophilic myxobacteria isolated from coastal saline environments. J Gen Appl Microbiol. 48: 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Fujitani, S., T. Komano and S. Inouye. 1991. A unique repetitive DNA sequence in the Myxococcus xanthus genome. J. Bacteriol. 173: 2125–2127.

    PubMed  CAS  Google Scholar 

  • Fukui, M., A. Teske, B. Assmus, G. Muyzer and F. Widdel. 1999. Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (genus Desulfonema). Arch. Microbiol. 172: 193–203.

    Article  PubMed  CAS  Google Scholar 

  • Gaitatzis, N., A. Hans, R. Müller and S. Beyer. 2001. The mtaA gene of the myxothiazol biosynthetic gene cluster from Stigmatella aurantiaca DW4/3-1 encodes a phosphopantetheinyl transferase that activates polyketide synthases and polypeptide synthetases. J. Biochem. (Tokyo) 129: 119–124.

    Article  CAS  Google Scholar 

  • Galushko, A.S. and E.P. Rozanova. 1994. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 49. Int. J. Syst. Bacteriol. 44: 370–371.

    Article  Google Scholar 

  • Galván, A., F. de Castro and D. Fernandez-Galiano. 1987. Ultrastructure of the fruiting body of Stigmatella erecta (Myxobacterales). Trans Am. Microsc. Soc. 106: 89–93.

    Article  Google Scholar 

  • Galván, A., M.A. Marcotegui and F. Decastro. 1992. Ultrastructure of natural and induced myxospores of Archangium gephyra. Can. J. Microbiol. 38: 130–134.

    Article  Google Scholar 

  • Gebhardt, N.A., D. Linder and R.K. Thauer. 1983. Anaerobic acetate oxidation to carbon dioxide by Desulfobacterpostgatei. 2. Evidence from 14C-labeling studies of the operation of the citric acid cycle. Arch. Microbiol. 136: 230–233.

    Article  CAS  Google Scholar 

  • Gebhardt, N.A., R.K. Thauer, D. Linder, P.M. Kaulfers and N. Pfennig. 1985. Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acetoxidans. Arch. Microbiol. 141: 392–398.

    Article  CAS  Google Scholar 

  • Gebhart, C.J., S.M. Barns, S. McOrist, G.-F. Lin and G.H.K. Lawson. 1993. Ileal symbiont intracellularis, an obligate intracellular bacterium of porcine intestines showing a relationship to Desulfovibrio species. Int. J. Syst. Bacteriol. 43: 533–538.

    Article  PubMed  CAS  Google Scholar 

  • Gebhart, C.J., G.F. Lin, S.M. McOrist, G.H. Lawson and M.P. Murtaugh. 1991. Cloned DNA probes specific for the intracellular Campylobacter-like organism of porcine proliferative enteritis. J. Clin. Microbiol. 29: 1011–1015.

    PubMed  CAS  Google Scholar 

  • Gebhart, C.J., S. McOrist, G.H. Lawson, J.E. Collins and G.E. Ward. 1994. Specific in situ hybridization of the intracellular organism of porcine proliferative enteropathy. Vet. Pathol. 31: 462–467.

    Article  PubMed  CAS  Google Scholar 

  • Geisselsoder, J., J.M. Campos and D.R. Zusman. 1978. Physical characterization of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J. Mol. Biol. 119: 179–189.

    Article  PubMed  CAS  Google Scholar 

  • Geitler, L. 1925. Uber Polyangium parasiticum n.sp., eine submerse, parasitische Myxobacteriacee. Arch. Protistenkd. 50: 67–88.

    Google Scholar 

  • Gelvan, I., M. Varon and E. Rosenberg. 1987. Cell-density-dependent killing of Myxococcus xanthus by Autocide Amv. J. Bacteriol. 169: 844– 849.

    PubMed  CAS  Google Scholar 

  • Gerardo, S.H., M. Marina, D.M. Citron, M.C. Claros, M.K. Hudspeth and E.J. Goldstein. 1997. Bilophila wadsworthia clinical isolates compared by polymerase chain reaction fingerprinting. Clin. Infect. Dis. 25: S291–S294.

    Article  Google Scholar 

  • Gerth, K., N. Bedorf, G. Hofle, H. Irschik and H. Reichenbach. 1996. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties. J. Antibiot. 49: 560–563.

    Article  PubMed  CAS  Google Scholar 

  • Gerth, K., N. Bedorf, H. Irschik, G. Hofle and H. Reichenbach. 1994. The soraphens—a family of novel antifungal compounds from Sorangium cellulosum (Myxobacteria). 1. Soraphen a(1-Alpha) -fermentation, isolation, biological properties. J. Antibiot. 47: 23–31.

    Article  PubMed  CAS  Google Scholar 

  • Gerth, K., R. Metzger and H. Reichenbach. 1993. Induction of myxos-pores in Stigmatella aurantiaca (Myxobacteria)—Inducers and inhibitors of myxospore formation, and mutants with a changed sporulation behavior. J. Gen. Microbiol. 139: 865–871.

    Article  CAS  Google Scholar 

  • Gerth, K. and H. Reichenbach. 1978. Induction of myxospore formation in Stigmatella aurantiaca (Myxobacterales). 1. General characterization of system. Arch. Microbiol. 117: 173–182.

    Article  CAS  Google Scholar 

  • Gerth, K. and H. Reichenbach. 1986. Determination of bacterial am-monia pools using Myxococcus virescens as an example. Anal. Biochem. 152: 78–82.

    Article  PubMed  CAS  Google Scholar 

  • Gerth, K. and H. Reichenbach. 1994. Induction of myxospores in Stigmatella aurantiaca (Myxobacteria)—Analysis of inducer–inducer and inducer-inhibitor interactions by dose-response curves. Microbiology 140: 3241–3247.

    Article  CAS  Google Scholar 

  • Gerth, K., W. Trowitzsch, G. Piehl, R. Schultze and J. Lehmann. 1984. Inexpensive media for mass cultivation of myxobacteria. Appl. Microbiol. Biotechnol. 19: 23–28.

    Article  CAS  Google Scholar 

  • Gherna, R.L. 1994. Culture preservation. In Gerhardt, Murray, Wood and Krieg (Editors), Methods for General and Molecular Bacteriology, 2nd Ed., American Society for Microbiology, Washington, D.C. pp. 278–292.

    Google Scholar 

  • Glomp, I., P. Saulnier, J. Guespinmichel and H.U. Schairer. 1988. Transfer of IncP plasmids into Stigmatella aurantiaca leading to insertional mutants affected in spore development. Mol. Gen. Genet. 214: 213–217.

    Article  PubMed  CAS  Google Scholar 

  • Gnosspelius, G. 1978. Purification and properties of an extracellular protease from Myxococcus virescens. J. Bacteriol. 133: 17–25.

    PubMed  CAS  Google Scholar 

  • Gogotova, G.I. and M.B. Vainshtein. 1989. Description of sulfate reducing bacterium Desulfobacterium macestii sp. nov., which is capable of autotrophic growth. Mikrobiologiya 58: 64–68.

    Google Scholar 

  • González, F., J.M. Arias and E. Montoya. 1987. Phosphatase activities in the life cycle of Myxococcus coralloides D. J. Gen. Microbiol. 133: 2327–2332.

    Article  Google Scholar 

  • González, F., A. Fernández-Vivas, J.M. Arias and E. Montoya. 1990. Poly-phosphate glucokinase and ATP glucokinase activities in Myxococcus coralloides D. Arch. Microbiol. 154: 438–442.

    Article  Google Scholar 

  • González, F., A. Vargas, J.M. Arias and E. Montoya. 1991. Phosphatase activity during development cycle of Myxococcus xanthus. Can. J. Microbiol. 37: 74–77.

    Article  Google Scholar 

  • Gray, K.M. and E.G. Ruby. 1990. Prey-derived signals regulating duration of the developmental growth phase of Bdellovibrio bacteriovorus. J. Bacteriol. 172: 4002–4007.

    PubMed  CAS  Google Scholar 

  • Grilione, P. 1968. Serological reactions of some higher myxobacteria. J. Bacteriol. 95: 1202–1204.

    PubMed  CAS  Google Scholar 

  • Grimm, K. 1967. Clone cultures of Archangium violaceum. Arch. Mikrobiol. 57: 283–284.

    Article  PubMed  CAS  Google Scholar 

  • Grimm, K. 1978. Comparison of spontaneous, UV-induced, and nitro-soguanidine-induced mutability to drug resistance in myxobacteria. J. Bacteriol. 135: 748–753.

    PubMed  CAS  Google Scholar 

  • Grimm, K. 1980. Mutation to acriflavine resistance in some myxobacteria. Microbios. 27: 193–206.

    PubMed  CAS  Google Scholar 

  • Guether, D.L., G.J. Osterhout, J.D. Dick and H.N. Williams. 1993. Analysis of fatty acid composition of Bdellovibrio isolates. 93rd Annual Meeting of the American Society for Microbiology, p. 391.

    Google Scholar 

  • Guether, D.L. and H.N. Williams. 1992. Reactions of Bdellovibrio isolates in miniature rapid test systems. 92nd Annual Meeting of the American Society for Microbiology, 372.

    Google Scholar 

  • Guether, D.L. and H.N. Williams. 1993. Antibiogram characterization of aquatic and terrestrial Bdellovibrio isolates. 93rd Annual Meeting of the American Society for Microbiology, 391.

    Google Scholar 

  • Harmsen, H.J.M., H.M.P. Kengen, A.D.L. Akkermans and A.J.M. Stams. 1995. Phylogenetic analysis of two syntrophic propionate oxidizing bacteria in enrichments cultures. Syst. Appl. Microbiol. 18: 67–73.

    Article  CAS  Google Scholar 

  • Harmsen, H.J.M., B.L.M. van Kuijk, C.M. Plugge, A.D.L. Akkermans, W.M. De Vos and A.J.M. Stams. 1998. Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int. J. Syst. Bacteriol. 48: 1383–1387.

    Article  PubMed  CAS  Google Scholar 

  • Harmsen, H.J.M., B. Wullings, A.D.L. Akkermans, W. Ludwig and A.J.M. Stams. 1993. Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch. Microbiol. 160: 238– 240.

    PubMed  CAS  Google Scholar 

  • Hartzell, P. and D. Kaiser. 1991. Upstream gene of the Mgl operon controls the level of MglA protein in Myxococcus xanthus. J. Bacteriol. 173: 7625–7635.

    PubMed  CAS  Google Scholar 

  • Hashimoto, T., D.L. Diedrich and S.F Conti. 1970. Isolation of a bacteriophage for Bdellovibrio bacteriovorus. J. Virol. 5: 97–98.

    PubMed  CAS  Google Scholar 

  • Heidelbach, M., H. Skladny and H.U. Schairer. 1992. Purification of the DNA-dependent RNA polymerase from the myxobacterium Stigmatella aurantiaca. J. Bacteriol. 174: 2733–2735.

    PubMed  CAS  Google Scholar 

  • Heidelbach, M., H. Skladny and H.U. Schairer. 1993. Heat-shock and development induce synthesis of a low molecular weight stress-responsive protein in the myxobacterium Stigmatella aurantiaca. J. Bacteriol. 175: 7479–7482.

    PubMed  CAS  Google Scholar 

  • Hensgens, C.M.H., M.E. Nienhuis-Kuiper and T.A. Hansen. 1994. Effects of tungstate on the growth of Desulfovibrio gigas NCIMB 9332 and other sulfate-reducing bacteria with ethanol as a substrate. Arch. Microbiol. 162: 143–147.

    Article  CAS  Google Scholar 

  • Hentschel, U., J. Hopke, M. Horn, A.B. Friedrich, M. Wagner, J. Hacker and B.S. Moore. 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol. 68: 4431–4440.

    Article  PubMed  CAS  Google Scholar 

  • Heppner, B., G. Zellner and H. Diekmann. 1992. Start-up and operation of a propionate-degrading fluidized-bed reactor. Appl. Microbiol. Biotechnol. 36: 810–816.

    Article  CAS  Google Scholar 

  • Hespell, R.B., G.F. Miozzari and S.C. Rittenberg. 1975. Ribonucleic acid destruction and synthesis during intraperiplasmic growth of Bdellovibrio bacteriovorus. J. Bacteriol. 123: 481–491.

    PubMed  CAS  Google Scholar 

  • Hespell, R.B., B.J. Paster, T.J. Macke and C.R. Woese. 1983. The origin and phylogeny of the bdellovibrios. Syst. Appl. Microbiol. 5: 196–203.

    Article  Google Scholar 

  • Hirsch, H.J., H. Tsai and I. Geffers. 1978. Purification and effects of fulvocin-C, a bacteriocin from Myxococcus fulvus MX-F16. Arch. Microbiol. 119: 279–286.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, J. and D. Kaiser. 1979. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales). 2 gene systems control movement. Mol. Gen. Genet. 171: 177–191.

    Article  Google Scholar 

  • Hodgson, D.A. 1993. Light-induced carotenogenesis in Myxococcus xanthus: genetic analysis of the carR region. Mol. Microbiol. 7: 471–488.

    Article  PubMed  CAS  Google Scholar 

  • Höfle, G. and H. Reichenbach. 1995. The biosynthetic potential of the myxobacteria. In Kuhn, W. and H.P. Fiedler (Editors), Sekundär-metabolismus bei Mikroorganismen. Beiträge zur Forschung, Attempto Verlag, Tübingen, pp. 61–78.

    Google Scholar 

  • Hofmann, D.U. 1989. Physiologisch Studien an Sorangium cellulosum, So ce12, Thesis, Technical University Braunschweig, Germany. 160 pp.

    Google Scholar 

  • Holdeman, L., R.W. Kelly and W.E.C. Moore. 1984. Family I. Bacteroidaceae. In Krieg and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st Ed., Vol. 1, The Williams & Wilkins Co., Baltimore. pp. 602–631.

    Google Scholar 

  • Homma, Y. 1984. Perforation and lysis of hyphae of Rhizoctonia solani and conidia of Cochliobolus miyabeanus by soil myxobacteria. Phytopathology 74: 1234–1239.

    Article  Google Scholar 

  • Hook, L.A., J.M. Larkin and E.R. Brockman. 1980. Isolation, characterization, and emendation of description of Angiococcus disciformis (Thaxter 1904) Jahn 1924 and proposal of a neotype strain. Int. J. Syst. Bacteriol. 30: 135–142.

    Article  CAS  Google Scholar 

  • Horbach, S., H. Sahm and R. Welle. 1993. Isoprenoid biosynthesis in bacteria-2 different pathways. FEMS Microbiol. Lett. 111: 135–140.

    Article  PubMed  CAS  Google Scholar 

  • Houwen, F.P., C. Dijkema, C.H.H. Schoenmakers, A.J.M. Stams and A.J.B. Zehnder. 1987. C-NMR study of propionate degradation by a methanogenic coculture. FEMS Microbiol. Lett. 41: 269–274.

    Article  CAS  Google Scholar 

  • Houwen, F.P., J. Plokker, C. Kijkema and A.J.M. Stams. 1990. Syntrophic propionate oxidation. In Bélaich, Bruschi and Garcia (Editors), Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer, Plenum Press, New York.

    Google Scholar 

  • Hsu, M.Y., S. Inouye and M. Inouye. 1989. Structural requirements of the RNA precursor for the biosynthesis of the branched RNA-linked multicopy single-stranded DNA of Myxococcus xanthus. J. Biol. Chem. 264: 6214–6219.

    PubMed  CAS  Google Scholar 

  • Hu, H.L., J.E. Peterson and E.R. Brockman. 1985. Stalked sporangia of Polyangium rugiseptum. Int. J. Syst. Bacteriol. 35: 362–363.

    Article  Google Scholar 

  • Hu, L.T., L. Binyang and S. Qin. 1990. Isolation of Bdellovibrio bacteriovorus from human stool. J. Chinese Microbiol. Epidemiol. 10: 95–98.

    Google Scholar 

  • Humphrey, B.A., M.R. Dickson and K.C. Marshall. 1979. Physicochemical and in situ observations on the adhesion of gliding bacteria to surfaces. Arch. Microbiol. 120: 231–238.

    Article  CAS  Google Scholar 

  • Hungate, R.E. 1969. A roll tube method for the cultivation of strict anaerobes. Methods Microbiol. 3B: 117–132.

    Article  CAS  Google Scholar 

  • Hüttermann, A. 1969. Studies on a bacteriolytic enzyme of Archangium violaceum(Myxobacteriales). II. Partial purification and properties of the enzyme. Arch. Mikrobiol. 67: 306–317.

    Article  PubMed  Google Scholar 

  • Iizuka, T., Y. Jojima, R. Fudou and S. Yamanaka. 1998. Isolation of myxobacteria from the marine environment. FEMS Microbiol. Lett. 169: 317–322.

    Article  PubMed  CAS  Google Scholar 

  • Imachi, H., Y. Sekiguchi, Y. Kamagata, S. Hanada, A. Ohashi and H. Harada. 2002. Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 52: 1729–1735.

    Article  PubMed  CAS  Google Scholar 

  • Imhoff-Stuckle, D. and N. Pfennig. 1983. Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini, sp. nov. Arch. Microbiol. 136: 194–198.

    Article  CAS  Google Scholar 

  • Impey, C.S. and B.A. Phillips. 1991. Maintenance of anaerobic bacteria. In Kirsop and Doyle (Editors), Maintenance of Microorganisms and Cultured Cells, A Manual of Laboratory Methods, 2nd Ed., Academic Press Ltd., London. pp. 71–80.

    Google Scholar 

  • Imshenetski, A.A. and L. Solntseva. 1936. On aerobic cellulose decomposing bacteria. Izv. Akad. Nauk S.S.S.R. Ser. Viol. 6: 1115–1172.

    Google Scholar 

  • Inouye, S. 1984. Identification of a development specific promoter of Myxococcus xanthus. J. Mol. Biol. 174: 113–120.

    Article  PubMed  CAS  Google Scholar 

  • Inouye, S. 1990. Cloning and DNA sequence of the gene coding for the major sigma factor from Myxococcus xanthus. J. Bacteriol. 172: 80–85.

    PubMed  CAS  Google Scholar 

  • Inouye, S., M.Y. Hsu, S. Eagle and M. Inouye. 1989. Reverse transcriptase associated with the biosynthesis of the branched RNA Linked msDNA in Myxococcus xanthus. Cell 56: 709–717.

    Article  PubMed  CAS  Google Scholar 

  • Irschik, H. and H. Reichenbach. 1985. An unusual pattern of carbohydrate utilization in Corallococcus (Myxococcus) coralloides(Myxobacterales). Arch. Microbiol. 142: 40–44.

    Article  CAS  Google Scholar 

  • Isaksen, M.F. and A. Teske. 1996. Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch. Microbiol. 166: 160–168.

    Article  CAS  Google Scholar 

  • Isaksen, M.F. and A. Teske. 1999. In Validation of the publication of new names and new combinations previously published outside the IJSB. List No. 70. Int. J. Syst. Bacteriol. 49: 935–936.

    Article  Google Scholar 

  • Jackson, B.E., V.K. Bhupathiraju, R.S. Tanner, C.R. Woese and M.J. McInerney. 1999. Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch. Microbiol. 171: 107–114.

    Article  PubMed  CAS  Google Scholar 

  • Jacobi, C.A., B. Assmus, H. Reichenbach and E. Stackebrandt. 1997. Molecular evidence for association between the sphingobacterium-like organism “ Candidatus comitans” and the myxobacterium Chondromyces crocatus. Appl. Environ. Microbiol. 63: 719–723.

    PubMed  CAS  Google Scholar 

  • Jacobi, C.A., H. Reichenbach, B.J. Tindall and E. Stackebrandt. 1996. “ Candidatus comitans” a bacterium living coculture with Chondromyces crocatus (myxobacteria). Int. J. Syst. Bacteriol. 46: 119–122.

    Article  PubMed  CAS  Google Scholar 

  • Jahn, E. 1911. Myxobacteriales. Kryptogamenflora der Mark Brandenburg 5: 187–206.

    Google Scholar 

  • Jahn, E. 1924. Beitrage zur botanischen Protistologie I. Die Polyangiden, Verlag Gebruder Borntraeger, Leipzig. 107 pp. + 102 plates.

    Google Scholar 

  • Janssen, G.R., J.W. Wireman and M. Dworkin. 1977. Effect of temperature on the growth of Myxococcus xanthus. J. Bacteriol. 130: 561–562.

    PubMed  CAS  Google Scholar 

  • Janssen, P.H., A. Schuhmann, F. Bak and W. Liesack. 1996. Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. Arch. Microbiol. 166: 184–192.

    Article  CAS  Google Scholar 

  • Janssen, P.H., A. Schuhmann, F. Bak and W. Liesack. 1997. In Validation of the publication of new names and new combinations previously published outside the IJSB. List No. 61. Int. J. Syst. Bacteriol. 47: 601–602.

    Article  Google Scholar 

  • Jaoua, S., J.F. Guespinmichel and A.M. Breton. 1987. Mode of insertion of the broad host range plasmid RP4 and Its derivatives into the chromosome of Myxococcus xanthus. Plasmid 18: 111–119.

    Article  PubMed  CAS  Google Scholar 

  • Jaoua, S., S. Neff and T. Schupp. 1992. Transfer of mobilizable plasmids to Sorangium cellosum and evidence for their integration into the chromosome. Plasmid 28: 157–165.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, D., P. Volpe and J.J. Tudor. 1998. Characterization and complementation of temperature-sensitive mutants of Bdellovibrio bacteriovorus 109J. 98th Annual Meeting of the American Society for Microbiology, p. 321.

    Google Scholar 

  • Johnson, E.A. and R.O. Jacoby. 1978. Transmissible ileal hyperplasia. II. Ultrastructure. Am. J. Pathol. 91: 451–468.

    PubMed  CAS  Google Scholar 

  • Johnson, J.L. and E.J. Ordal. 1969. Deoxyribonucleic acid homology among the fruiting myxobacteria. J. Bacteriol. 3: 319–320.

    Google Scholar 

  • Jones, G.F., G.E. Ward, M.P. Murtaugh, G. Lin and C.J. Gebhart. 1993. Enhanced detection of intracellular organism of swine proliferative enteritis, ileal symbiont intracellularis, in feces by polymerase chain reaction. J. Clin. Microbiol. 31: 2611–2615.

    PubMed  CAS  Google Scholar 

  • Jones, M.V. and V.E. Wells. 1980. S-Adenosylmethionine biosynthesis in Myxococcus xanthus. FEBS Lett. 117: 103–106.

    Article  PubMed  CAS  Google Scholar 

  • Jones, W.J., J.P. Guyot and R.S. Wolfe. 1984. Methanogenesis from sucrose by defined immobilized consortia. Appl. Environ. Microbiol. 47: 1–6.

    PubMed  CAS  Google Scholar 

  • Jukes, T.H. and R.R. Cantor. 1969. Evolution of protein molecules. In Munzo (Editor), Mammalian Protein Metabolism, Academic Press, New York. pp. 21–132.

    Google Scholar 

  • Kaiser, D. 1979. Social gliding Is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. U.S.A. 76: 5952–5956.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser, D. 1991. Genetic systems in myxobacteria. Method Enzymol. 204: 357–372.

    Article  CAS  Google Scholar 

  • Kaiser, D. 1998. How and why myxobacteria talk to each other. Curr. Opin. Microbiol. 1: 663–668.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser, D. and M. Dworkin. 1975. Gene transfer to a myxobacterium by Escherichia coli phage P1. Science 187: 653–654.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser, D. and L. Kroos. 1993. Intercellular signalling. In Dworkin and Kaiser (Editors), Myxobacteria II, American Society for Microbiology, Washington, D.C. pp. 257–283.

    Google Scholar 

  • Kalchbrenner, C. and M.C. Cooke. 1880. South African fungi. Grevillea 9: 2.

    Google Scholar 

  • Kasten, M.J., J.E. Rosenblatt and D.R. Gustafson. 1992. Bilophila wadsworthia bacteremia in two patients with hepatic abscesses. J. Clin. Microbiol. 30: 2502–2503.

    PubMed  CAS  Google Scholar 

  • Kelley, J.I., B.F. Turng, H.N. Williams and M.L. Baer. 1997. Effects of temperature, salinity, and substrate on the colonization of surfaces in situ by aquatic Bdellovibrios. Appl. Environ. Microbiol. 63: 84–90.

    PubMed  CAS  Google Scholar 

  • Kelley, J.I. and H.N. Williams. 1992. Bdellovibrios in Callinectes sapidus, the blue crab. Appl. Environ. Microbiol. 58: 1408–1410.

    PubMed  CAS  Google Scholar 

  • Kessel, M. and M. Shilo. 1976. Relationship of Bdellovibrio elongation and fission to host cell size. J. Bacteriol. 128: 477–480.

    PubMed  CAS  Google Scholar 

  • Kim, Y.J., K. Furihata, S. Yamanaka, R. Fudo and H. Seto. 1991. Isolation and structural elucidation of stipiamide, a new antibiotic effective to multidrug-resistant cancer cells. J. Antibiot. 44: 553–555.

    Article  PubMed  CAS  Google Scholar 

  • Klein, D.A. and L.E. Casida. 1967. Occurrence and enumeration of Bdellovibrio bacteriovorus in soil capable of parasitizing Escherichia coli and indigenous soil bacteria. Can. J. Microbiol. 13: 1235–1241.

    Article  PubMed  CAS  Google Scholar 

  • Kleinig, H. 1972. Membranes from Myxococcus fulvus (Myxobacterales) containing carotenoid glucosides. I. Isolation and composition. Biochim. Biophys. Acta 274: 489–498.

    Article  PubMed  CAS  Google Scholar 

  • Kleinig, H. and H. Reichenbach. 1973. A new carotenoid glucoside ester from Chondromyces apiculatus. Phytochemistry (Oxf) 12: 2483–2485.

    Article  CAS  Google Scholar 

  • Kleinig, H., H. Reichenbach and H. Achenbach. 1970. Carotenoid pigments of Stigmatella aurantiaca (Myxobacterales). II. Acylated carotenoid glucosides. Arch. Mikrobiol. 74: 223–234.

    Article  PubMed  CAS  Google Scholar 

  • Kleinig, H., H. Reichenbach, H. Achenbach and J. Stadler. 1971. Carotenoid pigments of Sorangium compositum (Myxobacterales) including two new carotenoid glucoside esters and two new carotenoid rhamnosides. Arch. Mikrobiol. 78: 224–233.

    Article  PubMed  CAS  Google Scholar 

  • Knittel, J.P., D.I. Larson, D.L. Harris, M.B. Roof and S. McOrist. 1996. United States isolates of Lawsonia intracellularis from porcine proliferative enteropathy resemble European isolates. Swine Health Prod. 3: 118–122.

    Google Scholar 

  • Knoblauch, C., K. Sahm and B.B. Jorgensen. 1999. Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigrus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov and Desulfotalea arctica sp. nov. Int. J. Syst. Bacteriol. 49: 1631–1643.

    Article  PubMed  CAS  Google Scholar 

  • Kofler, L. 1913. Die Myxobakterien der Umgebung von Wien. Sitzungs-ber. Akad. Wiss. Math. Naturwiss. Kl. Abt. I. 122: 845–876.

    Google Scholar 

  • Kohl, W., A. Gloe and H. Reichenbach. 1983. Steroids from the myxobacterium Nannocystis exedens. J. Gen. Microbiol. 129: 1629–1635.

    CAS  Google Scholar 

  • Kohring, L.L., D.B. Ringelberg, R. Devereux, D.A. Stahl, M.W. Mittelman and D.C. White. 1994. Comparison of phylogenetic-relationships based on phospholipid fatty-acid profiles and ribosomal-RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiol. Lett. 119: 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, S., S. Seeliger, N. Springer, W. Ludwig and B. Schink. 1998. The fermenting bacterium Malonomonas rubra is phylogenetically related to sulfur-reducing bacteria and contains a c-type cytochrome similar to those of sulfur and sulfate reducers. Syst. Appl. Microbiol. 21: 340– 345.

    Article  PubMed  CAS  Google Scholar 

  • Komano, T., N. Brown, S. Inouye and M. Inouye. 1982. Phosphorylation and methylation of proteins during Myxococcus xanthus spore formation. J. Bacteriol. 151: 114–118.

    PubMed  CAS  Google Scholar 

  • Kottel, R.H., K. Bacon, D. Clutter and D. White. 1975. Coats from Myxococcus xanthus: characterization and synthesis during myxospore differentiation. J. Bacteriol. 124: 550–557.

    PubMed  CAS  Google Scholar 

  • Kottel, R. and D. White. 1974. Autolytic activity associated with myxospore formation in Myxococcus xanthus. Arch. Microbiol. 95: 91–95.

    Article  CAS  Google Scholar 

  • Kramer, T.T. and J.M. Westergaard. 1977. Antigenicity of bdellovibrios. Appl. Environ. Microbiol. 33: 967–970.

    PubMed  CAS  Google Scholar 

  • Kreke, B. and H. Cypionka. 1995. Energetics of sulfate transport in Desulfomicrobium baculatum. Arch. Microbiol. 163: 307–309.

    Article  CAS  Google Scholar 

  • Krekeler, D., P. Sigalevich, A. Teske, H. Cypionka and Y. Cohen. 1997. A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov. Arch. Microbiol. 167: 369–375.

    Article  CAS  Google Scholar 

  • Krumholz, L.R. 1997. Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int. J. Syst. Bacteriol. 47: 1262–1263.

    Article  CAS  Google Scholar 

  • Krumholz, L.R., S.H. Harris, S.T. Tay and J.M. Suflita. 1999. Characterization of two subsurface hydrogen utilizing bacteria: Desulfomicrobium hypogeium sp. nov., Acetobacterium psammolithicum sp. nov. and their ecological roles. Appl. Environ. Microbiol. 65: 2300–2306.

    PubMed  CAS  Google Scholar 

  • Krzemieniewska, H. and S. Krzemieniewski. 1926. Miksobakterje Polski (Die Myxobakterien von Polen). Acta Soc. Bot. Pol. 4: 1–54.

    Google Scholar 

  • Krzemieniewska, H. and S. Krzemieniewski. 1927. Miksobakterje Polski. Uzupelnienie. Acta Soc. Bot. Pol. 5: 79–98.

    Google Scholar 

  • Krzemieniewska, H. and S. Krzemieniewski. 1928. Morfologja komórki miksobacteryi (Zur Morphologie der Myxobakterienzelle). Acta Soc. Bot. Pol. 5: 46–90.

    Google Scholar 

  • Krzemieniewska, H. and S. Krzemieniewski. 1930. Miksobakterje Polski. Crtrzecia. Acta Soc. Bot. Pol. 7: 250–173.

    Google Scholar 

  • Krzemieniewska, H. and S. Krzemieniewski. 1946. Myxobacteria of the species Chondromyces Berkeley and Curtis. Bull. Int. Acad. Cracovie (Acad. Pol. Sci.) Ser. B. Sci. Nat. I: 31–48.

    Google Scholar 

  • Kuenen, J.G. and S.C. Rittenberg. 1975. Incorporation of long-chain fatty acids of the substrate organism by Bdellovibrio bacteriovorus during intraperiplasmic growth. J. Bacteriol. 121: 1145–1157.

    PubMed  CAS  Google Scholar 

  • Kuever, J., M. Könneke, A. Galushko and O. Drzyzga. 2001. Reclassifi-cation of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 51: 171–177.

    PubMed  CAS  Google Scholar 

  • Kühlwein, H. and E. Gallwitz. 1958. Polyangium violaceum nov. spec. ein Beitrag zur Kenntnis der Myxobakterien. Arch. Mikrobiol. 31: 139–145.

    Article  Google Scholar 

  • Kühlwein, H. and H. Reichenbach. 1964. Ein neuer Vertreter der Myxobakteriengattung Archangium Jahn. Arch. Mikrobiol. 48: 179–184.

    Article  Google Scholar 

  • Kuner, J.M. and D. Kaiser. 1981. Introduction of transposon Tn5 into Myxococcus for analysis of developmental and other nonselectable mutants. Proc. Natl. Acad. Sci. U.S.A. 78: 425–429.

    Article  PubMed  CAS  Google Scholar 

  • Kunze, B., N. Bedorf, W. Kohl, G. Höfle and H. Reichenbach. 1989. Myxochelin-a, a new iron-chelating compound from Angiococcus disciformis (Myxobacterales)—Production, isolation, physicochemical and biological properties. J. Antibiot. 42: 14–17.

    Article  PubMed  CAS  Google Scholar 

  • Kunze, B., R. Jansen, G. Höfle and H. Reichenbach. 1994. Crocacin, a new electron transport inhibitor from Chondromyces crocatus (Myxobacteria)—Production, isolation, physicochemical and biological properties. J. Antibiot. 47: 881–886.

    Article  PubMed  CAS  Google Scholar 

  • Kunze, B., R. Jansen, L. Pridzun, E. Jurkiewicz, G. Hunsmann, G. Höfle and H. Reichenbach. 1993. Thiangazole, a new thiazoline antibiotic from Polyangium sp. (Myxobacteria)—Production, antimicrobial activity and mechanism of action. J. Antibiot. 46: 1752–1755.

    Article  PubMed  CAS  Google Scholar 

  • Kunze, B., W. Trowitzsch-Kienast, G. Höfle and H. Reichenbach. 1992. Nannochelins A, B and C, new iron-chelating compounds from Nannocystis exedens (myxobacteria). Production, isolation, physico-chemical and biological properties. J. Antibiot. 45: 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Kuspa, A., D. Vollrath, Y. Cheng and D. Kaiser. 1989. Physical mapping of the Myxococcus xanthus genome by random cloning in yeast artificial chromosomes. Proc. Natl. Acad. Sci. U.S.A. 86: 8917–8921.

    Article  PubMed  CAS  Google Scholar 

  • Kützing, F.T. 1847. Diagnosen und Bemerkungen zu oder kritischen Algen. Bot. Ztg. 5: 22–25.

    Google Scholar 

  • Laanbroek, H.J., T. Abee and I.L. Voogd. 1982. Alcohol conversions by Desulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen. Arch. Microbiol. 133: 178–184.

    Article  CAS  Google Scholar 

  • Laanbroek, H.J. and H.J. Geerligs. 1983. Influence of clay particles (illite) on substrate utilization by sulfate-reducing bacteria. Arch. Microbiol. 134: 161–163.

    Article  CAS  Google Scholar 

  • Laanbroek, H.J. and N. Pfennig. 1981. Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments. Arch. Microbiol. 128: 330–335.

    Article  PubMed  CAS  Google Scholar 

  • Laanbroek, H.J., L.J. Stal and H. Veldkamap. 1978. Utilization of hydrogen and formate by Campylobacter spec. under aerobic and anaerobic conditions. Arch. Microbiol. 119: 99–102.

    Article  PubMed  CAS  Google Scholar 

  • Lambina, V.A., A.V. Afinogenova, S.R. Penabad, S.M. Konovalova and L.V. Andreev. 1983. A new species of the exoparasitic bacterium, Micavibrio, destroying gram-negative bacteria. Mikrobiologiya 52: 777–780.

    CAS  Google Scholar 

  • Lambina, V.A., A.V. Afinogenova, S. Romai Penabad, S.M. Konovalova and A.P. Pushkareva. 1982. Micavibrio admirandus gen. et sp. nov. Mikrobiologiya 51: 114–117.

    CAS  Google Scholar 

  • Lampky, J.R. 1976. Ultrastructure of Polyangium cellulosum. J. Bacteriol. 126: 1278–1284.

    PubMed  CAS  Google Scholar 

  • Lampky, J.R. and E.R. Brockman. 1977. Fluorescence of Myxococcus stipitatus. Int. J. Syst. Bacteriol. 27: 161–161.

    Article  Google Scholar 

  • Lampson, B.C. 1993. Retroelements of the myxobacteria. In Dworkin and Kaiser (Editors), Myxobacteria II, American Society for Microbiology, Washington. D.C. pp. 109–128.

    Google Scholar 

  • Lampson, B.C., M. Inouye and S. Inouye. 1991. Survey of multicopy single-stranded DNAs and reverse transcriptase genes among natural isolates of Myxococcus xanthus. J. Bacteriol. 173: 5363–5370.

    PubMed  CAS  Google Scholar 

  • Lampson, B.C. and S.A. Rice. 1997. Repetitive sequences found in the chromosome of the myxobacterium Nannocystis exedens are similar to msDNA: A possible retrotransposition event in bacteria. Mol. Microbiol. 23: 813–823.

    Article  PubMed  CAS  Google Scholar 

  • Langendijk, P.S., E.M. Kulik, H. Sandmeier, J. Meyer and J.S. van der Hoeven. 2001. Isolation of Desulfomicrobium orale sp. nov. and Desulfovibrio strain NY682, oral sulfate-reducing bacteria involved in human periodontal disease. Int. J. Syst. Evol. Bacteriol. 51: 1035–1044.

    CAS  Google Scholar 

  • Laue, B.E. and R.E. Gill. 1994. Use of a phase variation-specific promoter of Myxococcus xanthus in a strategy for isolating a phase-locked mutant. J. Bacteriol. 176: 5341–5349.

    PubMed  CAS  Google Scholar 

  • Laue, H., K. Denger and A.M. Cook. 1997. Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU. Appl. Environ. Microbiol. 63: 2016–2021.

    PubMed  CAS  Google Scholar 

  • Laue, H., M. Friedrich, J. Ruff and A.M. Cook. 2001. Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulfate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit. J. Bacteriol. 183: 1727–1733.

    Article  PubMed  CAS  Google Scholar 

  • Lawson, G.H., R.A. Mackie, D.G. Smith and S. McOrist. 1995. Infection of cultured rat enterocytes by ileal symbiont intracellularis depends on host cell function and actin polymerisation. Vet. Microbiol. 45: 339–350.

    Article  PubMed  CAS  Google Scholar 

  • Lawson, G.H., S. McOrist, S. Jasni and R.A. Mackie. 1993. Intracellular bacteria of porcine proliferative enteropathy: cultivation and maintenance in vitro. J. Clin. Microbiol. 31: 1136–1142.

    PubMed  CAS  Google Scholar 

  • Le Gall, J. 1963. A new species of Desulfovibrio. J. Bacteriol. 86: 1120.

    Google Scholar 

  • Lee, J.P., C.S. Yi, J. LeGall and H.D. Peck, Jr. 1973. Isolation of a new pigment, desulforubidin, from Desulfovibrio desulfuricans (Norway strain) and its role in sulfite reduction. J. Bacteriol. 115: 453–455.

    PubMed  CAS  Google Scholar 

  • Letouvet-Pawlak, B., S. Barray, K. Lavalfavre and J.F. Guespin-Michel. 1993. Kinetics of secretion of recombinant acid phosphatase by Myxococcus xanthus—a sensitive probe for the assay of protein translocation through the envelopes. J. Gen. Microbiol. 139: 3243–3252.

    Article  CAS  Google Scholar 

  • Li, X.Z., J. Liu and P.J. Gao. 1996. A simple method for the isolation of cellulolytic myxobacteria and cytophagales. J. Microbiol. Methods 25: 43–47.

    Article  Google Scholar 

  • Lie, T.J., M.L. Clawson, W. Godchaux and E.R. Leadbetter. 1999. Sulfidogenesis from 2-aminoethanesulfonate (taurine) fermentation by a morphologically unusual sulfate-reducing bacterium, Desulforhopalus singaporensis sp. nov. Appl. Environ. Microbiol. 65: 3328–3334.

    PubMed  CAS  Google Scholar 

  • Lie, T.J., M.L. Clawson, W. Godchaux and E.R. Leadbetter. 2000. In Validation of the publication of new names and new combinations previously published outside the IJSB. List No. 76. Int. J. Syst. Bacteriol. 50: 1699–1700.

    Google Scholar 

  • Lien, T. and J. Beeder. 1997. Desulfobacter vibrioformis sp. nov., a sulfate reducer from a water-oil separation system. Int. J. Syst. Bacteriol. 47: 1124–1128.

    Article  PubMed  CAS  Google Scholar 

  • Lien, T., M. Nadsen, I.H. Steen and K. Gjerdevik. 1998. Desulfobulbus rhabdoformis sp. nov., a sulfate reducer from a water-oil separation system. Int. J. Syst. Bacteriol. 48: 469–474.

    Article  PubMed  Google Scholar 

  • Liesack, W. and K. Finster. 1994. Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int. J. Syst. Bacteriol. 44: 753–758.

    Article  Google Scholar 

  • Lièvre, H. 1927. Les myxobactéries de l’Afrique du Nord. Bull. Soc. Hist. Nat. Afrique Nord. 18: 186–189.

    Google Scholar 

  • Link, H.F. 1809. Observationes in Ordines plantarum naturales. Dissertatio Ima complectens Amandarum ordines Epiphytas, Mucedines, Gastromycos et Fungos. Magaz. Ges. Nat. Freunde Berlin 3: 3–42.

    Google Scholar 

  • Lipski, A., E. Spieck, A. Makolla and K. Altendorf. 2001. Fatty acid profiles of nitrite-oxidizing bacteria reflect their phylogenetic heterogeneity. Syst. Appl. Microbiol. 24: 377–384.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., D.L. Balkwill, H.C. Aldrich, G.R. Drake and D.R. Boone. 1999. Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int. J. Syst. Bacteriol. 49: 545–556.

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl, L.G. and J. Wiegel. 1986. Working with anaerobic bacteria. In Demain and Solomon (Editors), Manual of Industrial Microbiology and Biotechnology, American Society for Microbiology, Washington, D.C. pp. 84–96.

    Google Scholar 

  • Loebeck, M.E. and E.J. Ordal. 1957. The nuclear cycle of Myxococcus fulvus. J. Gen. Microbiol. 16: 76–85.

    Article  PubMed  CAS  Google Scholar 

  • Lonergan, D.J., H.L. Jenter, J.D. Coates, E.J.P. Phillips, T.M. Schmidt and D.R. Lovely. 1996. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol. 178: 2402–2408.

    PubMed  CAS  Google Scholar 

  • Loubinoux, J., F. Mory, I.A.C. Pereira and A.E. Le Faou. 2000. Bacteremia caused by a strain of Desulfovibrio related to the provisionally named Desulfovibrio fairfieldensis. J. Clin. Microbiol. 38: 931–934.

    PubMed  CAS  Google Scholar 

  • Loubinoux, J., F.M.A. Valente, I.A.C. Pereira, A. Costa, P.A.D. Grimont and A.E. Le Faou. 2002. Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov. Int. J. Syst. Evol. Microbiol. 52: 1305–1308.

    Article  PubMed  CAS  Google Scholar 

  • Louie, T.M., S. Ni, L. Xun and W.W. Mohn. 1997. Purification, characterization and gene sequence analysis of a novel cytochrome c coinduced with reductive dechlorination activity in Desulfomonile tiedjei DCB-1. Arch. Microbiol. 168: 520–527.

    Article  PubMed  CAS  Google Scholar 

  • Lovley, D.R. 2000. Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In Dworkin, Falkow, Rosenberg, Schleifer and Stackebrandt (Editors), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3 Ed., Vol. release 3.4, Springer-Verlag, New York. www.prokaryotes.com.

    Google Scholar 

  • Lovley, D.R. and E.J.P. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51: 683–689.

    PubMed  CAS  Google Scholar 

  • Lovley, D.R. and E.J.P. Phillips. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54: 1472–1480.

    PubMed  CAS  Google Scholar 

  • Lovley, D.R. and E.J.P. Phillips. 1992. Reduction of uranium by Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 58: 850–856.

    PubMed  CAS  Google Scholar 

  • Lovley, D.R., J.F. Stolz, G.L. Nord and E.J.P. Phillips. 1987. Anaerobic production of magnetite by a dissimilatory iron- reducing microorganism. Nature 330: 252–254.

    Article  CAS  Google Scholar 

  • Ludwig, W., K.H. Schleifer, H. Reichenbach and E. Stackebrandt. 1983. A phylogenetic analysis of the myxobacteria Myxococcus fulvus, Stigmatella aurantiaca, Cystobacter fuscus, Sorangium cellulosum, and Nannocystis exedens. Arch. Microbiol. 135: 58–62.

    Article  CAS  Google Scholar 

  • Lünsdorf, H. and H. Reichenbach. 1989. Ultrastructural details of the apparatus of gliding motility of Myxococcus fulvus (Myxobacterales). J. Gen. Microbiol. 135: 1633–1641.

    Google Scholar 

  • Lünsdorf, H. and H.U. Schairer. 2001. Frozen motion of gliding bacteria outlines inherent features of the motility apparatus. Microbiology 147: 939–947.

    PubMed  Google Scholar 

  • Lünsdorf, H., H.U. Schairer and M. Heidelbach. 1995. Localization of the stress protein SP21 in indole-induced spores, fruiting bodies, and heat-shocked cells of Stigmatella aurantiaca. J. Bacteriol. 177: 7092–7099.

    PubMed  Google Scholar 

  • Magot, M., P. Caumette, J.M. Desperrier, R. Matheron, C. Dauga, F. Grimont and L. Carreau. 1992. Desulfovibrio longus sp. nov., a sulfatereducing bacterium isolated from an oil-producing well. Int. J. Syst. Bacteriol. 42: 398–403.

    Article  PubMed  CAS  Google Scholar 

  • Magrini, V., D. Salmi, D. Thomas, S.K. Herbert, P.L. Hartzell and P. Youderian. 1997. Temperate Myxococcus xanthus phage Mx8 encodes DNA adenine methylase, Mox. J. Bacteriol. 179: 4254–4263.

    CAS  Google Scholar 

  • Maidak, B.L., G.J. Olsen, N. Larsen, R. Overbeek, M.J. McCaughey and C.R. Woese. 1996. The ribosomal database project (RDP). Nucleic Acids Res. 24: 82–85.

    Article  PubMed  CAS  Google Scholar 

  • Maidak, B.L., G.J. Olsen, N. Larsen, R. Overbeek, M.J. McCaughey and C.R. Woese. 1997. The RDP (Ribosomal Database Project). Nucleic Acids Res. 25: 109–111.

    Article  PubMed  CAS  Google Scholar 

  • Mamkaeva, K.A. 1966. Observations on the lysis of cultures of the genus Chlorella. Mikrobiologiya 35: 853–859.

    CAS  Google Scholar 

  • Mandel, M. and E.R. Leadbetter. 1965. Deoxyribonucleic acid base composition of myxobacteria. J. Bacteriol. 90: 1795–1796.

    PubMed  CAS  Google Scholar 

  • Manz, W., M. Eisenbrecher, T.R. Neu and U. Szewzyk. 1998. Abundance and spatial organization of Gram-negative sulfate- reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol. Ecol. 25: 43–61.

    Article  CAS  Google Scholar 

  • Marbach, A., M. Varon and M. Shilo. 1976. Properties of marine bdellovibrios. Microb. Ecol. 2: 284–295.

    Article  Google Scholar 

  • Margalith, P. 1962. Bacteriolytic principles of Myxococcus fulvus. Nature 196: 1335–1336.

    Article  Google Scholar 

  • Martin, S., E. Sodergren, T. Masuda and D. Kaiser. 1978. Systematic isolation of transducing phages for Myxococcus xanthus. Virology 88: 44– 53.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Cañamero, M.M., J. Muñoz, A.L. Extremera and J.M. Arias. 1991. Deoxyribonuclease activities in Myxococcus coralloides D. J. Appl. Bacteriol. 71: 170–175.

    Article  PubMed  Google Scholar 

  • Masson, P.J. and J.F. Guespin-Michel. 1988. An extracellular blood-anticoagulant glycopeptide produced exclusively during vegetative growth by Myxococcus xanthus and other myxobacteria is not co-regulated with other extracellular macromolecules. J. Gen. Microbiol. 134: 801–806.

    PubMed  CAS  Google Scholar 

  • Matin, A. and S.C. Rittenberg. 1972. Kinetics of deoxyribonucleic acid destruction and synthesis during growth of Bdellovibrio bacteriovorus strain 109D on Pseudomonas putida and Escherichia coli. J. Bacteriol. 111: 664–673.

    PubMed  CAS  Google Scholar 

  • Mayer, D. 1967. Ernährungsphysiologische untersuchungen an Archangium violaceum. Arch. Mikrobiol. 58: 186–200.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, H. and H. Reichenbach. 1978. Restriction endonucleases—general survey procedure and survey of gliding bacteria. J. Bacteriol. 136: 708–713.

    PubMed  CAS  Google Scholar 

  • McBride, M.J., P. Hartzell and D.R. Zusman. 1993. Motility and tactic behavior of Myxococcus xanthus. In Dworkin and Kaiser (Editors), Myxobacteria II, American Society for Microbiology, Washington, D.C. pp. 285–305.

    Google Scholar 

  • McBride, M.J. and D.R. Zusman. 1989. Trehalose accumulation in vegetative cells and spores of Myxococcus xanthus. J. Bacteriol. 171: 6383–6386.

    PubMed  CAS  Google Scholar 

  • McCann, M.P., H.T. Solimeo, F. Cusick, Jr., B. Panunti and C. McCullen. 1998. Developmentally regulated protein synthesis during intraperiplasmic growth of Bdellovibrio bacteriovorus 109J. Can. J. Microbiol. 44: 50–55.

    PubMed  CAS  Google Scholar 

  • McCurdy, H.D. 1970. Studies on the taxonomy of the Myxobacterales. II. Polyangium and the demise of the Sorangiaceae. Int. J. Syst. Bacteriol. 20: 283–296.

    Article  Google Scholar 

  • McCurdy, H.D. 1989. Genus I. Cystobacter. In Staley, Bryant, Pfennig and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st Ed., Vol. 3, The Williams & Wilkins Co., Baltimore. pp. 2150–2153.

    Google Scholar 

  • McCurdy, H.D. and B.T. Khouw. 1969. Studies on Stigmatella brunnea. Can. J. Microbiol. 15: 731–738.

    Article  PubMed  CAS  Google Scholar 

  • McCurdy, H.D. and S. Wolf. 1967. Deoxyribonucleic acid base compositions of fruiting Myxobacterales. Can. J. Microbiol. 13: 1707–1708.

    Article  PubMed  CAS  Google Scholar 

  • McDougall, R., J. Robson, D. Paterson and W. Tee. 1997. Bacteremia caused by a recently described novel Desulfovibrio species. J. Clin. Microbiol. 35: 1805–1808.

    PubMed  CAS  Google Scholar 

  • McInerney, M.J. and M.P. Bryant. 1981. Review of nethane fermentation fundamentals. In Wise (Editor), Fuel Gas Production from Biomass, CRC Press, Boca Raton. pp. 19–46.

    Google Scholar 

  • McInerney, M.J., M.P. Bryant and N. Pfennig. 1979. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch. Microbiol. 122: 129–136.

    Article  CAS  Google Scholar 

  • McNeil, K.E. and V.B.D. Skerman. 1972. Examination of myxobacteria by scanning electron microscopy. Int. J. Syst. Bacteriol. 22: 243–250.

    Article  Google Scholar 

  • McOrist, S., R. Boid, G.H. Lawson and I. McConnell. 1987. Monoclonal antibodies to intracellular Campylobacter-like organisms of the porcine proliferative enteropathies. Vet. Rec. 121: 421–422.

    Article  PubMed  CAS  Google Scholar 

  • McOrist, S., S. Jasni, R.A. Mackie, N. MacIntyre, N. Neef and G.H. Lawson. 1993. Reproduction of porcine proliferative enteropathy with pure cultures of ileal symbiont intracellularis. Infect. Immun. 61: 4286– 4292.

    PubMed  CAS  Google Scholar 

  • McOrist, S., G.H. Lawson, D.J. Roy and R. Boid. 1990. DNA analysis of intracellular Campylobacter-like organisms associated with the porcine proliferative enteropathies: novel organism proposed. FEMS Microbiol. Lett. 69: 189–193.

    Article  CAS  Google Scholar 

  • McOrist, S., R.A. Mackie, G.H. Lawson and D.G. Smith. 1997. In vitro interactions of Lawsonia intracellularis with cultured enterocytes. Vet. Microbiol. 54: 385–392.

    Article  PubMed  CAS  Google Scholar 

  • McOrist, S., L. Roberts, S. Jasni, A.C. Rowland, G.H. Lawson, C.J. Gebhart and B. Bosworth. 1996. Developed and resolving lesions in porcine proliferative enteropathy: possible pathogenic mechanisms. J. Comp. Pathol. 115: 35–45.

    Article  PubMed  CAS  Google Scholar 

  • McVittie, A. and S.A. Zahler. 1962. Chemotaxis in Myxococcus. Nature 194: 1299–1300.

    Article  Google Scholar 

  • Miller, J.D.A., P.M. Neumann, L. Elford and D.S. Wakerley. 1970. Malate dismutation by Desulfovibrio. Arch. Mikrobiol. 71: 214–219.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J.D.A. and A.M. Saleh. 1964. A sulphate-reducing bacterium containing cytochrome c 3 but lacking desulfoviridin. J. Gen. Microbiol. 37: 419–423.

    Article  PubMed  CAS  Google Scholar 

  • Miroshnichenko, M.L., G.A. Gongadze, A.M. Lysenko and E.A. Bonch-Osmolovskaya. 1994. Desulfurella multipotens sp. nov, a new sulfur-respiring thermophilic eubacterium from Raoul Island (Kermadec Archipelago, New Zealand). Arch. Microbiol. 161: 88–93.

    CAS  Google Scholar 

  • Miroshnichenko, M.L., G.A. Gongadze, A.M. Lysenko and E.A. Bonch-Osmolovskaya. 1996. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB, List No. 57. Int. J. Syst. Bacteriol. 46: 625–626.

    Article  Google Scholar 

  • Miroshnichenko, M.L., F.A. Rainey, M. Rhode and E.A. Bonch-Osmolovskaya. 1999. Hippea maritima gen. nov., sp. nov, a new genus of thermophilic, sulfur-reducing bacterium from submarine hot vents. Int. J. Syst. Bacteriol. 49: 1033–1038.

    Article  PubMed  CAS  Google Scholar 

  • Mishustin, E.N. 1938. Cellulose decomposing myxobacteria. Mikrobiologiya 7: 427–444.

    Google Scholar 

  • Miyashiro, S., S. Yamanaka, S. Takayama and H. Shibai. 1988. Novel macrocyclic antibiotics: megovalicins A, B, C, D, G and H. I. Screening of antibiotics-producing myxobacteria and production of megovalicins. J. Antibiot. (Tokyo) 41: 433–438.

    Article  CAS  Google Scholar 

  • Mochida, C., Y. Hirakata, J. Matsuda, F. Iori, Y. Ozaki, M. Nakano, K. Hamaguchi, K. Izumikawa, T. Yamaguchi, K. Tomono, S. Maesaki, Y. Yamada, S. Kohno and S. Kamihira. 1998. Antimicrobial susceptibility testing of Bilophila wadsworthia isolates submitted for routine laboratory examination. J. Clin. Microbiol. 36: 1790–1792.

    PubMed  CAS  Google Scholar 

  • Mohn, W.W. and K.J. Kennedy. 1992. Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1. Appl. Environ. Microbiol. 58: 1367–1370.

    PubMed  CAS  Google Scholar 

  • Mohn, W.W., T.G. Linkfield, H.S. Pankratz and J.M. Tiedje. 1990. Involvement of a collar structure in polar growth and cell division of strain DCB-1. Appl. Environ. Microbiol. 56: 1206–1211.

    PubMed  CAS  Google Scholar 

  • Mohn, W.W. and J.M. Tiedje. 1990. Catabolic thiosulfate disproportion-ation and carbon dioxide reduction in strain DCB-1, a reductively dechlorinating anaerobe. J. Bacteriol. 172: 2065–2070.

    PubMed  CAS  Google Scholar 

  • Mohn, W.W. and J.M. Tiedje. 1992. Microbial reductive dehalogenation. Microbiol. Rev. 56: 482–507.

    PubMed  CAS  Google Scholar 

  • Moore, W.E.C., J.L. Johnson and L.V. Holdeman. 1976. Emendation of Bacteroides and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubac-rium, Clostridium, and Ruminococcus. Int. J. Syst. Bacteriol. 26: 238–252.

    Article  Google Scholar 

  • Morikawa, Y., S. Takayama, R. Fudo, S. Yamanaka, K. Mori and A. Isogai. 1998. Absolute chemical structure of the myxobacterial pheromone of Stigmatella aurantiaca that induces the formation of its fruiting body. FEMS Microbiol. Lett. 165: 29–34.

    Article  CAS  Google Scholar 

  • Morris, D.W., S.R. Ogden-Swift, V. Virrankoski-Castrodeza, K. Ainley and J.H. Parish. 1978. Transduction of Myxococcus virescens by coliphage P1cm—Generation of plasmids containing both phage and myxococcus genes. J. Gen. Microbiol. 107: 73–83.

    Article  PubMed  CAS  Google Scholar 

  • Morris, D.W. and J.H. Parish. 1976. Restriction in Myxococcus virescens. Arch. Microbiol. 108: 227–230.

    Article  PubMed  CAS  Google Scholar 

  • Mosca, A., M. D’Alagni, R. Del Prete, G.P. De Michele, P.H. Summanen, S.M. Fingold and G. Miragliotta. 1995. Preliminary evidence of endotoxic activity of Bilophila wadsworthia. Anaerobe 1: 21–24.

    Article  PubMed  CAS  Google Scholar 

  • Motamedi, M. and K. Pedersen. 1998. Desulfovibrio aespoeensis sp. nov., a mesophilic sulfate-reducing bacterium from deep groundwater at Äspö hard rock laboratory, Sweden. Int. J. Syst. Bacteriol. 48: 311–315.

    Article  PubMed  Google Scholar 

  • Mountfort, D.O., W.J. Brulla, L.R. Krumholz and M.P. Bryant. 1984. Syntrophus buswellii gen. nov., sp. nov.: a benzoate catabolizer from methanogenic ecosystems. Int. J. Syst. Bacteriol. 34: 216–217.

    Article  Google Scholar 

  • Moyer, C.L., F.C. Dobbs and D.M. Karl. 1995. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 61: 1555–1562.

    PubMed  CAS  Google Scholar 

  • Mucha, H., F. Lingens and W. Trösch. 1988. Conversion of propionate to acetate and methane by syntrophic consortia. Appl. Microbiol. Biotechnol. 27: 581–586.

    CAS  Google Scholar 

  • Mueller, J.A., A.S. Galushko, A. Kappler and B. Schink. 1999. Anaerobic degradation of m-cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate. Arch. Microbiol. 172: 287–294.

    Article  Google Scholar 

  • Müller, R., K. Gerth, P. Brandt, H. Blöcker and S. Beyer. 2000. Identification of an l-dopa decarboxylase gene from Sorangium cellulosum So ce90. Arch. Microbiol. 173: 303–306.

    Article  PubMed  Google Scholar 

  • Muñoz, J., J.M. Arias and E. Montoya. 1984. Production and properties of a bacteriocin from Myxococcus coralloides-D. J. Appl. Bacteriol. 57: 69–74.

    Article  Google Scholar 

  • Muñoz, J., F. González, M.M. Martinez-Cañamero, M.A. Goicoechea, A.L. Extremera and J.M. Arias. 1989. Deoxyribonuclease and phosphatase activities in myxobacteria. Microbios. 58: 43–47.

    Google Scholar 

  • Muñoz-Dorado, J., S. Inouye and M. Inouye. 1991. A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a Gram-negative bacterium. Cell 67: 995–1006.

    Article  PubMed  Google Scholar 

  • Nanninga, H.J. and J.C. Gottschal. 1986. Isolation of a sulfate-reducing bacterium growing with methanol. FEMS Microbiol. Ecol. 38: 125– 130.

    Article  CAS  Google Scholar 

  • Nanninga, H.J. and J.C. Gottschal. 1987. Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant. Appl. Environ. Microbiol. 53: 802–809.

    PubMed  CAS  Google Scholar 

  • Nanninga, H.J. and J.C. Gottschal. 1995. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 55. Int. J. Syst. Bacteriol. 45: 879–880.

    Article  Google Scholar 

  • Nelson, D.R., M.G. Cumsky and D.R. Zusman. 1981. Localization ofmyxo-bacterial hemagglutinin in the periplasmic space and on the cell surface of Myxococcus xanthus during developmental aggregation. J. Biol. Chem. 256: 2589–2595.

    Google Scholar 

  • Neumann, B., A. Pospiech and H.U. Schairer. 1992. Size and stability of the genomes of the myxobacteria Stigmatella aurantiaca and Stigmatella erecta. J. Bacteriol. 174: 6307–6310.

    PubMed  CAS  Google Scholar 

  • Neumann, B., A. Pospiech and H.U. Schairer. 1993. A physical and genetic map of the Stigmatella aurantiaca DW4/3.1 chromosome. Mol. Microbiol. 10: 1087–1099.

    Article  PubMed  CAS  Google Scholar 

  • Nga, D.P., D.T.C. Ha, L.T. Hien and H. Stan-Lotter. 1996. Desulfovibrio vietnamensis sp. nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 2: 385–392.

    Article  CAS  Google Scholar 

  • Nga, D.P., D.T.C. Ha, T.H. Lai and H. Stan-Lotter. 2002. In Validation of the publication of new names and new combinations previously effectively published outside the IJSEM. List No. 86. Int. J. Syst. Evol. Microbiol. 52: 1075–1076.

    Article  Google Scholar 

  • Nguyen, B., T. Scognamiglio and J.J. Tudor. 1997. RAPD and macrorestriction polymorphism analysis of Bdellovibrio strains. 97th Annual Meeting of the American Society for Microbiology, Miami Beach, Florida.

    Google Scholar 

  • Nicolas, F.J., M.L. Cayuela, I.M. Martinez-Argudo, R.M. Ruiz-Vazquez and F.J. Murillo. 1996. High mobility group I(Y )-like DNA-binding domains on a bacterial transcription factor. Proc. Natl. Acad. Sci. U.S.A. 93: 6881–6885.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, J.T., W. Liesack and K. Finster. 1999. Desulfovibrio zosterae sp. nov., a new sulfate reducer isolated from surface-sterilized roots of the seagrass Zostera marina. Int. J. Syst. Bacteriol. 49: 859–865.

    Article  PubMed  CAS  Google Scholar 

  • Nolte, E.M. 1957. Untersuchungen über Ernährung und Fruchtkörper-bildung von Myxobakterien. Arch. Microbiol. 28: 191–218.

    CAS  Google Scholar 

  • O’Connor, K.A. and D.R. Zusman. 1983. Coliphage P1-mediated transduction of cloned DNA from Escherichia coli to Myxococcus xanthus—Use for complementation and recombinational analyses. J. Bacteriol. 155: 317–329.

    PubMed  Google Scholar 

  • Odom, J.M. and R. Singleton. 1993. The Sulfate-Reducing bacteria: Contemporary Perspectives, Springer-Verlag, New York.

    Book  Google Scholar 

  • Ollivier, B., P. Caumette, J.L. Garcia and R.A. Mah. 1994. Anaerobic bacteria from hypersaline environments. Microbiol. Rev. 58: 27–38.

    PubMed  CAS  Google Scholar 

  • Ollivier, B., R. Cord-Ruwisch, E.C. Hatchikian and J.L. Garcia. 1988. Characterization of Desulfovibrio fructosovorans sp. nov. Arch. Microbiol. 149: 447–450.

    Article  CAS  Google Scholar 

  • Ollivier, B., R. Cord-Ruwisch, E.C. Hatchikian and J.L. Garcia. 1990. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 32. Int. J. Syst. Bacteriol. 40: 105–106.

    Article  Google Scholar 

  • Ollivier, B., C.E. Hatchikian, G. Prensier, J. Guezennec and J.-L. Garcia. 1991. Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int. J. Syst. Bacteriol. 41: 74–81.

    Article  CAS  Google Scholar 

  • Ordal, E.J. and R.R. Rucker. 1944. Pathogenic myxobacteria. Proc. Soc. Exp. Biol. Med. 56: 15–18.

    Google Scholar 

  • Orlowski, M., P. Martin, D. White and M.C. Wong. 1972. Changes in activity of glyoxylate cycle enzymes during myxospore development in Myxococcus xanthus. J. Bacteriol. 111: 784–790.

    PubMed  CAS  Google Scholar 

  • Orlowski, M. and D. White. 1974. Intracellular proteolytic activity in developing myxospores of Myxococcus xanthus. Arch. Microbiol. 97: 347–357.

    Article  PubMed  CAS  Google Scholar 

  • Orndorff, P.E. and M. Dworkin. 1980. Separation and properties of the cytoplasmic and outer membranes of vegetative cells of Myxococcus xanthus. J. Bacteriol. 141: 914–927.

    PubMed  CAS  Google Scholar 

  • Orndorff, P., E. Stellwag, T. Starich, M. Dworkin and J. Zissler. 1983. Genetic and physical characterization of lysogeny by bacteriophage-Mx8 in Myxococcus xanthus. J. Bacteriol. 154: 772–779.

    PubMed  CAS  Google Scholar 

  • Ouattara, A.S., B.K.C. Patel, J.L. Cayol, N. Cuzin, A.S. Traore and J.L. Garcia. 1999. Isolation and characterization of Desulfovibrio burkinensis sp. nov. from an African ricefield, and phylogeny of Desulfovibrio al-coholivorans. Int. J. Syst. Bacteriol. 49: 639–643.

    Article  PubMed  CAS  Google Scholar 

  • Oude Elferink, S.J., W.M. Akkermans-van Vliet, J.J. Bogte and A.J. Stams. 1999. Desulfobacca acetoxidans gen. nov., sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic granular sludge. Int. J. Syst. Bacteriol. 49: 345–350.

    Article  PubMed  Google Scholar 

  • Oude Elferink, S.J.W.H., R.N. Maas, H.J.M. Harmsen and A.J.M. Stams. 1995. Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Arch. Microbiol. 164: 119–124.

    Article  PubMed  CAS  Google Scholar 

  • Oude Elferink, S.J.W.H., R.N. Maas, H.J.M. Harmsen and A.J.M. Stams. 1997. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 63. Int. J. Syst. Bacteriol. 47: 1274.

    Article  Google Scholar 

  • Oude Elferink, S.H.J.W., A. Visser, L.W. Hulshoff Pol and A.J.M. Stams. 1994. Sulfate reduction in methanogenic bioreactors. FEMS Microbiol. Rev. 15: 119–126.

    CAS  Google Scholar 

  • Oyaizu, H. and C.R. Woese. 1985. Phylogenetic relationships among the sulfate respiring bacteria, myxobacteria and purple bacteria. Syst. Appl. Microbiol. 6: 257–263.

    Article  CAS  Google Scholar 

  • Paitan, Y., G. Alon, E. Orr, E.Z. Ron and E. Rosenberg. 1999. The first gene in the biosynthesis of the polyketide antibiotic TA of Myxococcus xanthus codes for a unique PKS module coupled to a peptide synthetase. J. Mol. Biol. 286: 465–474.

    Article  PubMed  CAS  Google Scholar 

  • Papenfuss, G.F 1940. Notes on South African marine algae. Bot Not. 93: 200–226.

    Google Scholar 

  • Parish, J.H. 1975. Transfer of drug resistance to Myxococcus from bacteria carrying drug resistance factors. J. Gen. Microbiol. 87: 198–210.

    Article  PubMed  CAS  Google Scholar 

  • Passador, L. and H.D. McCurdy. 1985. Cyclic nucleotides and development of Myxococcus xanthus—analysis of mutants. Curr. Microbiol. 12: 289–294.

    Article  CAS  Google Scholar 

  • Peace, T.A., K.V. Brock and H.F. Stills, Jr.. 1994. Comparative analysis of the 16S rDNA gene sequence of the putative agent of proliferative ileitis of hamsters. Int. J. Syst. Bacteriol. 44: 832–835.

    Article  PubMed  CAS  Google Scholar 

  • Pereira, A.S., R. Franco, M.J. Feio, C. Pinto, J. Lampreia, M.A. Reis, J. Calvete, I. Moura, I. Beech, A.R. Lino and J.J. Moura. 1996. Characterization of representative enzymes from a sulfate reducing bacterium implicated in the corrosion of steel. Biochem. Biophys. Res. Commun. 221: 414–421.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, J.E. 1958. Two new fifty-year-old species of myxobacteria. Mycologia. 50: 628–633.

    Article  Google Scholar 

  • Peterson, J.E. 1959. A monocystic genus of the Myxobacterales (Schizo-mycetes). Mycologia. 51: 1–8.

    Article  Google Scholar 

  • Peterson, J.E. and J.C. McDonald. 1966. The demise of the myxobacterial genus Angiococcus. Mycologia. 58: 962–965.

    Article  Google Scholar 

  • Petit, F. and J.F. Guespin-Michel. 1992. Production of an extracellular milk-clotting activity during development in Myxococcus xanthus. J. Bacteriol. 174: 5136–5140.

    PubMed  CAS  Google Scholar 

  • Pfennig, N. 1965. Anreicherungskulturen fur rote und grune Schwefelbakterien. Zentbl. Bakteriol. Parasitenkd. Infektkrankh. Hyg. Abt. I Orig. Suppl. I.: 179–189, 503–505.

    Google Scholar 

  • Pfennig, N. 1978. Rhodocyclus purpureus gen. nov. and sp. nov. a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int. J. Syst. Bacteriol. 28: 283–288.

    Article  CAS  Google Scholar 

  • Pfennig, N. and H. Biebl. 1976. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch. Microbiol. 110: 3–12.

    Article  PubMed  CAS  Google Scholar 

  • Pfennig, N. and H. Biebl. 1977. Announcement of the valid publication of new names and new combinations previously effectively published outside the IJSB. List No. 1. Int. J. Syst. Bacteriol. 27: 306.

    Article  Google Scholar 

  • Pfennig, N. and K.D. Lippert. 1966. Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch. Microbiol. 55: 245–256.

    CAS  Google Scholar 

  • Pfennig, N. and F. Widdel. 1981. Ecology and physiology of some anaerobic bacteria from the microbial sulfur cycle. In Bothe and Trebst (Editors), Biology of Inorganic Nitrogen and Sulfur, Springer-Verlag, Heidelberg. pp. 169–177.

    Chapter  Google Scholar 

  • Pfennig, N., F. Widdel and H.G. Trüper. 1981. The dissimilatory sulfate-reducing bacteria. In Starr, M.P., Stolp, H.G. Trüper, A. Balows and H.G. Schlegel (Editors), The Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria, 1st Ed., Vol. 1, Springer-Verlag, Berlin. pp. 926–940.

    Google Scholar 

  • Pfister, D.H. 1993. Roland Thaxter and the myxobacteria. In Dworkin and Kaiser (Editors), Myxobacteria II, American Society for Microbiology, Washington, D.C. pp. 1–11.

    Google Scholar 

  • Pfistner, B. 1990. A one dimensional model for the swarming behaviour of myxobacteria. In Alt and Hoffmann (Editors), Biological Motion, Springer-Verlag, Heidelberg. pp. 556–0563.

    Google Scholar 

  • Pikuta, E.V., A.M. Lysenko and T.N. Zhilina. 1997. Distribution of De-sulfonatronovibrio hydrogenovorans in soda lakes of Tuva. Mikrobiologiya 66: 216–221.

    CAS  Google Scholar 

  • Plaga, W. and H.U. Schairer. 1999. Intercellular signalling in Stigmatella aurantiaca. Curr. Opin. Microbiol. 2: 593–597.

    Article  PubMed  CAS  Google Scholar 

  • Plaga, W., I. Stamm and H.U. Schairer. 1998. Intercellular signaling in Stigmatella aurantiaca: Purification and characterization of stigmolone, a myxobacterial pheromone. Proc. Natl. Acad. Sci. U.S.A. 95: 11263–11267.

    Article  PubMed  CAS  Google Scholar 

  • Platen, H., A. Temmes and B. Schink. 1990. Anaerobic degradation of acetone by Desulfococcus biacutus spec. nov. Arch. Microbiol. 154: 355–361.

    Article  PubMed  CAS  Google Scholar 

  • Platen, H., A. Temmes and B. Schink. 1991. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 39. Int. J. Syst. Bacteriol. 41: 580–581.

    Article  Google Scholar 

  • Plugge, C.M., M. Balk and A.J.M. Stams. 2002. Desulfotomaculum thermo-benzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Int. J. Syst. Evol. Microbiol. 52: 391–399.

    PubMed  CAS  Google Scholar 

  • Postgate, J.R. 1959. A diagnostic reaction of Desulphovibrio desulphuricans. Nature 183: 481–482.

    Article  PubMed  CAS  Google Scholar 

  • Postgate, J.R. and L.L. Campbell. 1966. Classification of Desulfovibrio species the nonsporulating sulfate-reducing bacteria. Bacteriol. Rev. 30: 732–738.

    PubMed  CAS  Google Scholar 

  • Pradella, S., A. Hans, C. Sproer, H. Reichenbach, K. Gerth and S. Beyer. 2002. Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch Microbiol. 178: 484–492.

    Article  PubMed  CAS  Google Scholar 

  • Probst, J., M. Bruschi, N. Pfennig and J. LeGall. 1977. Cytochrome c 551.5 (c 7) from Desulfuromonas acetoxidans. Biochim. Biophys. Acta 460: 58– 64.

    Article  PubMed  CAS  Google Scholar 

  • Pronina, N.I. 1962. Description of new species and varieties of cellulose-decomposing myxobacteria. Microbiology 31: 384–390.

    Google Scholar 

  • Qatibi, A.I., V. Niviere and J.L. Garcia. 1991. Desulfovibrio alcoholovorans sp. nov., a sulfate-reducing bacterium able to grow on glycerol, 1,2-and 1,3-propanediol. Arch. Microbiol. 155: 143–148.

    Article  CAS  Google Scholar 

  • Qualls, G.T., K. Stephens and D. White. 1978. Light-stimulated morphogenesis in fruiting myxobacterium Stigmatella aurantiaca. Science 201: 443–444.

    Article  Google Scholar 

  • Quaroni, A. and R.J. May. 1980. Establishment and characterization of intestinal epithelial cell cultures. Methods Cell Biol. 21B: 403–427.

    Article  PubMed  CAS  Google Scholar 

  • Quehl, A. 1906. Untersuchungen über Myxobakterien. Zentbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. II 16: 9–34.

    Google Scholar 

  • Rabus, R., R. Nordhaus, W. Ludwig and F. Widdel. 1993. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol. 59: 1444–1451.

    PubMed  CAS  Google Scholar 

  • Ravenschlag, K., K. Sahm, C. Knoblauch, B.B. Jorgensen and R. Amann. 2000. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl. Environ. Microbiol. 66: 3592–3602.

    Article  PubMed  CAS  Google Scholar 

  • Raverdy, J. 1973. Sur l’isolement et l’activité bactériolytique de quelques myxobactéries isolées de l’eau. Water Res. 7: 687–693.

    Article  Google Scholar 

  • Redburn, A.C. and B.K.C. Patel. 1994. Desulfovibrio longreachii sp. nov., a sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. FEMS Microbiol. Lett. 115: 33–38.

    Article  PubMed  CAS  Google Scholar 

  • Redburn, A.C. and B.K.C. Patel. 1995. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 55. Int. J. Syst. Bacteriol. 45: 879–880.

    Article  Google Scholar 

  • Rees, G.N., C.G. Harfoot and A.J. Sheehy. 1998. Amino acid degradation by the mesophilic sulfate-reducing bacterium Desulfobacterium vacuolatum. Arch. Microbiol. 169: 76–80.

    Article  PubMed  CAS  Google Scholar 

  • Rees, G.N. and B.K.C. Patel. 2001. Desulforegula conservatrix gen. nov., sp. nov., a long-chain fatty acid-oxidizing, sulfate-reducing bacterium isolated from sediments of a freshwater lake. Int. J. Syst. Evol. Bacteriol. 51: 1911–1916.

    CAS  Google Scholar 

  • Reichenbach, H. 1970. Nannocystis exedens gen. nov., spec. nov., a new myxobacterium of the family Sorangiaceae. Arch. Microbiol. 70: 119–138.

    CAS  Google Scholar 

  • Reichenbach, H. 1999. The ecology of the myxobacteria. Environ. Microbiol. 1: 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach, H. and M. Dworkin. 1969. Studies on Stigmatella aurantiaca (Myxobacterales). J. Gen. Microbiol. 58: 3–14.

    Article  Google Scholar 

  • Reichenbach, H. and M. Dworkin. 1981. The order Myxobacterales. In Starr, Stolp, Trüper, Balows and Schlegel (Editors), The Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria, Vol. I, Springer-Verlag, Berlin. pp. 328–355.

    Google Scholar 

  • Reichenbach, H. and M. Dworkin. 1992. The Myxobacteria. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2 ed., Vol. 4, Springer-Verlag, New York. pp. 3417–3487.

    Google Scholar 

  • Reichenbach, H. and G. Höfle. 1993. Biologically active secondary metabolites from myxobacteria. Biotechnol. Adv. 11: 219–277.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach, H. and G. Höfle. 1999. Myxobacteria as producers of secondary metabolites. In Grabley and Thiericke (Editors), Drug Discovery from Nature, Springer-Verlag, Berlin, Berlin. pp. 149–179.

    Google Scholar 

  • Reichenbach, H., H.H. Heunert and H. Kuczka. 1974. Chondromyces apiculatus (Myxobacterales): Schwarmentwicklung und Morphogenese, Encyclopaedia Cinematographica Sekt. Biologie, Göttingen. Institut fur den Wissenschaftlichen Filmen.

    Google Scholar 

  • Reichenbach, H. and H. Kleinig. 1971. The carotenoids of Myxococcus fulvus (Myxobacterales). Arch. Microbiol. 76: 364–380.

    CAS  Google Scholar 

  • Reichenbach, H. and H. Kleinig. 1972. Die Carotinoide der Myxobakterien. Zent Bakteriol Hyg I Abt. Orig. A 220: 458–463.

    CAS  Google Scholar 

  • Reichenbach, H., H. Voelz and M. Dworkin. 1969. Structural changes in Stigmatella aurantiaca during myxospore induction. J. Bacteriol. 97: 905–911.

    PubMed  CAS  Google Scholar 

  • Reichenbecher, W. and B. Schink. 1997. Desulfovibrio inopinatus, sp. nov., a new sulfate-reducing bacterium that degrades hydroxyhydroquinone (1,2,4-trihydroxybenzene). Arch. Microbiol. 168: 338–344.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbecher, W. and B. Schink. 1999. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 68. Int. J. Syst. Bacteriol. 49: 1–3.

    Article  Google Scholar 

  • Rice, T.D., H.N. Williams and B.F. Turng. 1998. Susceptibility of bacteria in estuarine environments to autochthonous bdellovibrios. Microb. Ecol. 35: 256–264.

    Article  PubMed  Google Scholar 

  • Richardson, I.R. 1990. The incidence of Bdellovibrio spp. in man-made water systems: coexistence with legionellas. J. Appl. Bacteriol. 69: 134–140.

    Article  PubMed  CAS  Google Scholar 

  • Ringelberg, D.B., G.T. Townsend, K.A. DeWeerd, J.M. Suflita and D.C. White. 1994. Detection of the anaerobic dechlorinating microorganism Desulfomonile tiedjei in environmental matrixes by its signature lipopolysaccharide branced-long-chain hydroxy fatty acids. FEMS Microbiol. Ecol. 14: 9–18.

    Article  CAS  Google Scholar 

  • Rittenberg, S.C. and R.B. Hespell. 1975. Energy efficiency of intraperi-plasmic growth of Bdellovibrio bacteriovorus. J. Bacteriol. 121: 1158–1165.

    PubMed  CAS  Google Scholar 

  • Rittenberg, S.C. and D. Langley. 1975. Utilization of nucleoside monophosphates per se for intraperiplasmic growth of Bdellovibrio bacter-iovorus. J. Bacteriol. 121: 1137–1144.

    PubMed  CAS  Google Scholar 

  • Rittenberg, S.C. and M. Shilo. 1970. Early host damage in the infection cycle of Bdellovibrio bacteriovorus. J. Bacteriol. 102: 149–160.

    PubMed  CAS  Google Scholar 

  • Roden, E.E. and D.R. Lovley. 1993. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl. Environ. Microbiol. 59: 734–742.

    PubMed  CAS  Google Scholar 

  • Rodrigues, F.K., V. Virrankoski-Castrodeza, J.H. Parish and K. Grimm. 1980. Isolation and characterization of new bacteriophages for Myxococcus xanthus. Arch. Microbiol. 126: 175–180.

    Article  CAS  Google Scholar 

  • Rooney-Varga, J.N., R.T. Anderson, J.L. Fraga, D. Ringelberg and D.R. Lovley. 1999. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl. Environ. Microbiol. 65: 3056–3063.

    PubMed  CAS  Google Scholar 

  • Rosenberg, E. and M. Dworkin (Editors). 1984. Myxobacteria. Development and Cell Interactions, Springer-Verlag, New York.

    Google Scholar 

  • Rosenberg, E., K.H. Keller and M. Dworkin. 1977. Cell density-dependent growth of Myxococcus xanthus on casein. J. Bacteriol. 129: 770–777.

    PubMed  CAS  Google Scholar 

  • Rosenfelder, G., O. Lüderitz and O. Westphal. 1974. Composition of lipopolysaccharides from Myxococcus fulvus and other fruiting and non-fruiting myxobacteria. Eur. J. Biochem. 44: 411–420.

    Article  PubMed  CAS  Google Scholar 

  • Rowland, A.C. and G.H. Lawson. 1974. Intestinal adenomatosis in the pig: immunofluorescent and electron microscopic studies. Res. Vet. Sci. 17: 323–330.

    PubMed  CAS  Google Scholar 

  • Rozanova, E.P. and T.N. Nazina. 1976. A mesophilic, sulfate-reducing, rod-shaped nonspore-forming bacterium. Mikrobiologiya 45: 825– 830.

    CAS  Google Scholar 

  • Rozanova, E.P., T.N. Nazina and A.S. Galushko. 1988. A new genus of sulfate-reducing bacteria and the description of its new species, Desulfomicrobium apsheronum, new genus new species. Mikrobiologiya 57: 514–520.

    Google Scholar 

  • Rozanova, E.P., T.N. Nazina and A.S. Galushko. 1994. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 49. Int. J. Syst. Bacteriol. 44: 370–371.

    Article  Google Scholar 

  • Ruby, E.G. 1989. Cell-envelope modifications accompanying intracellular growth of Bdellovibrio bacteriovorus. In Moulder (Editor), Intracellular Parasitism, CRC Press, Boca Raton. pp. 17–34.

    Google Scholar 

  • Ruby, E.G. 1992. The genus Bdellovibrio. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed, Vol. 4, Springer-Verlag, New York. pp. 3400–3415.

    Google Scholar 

  • Ruby, E.G. and J.B. McCabe. 1986. An ATP transport system in the intracellular bacterium, Bdellovibrio bacteriovorus 109J. J. Bacteriol. 167: 1066–1070.

    PubMed  CAS  Google Scholar 

  • Ruby, E.G., J.B. McCabe and J.I. Barke. 1985. Uptake of intact nucleoside monophosphates by Bdellovibrio bacteriovorus 109J. J. Bacteriol. 163: 1087–1094.

    PubMed  CAS  Google Scholar 

  • Rückert, G. 1978. Förderung der Fruchtkörper-bildung von Myxococcus virescens Thaxter (Myxobacterales) in Rohkulturen durch Salzzusatz. Z. Allg. Mikrobiol. 18: 69–71.

    Article  PubMed  Google Scholar 

  • Rückert, G. 1984. Untersuchungen zum Vorkommen von Myxobakterien in von Meerwasser beeinflussten Substraten unter besonderer Berücksichtigung der Insel Helgoland. Helgol. Meeresunters. 38: 179– 184.

    Article  Google Scholar 

  • Rudd, K.E. and D.R. Zusman. 1982. RNA polymerase of Myxococcus xanthus: Purification and selective transcription in vitro with bacteriophage templates. J. Bacteriol. 151: 89–105.

    PubMed  CAS  Google Scholar 

  • Rueter, P., R. Rabus, H. Wilkes, F. Aeckersberg, F.A. Rainey, H.W. Jannasch and F. Widdel. 1994. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372: 455–458.

    Article  PubMed  CAS  Google Scholar 

  • Sager, B. and D. Kaiser. 1994. Intercellular C-aignaling and the traveling waves of myxococcus. Genes Dev. 8: 2793–2804.

    Article  PubMed  CAS  Google Scholar 

  • Sahm, K., C. Knoblauch and R. Amann. 1999. Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates inmarine arctic sediments. Appl. Environ. Microbiol. 65: 3976–3981.

    PubMed  CAS  Google Scholar 

  • Samain, E., H.C. Dubourguier and G. Albagnac. 1984. Isolation and Characterization of Desulfobulbus elongatus sp. nov. from a mesophilic industrial digester. Syst. Appl. Microbiol. 5: 391–401.

    Article  CAS  Google Scholar 

  • Sanford, R.A., J.R. Cole, F.E. Löffler and J.M. Tiedje. 1996. Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl. Environ. Microbiol. 62: 3800–3808.

    PubMed  CAS  Google Scholar 

  • Sanford, R.A., J.R. Cole and J.M. Tiedje. 2002. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an arylhalorespiring facultative anaerobic myxobacterium. Appl. Environ. Microbiol. 68: 893–900.

    Article  PubMed  CAS  Google Scholar 

  • Sapico, F.L., D. Reeves, H.M. Wexler, J. Duncan, K.H. Wilson and S.M. Finegold. 1994. Preliminary study using species-specific oligonucle-otide probe for rRNA of Bilophila wadsworthia. J. Clin. Microbiol. 32: 2510–2513.

    PubMed  CAS  Google Scholar 

  • Sarao, R., H.D. McCurdy and L. Passador. 1985. Enzymes of the intermediary carbohydrate metabolism of Polyangium cellulosum. Can. J. Microbiol. 31: 1142–1146.

    Article  CAS  Google Scholar 

  • Sasse, F., B. Kunze, T.M.A. Gronewold and H. Reichenbach. 1998. The chondramides: Cytostatic agents from myxobacteria acting on the actin cytoskeleton. J. Natl. Cancer Inst. 90: 1559–1563.

    Article  PubMed  CAS  Google Scholar 

  • Schauder, R., B. Eikmanns, R.K. Thauer, F. Widdel and G. Fuchs. 1986. Acetate oxidation of carbon dioxide in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch. Microbiol. 145: 162–172.

    Article  CAS  Google Scholar 

  • Schelling, J.E., C. Anderson and S.F. Conti. 1977. Serotyping of bdellovibrios by agglutination and indirect immunofluorescence. 77th Annual Meeting of the American Society for Microbiology, p. 179.

    Google Scholar 

  • Schelling, M.E. and S.F. Conti. 1983. Serotyping of bdellovibrios by agglutination and indirect immunofluorescence. Int. J. Syst. Bacteriol. 33: 816–821.

    Article  Google Scholar 

  • Schelling, M. and S.F. Conti. 1986. Host receptor sites involved in the attachment of Bdellovibrio bacteriovorus and Bdellovibrio stolpii. FEMS Microbiol. Lett. 36: 319–323.

    Article  CAS  Google Scholar 

  • Scherer, O.W., H. Budzikiewicz, R. Hartmann, R.A. Klein and H. Egge. 1992. The structural elucidation of the two positional isomers of a mono-glucopyranosyl mono-acyl glycerol derivative from Cystobacter fuscus (Myxobacterales). Biochim. Biophys. Acta 1117: 42–46.

    Article  PubMed  CAS  Google Scholar 

  • Schink, B. 1985. Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus, new species. Arch. Microbiol. 142: 295–301.

    Article  CAS  Google Scholar 

  • Schink, B. 1986. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 20. Int. J. Syst. Bacteriol. 36: 354–356.

    Article  Google Scholar 

  • Schink, B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61: 262–280.

    PubMed  CAS  Google Scholar 

  • Schink, B. and N. Pfennig. 1982. Fermentation of trihydroxybenzenes by Pelobacter acidigallici, new genus new species: a new strictly anaerobic, non-spore-forming bacterium. Arch. Microbiol. 133: 195–201.

    Article  CAS  Google Scholar 

  • Schink, B. and N. Pfennig. 1983. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 12. Int. J. Syst. Bacteriol. 33: 896–897.

    Article  Google Scholar 

  • Schink, B. and M. Stieb. 1983. Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, non-spore-forming bacterium, Pelobacter venetianus, sp. nov. Appl. Environ. Microbiol. 45: 1905–1913.

    PubMed  CAS  Google Scholar 

  • Schink, B. and M. Stieb. 1984. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 13. Int. J. Syst. Bacteriol. 34: 91–92.

    Article  Google Scholar 

  • Schmidt, J.E. and B.K. Ahring. 1993. Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor. Appl. Environ. Microbiol. 59: 2546–2551.

    PubMed  CAS  Google Scholar 

  • Schmidt-Lorenz, W and H. Kühlwein. 1968. Intracelluläre Bewegungsorganellen der Myxobakterien. Arch. Microbiol. 60: 95–98.

    CAS  Google Scholar 

  • Schmidt-Lorenz, W and H. Kühlwein. 1969. Beiträge zur kenntnis der Myxobakterienzelle. 2. Mitteilung. oberflächenstrukturen der schwa-rmzellen. Arch. Microbiol. 68: 405–426.

    CAS  Google Scholar 

  • Schoberth, S. 1973. A new strain of Desulfovibrio gigas isolated from a sewage plant. Arch. Mikrobiol. 92: 365–368.

    Article  PubMed  CAS  Google Scholar 

  • Schöcke, L. and B. Schink. 1998. Membrane-bound proton-translocating pyrophosphatase of Syntrophus gentianae, a syntrophically benzoate-degrading fermenting bacterium. Eur. J. Biochem. 256: 589–594.

    Article  PubMed  Google Scholar 

  • Schöcke, L. and B. Schink. 1999. Energetics and biochemistry of fermentative benzoate degradation by Syntrophus gentianae. Arch. Microbiol. 171: 331–337.

    Article  Google Scholar 

  • Schoeffield, A.J. 1990. Ecological, Serological and Molecular Characterization of Halophilic Bdellovibrios, Doctoral thesis, University of Maryland at Baltimore. Baltimore, Maryland.

    Google Scholar 

  • Schoeffield, A.J., W.A.J. Falkler, D. Desai and H.N. Williams. 1991. Serogrouping of halophilic bdellovibrios from Chesapeake Bay and environs by immunodiffusion and immunoelectrophoresis. Appl. Environ. Microbiol. 57: 3471–3475.

    Google Scholar 

  • Schroeter, J. 1886. Schizomycetes. In Cohn (Editor), Kryptogamenflora von Schlesien, Bd. 3, Heft 3, Pilze, J.U. Kern’s Verlag, Breslau. pp. 1–814.

    Google Scholar 

  • Schumacher, U.K. 1997. Adherence of Bilophila wadsworthia to laminin and fibronectin. Clin. Infect. Dis. 25: S180.

    Article  PubMed  Google Scholar 

  • Schumacher, U. and M. Bucheler. 1997. First isolation of Bilophila wadsworthia in otitis externa. HNO. 45: 567–569.

    Article  PubMed  CAS  Google Scholar 

  • Schumacher, U.K., M. Maennel and H. Werner. 2000. Adherence of Bacteroides species and Bilophila wadsworthia to phospholipids and glycolipids. Anaerobe 6: 61–63.

    Article  CAS  Google Scholar 

  • Schumacher, W., P.M.H. Kroneck and N. Pfennig. 1992. Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species. Description of “Spirillum” 5175 as Sulfurospirillum deleyianum gen. nov., spec. nov. Arch. Microbiol. 158: 287–293.

    Article  CAS  Google Scholar 

  • Schürmann, C. 1967. Growth of myxococci in suspension in liquid media. Appl. Microbiol. 15: 971–974.

    PubMed  Google Scholar 

  • Schwudke, D., E. Strauch, M. Kruger and B. Appel. 2001. Taxonomic studies of predatory Bdellovibrios based on 16S rRNA analysis, ri-botyping and the hit locus and characterization of isolates from the gut of animals. Syst. Appl. Microbiol. 24: 385–394.

    Article  PubMed  CAS  Google Scholar 

  • Seidler, R.J., M. Mandel and J.N. Baptist. 1972. Molecular heterogeneity of the bdellovibrios: evidence of two new species. J. Bacteriol. 109: 209–217.

    CAS  Google Scholar 

  • Seidler, R.J. and M.P. Starr. 1968. Structure of the flagellum of Bdellovibrio bacteriovorus. J. Bacteriol. 95: 1952–1955.

    PubMed  CAS  Google Scholar 

  • Seidler, R.J. and M.P. Starr. 1969. Isolation and characterization of host-independent bdellovibrios. J. Bacteriol. 100: 769–785.

    PubMed  CAS  Google Scholar 

  • Seitz, H.J. and H. Cypionka. 1986. Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch. Microbiol. 146: 63–67.

    Article  CAS  Google Scholar 

  • Selenska-Pobell, S. 2002. Diversity and activity of bacterium in uranium waste piles. In Keith-Roach and Livens (Editors), Interactions of Microorganisms with Radionuclides, Elsevier, Amsterdam. pp. 225–253.

    Chapter  Google Scholar 

  • Severin, A.I., N.Y. Markelova, A.V. Afinogenova and I.S. Kulaev. 1987. Isolation and some physicochemical properties of lytic proteinase of the parasitic bacterium Micavibrio admirandus. Biokhimiya 52: 1594– 1599.

    CAS  Google Scholar 

  • Sharak Genthner, B.R., G. Mundfrom and R. Devereux. 1994. Characterization of Desulfomicrobium escambium sp. nov. and proposal to assign Desulfovibrio desulfuricans strain Norway 4 to the genus Desulfomicrobium. Arch. Microbiol. 161: 215–219.

    Article  CAS  Google Scholar 

  • Shelton, D.R. andJ.M. Tiedje. 1984. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chloroben-zoic acid. Appl. Environ. Microbiol. 48: 840–848.

    PubMed  CAS  Google Scholar 

  • Shi, W.Y, T. Kohler and D.R. Zusman. 1993. Chemotaxis plays a role in the social behavior of Myxococcus xanthus. Mol. Microbiol. 9: 601–611.

    Article  PubMed  CAS  Google Scholar 

  • Shilo, M. 1966. Predatory bacteria. Science 2: 33–37.

    Google Scholar 

  • Shilo, M. 1969. Morphological and physiological aspects of the interaction of Bdellovibrio with host bacteria. Curr. Top. Microbiol. Immunol. 50: 174–204.

    Article  PubMed  CAS  Google Scholar 

  • Shimkets, L.J. 1987. Control of morphogenesis in Myxobacteria. CRC Crit. Rev. Microbiol. 14: 195–227.

    CAS  Google Scholar 

  • Shimkets, L.J. and D. Kaiser. 1982. Induction of coordinated movement of Myxococcus xanthus cells. J. Bacteriol. 152: 451–461.

    PubMed  CAS  Google Scholar 

  • Shimkets, L.J. and C.R. Woese. 1992. A phylogenetic analysis of the myxobacteria: Basis for their classification. Proc. Natl. Acad. Sci. U.S.A. 89: 9459–9463.

    Article  PubMed  CAS  Google Scholar 

  • Sievert, S.M. and J. Kuever. 2000. Desulfacinum hydrothermale sp. nov., a thermophilic, sulfate-reducing bacterium from geothermally heated sediments near Milos Island (Greece). Int. J. Syst. Evol. Microbiol. 50: 1239–1246.

    Article  PubMed  CAS  Google Scholar 

  • Silakowski, B., G. Nordsiek, B. Kunze, H. Blöcker and R. Müller. 2001. Novel features in a combined polyketide synthase/non-ribosomalpeptide synthetase: the myxalamid biosynthetic gene cluster of the myxobacterium Stigmatella aurantiaca Sga15. Chem. Biol. 8: 59–69.

    Article  PubMed  CAS  Google Scholar 

  • Singh, B.N. 1947. Myxobacteria in soils and composts; their distribution, number and lytic action on bacteria. J. Gen. Microbiol. 1: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Singh, B.N. and N.B. Singh. 1971. Distribution of fruiting myxobacteria in Indian soils, bark of trees an dung of herbivorous animals. Indian J. Microbiol. 11: 47–92.

    Google Scholar 

  • Singleton, R., L.L. Campbell and F.M. Hawkridge. 1979. Cytochrome c 3 from the sulfate-reducing anaerobe Desulfovibrio africanus Benghazi -purification and properties. J. Bacteriol. 140: 893–901.

    PubMed  CAS  Google Scholar 

  • Skladny, H., M. Heidelbach and H.U. Schairer. 1994. Cloning and characterization of the gene encoding the major sigma-factor of Stigmatella aurantiaca. Gene 143: 123–127.

    Article  PubMed  CAS  Google Scholar 

  • Skyring, G.W. and H.E. Jones. 1972. Guanine plus cytosine contents of the deoxyribonucleic acids of some sulfate-reducing bacteria: a reassessment. J. Bacteriol. 109: 1298–1300.

    PubMed  CAS  Google Scholar 

  • Smith, A.L. 1901. Myxobacteria. J. Bot. 39: 69–72.

    Google Scholar 

  • Solntseva, L. 1940. Biology of myxobacteria I. Myxococcus. Mikrobiologiya 9: 217–232.

    CAS  Google Scholar 

  • Solntseva, L. 1941. The biology of the myxobacteria. II. The genera Melittangium and Chondromyces. Mikrobiologiya 10: 505–525.

    CAS  Google Scholar 

  • Sorokin, D.Y., G. Muyzer, T. Brinkhoff, J.G. Kuenen and M.S.M. Jetten. 1998. Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species, N. alkalicus sp. nov. Arch. Microbiol. 170: 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, K.R. and K.M. Noll. 1995. Techniques for anaerobic growth. In Robb, Sowers, DasSarma, Place, Schreier and Fleischmann (Editors), Archaea: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, NY. pp. 15–48.

    Google Scholar 

  • Spormann, A.M. 1999. Gliding motility in bacteria: Insights from studies of Myxococcus xanthus. Microbiol. Mol. Biol. Rev. 63: 621–641.

    PubMed  CAS  Google Scholar 

  • Spröer, C., H. Reichenbach and E. Stackebrandt. 1999. The correlation between morphological and phylogenetic classification of myxobacteria. Int. J. Syst. Bacteriol. 49: 1255–1262.

    Article  PubMed  Google Scholar 

  • Stackebrandt, E. 1988. Phylogenetic relationships vs. phenotypic diversity: how to achieve a phylogenetic classification system of the eubacteria. Can. J. Microbiol. 34: 552–556.

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt, E., U. Wehmeyer and B. Schink. 1989. The phylogenetic status of Pelobacter acidigallici, Pelobacter venetianus, and Pelobacter carbinolicus. Syst. Appl. Microbiol. 11: 257–260.

    Article  CAS  Google Scholar 

  • Stackebrandt, E. and C.R. Woese. 1984. The phylogeny of prokaryotes. Microbiol. Sci. 1: 117–122.

    PubMed  CAS  Google Scholar 

  • Stahl, S. 1973. Slime of Myxococcus virescens. Physiol. Plant. 28: 523–529.

    Article  CAS  Google Scholar 

  • Stams, A.M. 1994. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Leeuwenhoek 66: 271–294.

    Article  PubMed  CAS  Google Scholar 

  • Stams, A.M., J.B. Van Dijk, C. Dijkema and C.M. Plugge. 1993. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59: 1114–1119.

    PubMed  CAS  Google Scholar 

  • Stanier, R.Y. 1942. A note on elasticotaxis in myxobacteria. J. Bacteriol. 44: 405–412.

    PubMed  CAS  Google Scholar 

  • Stanier, R.Y. 1957. Order VIII. Myxobacterales Jahn. In Breed, Murray and Smith (Editors), Bergey’s Manual of Determinative Bacteriology, 7th Ed., The Williams & Wilkins Co., Baltimore. pp. 854–891.

    Google Scholar 

  • Staples, D.G. 1973. The ecology and physiology of Bdellovibrio bacteriovorus, Doctoral thesis, University of Wales, Institute of Science and Technology, Cardiff.

    Google Scholar 

  • Staples, D.G. and J.C. Fry. 1973. Factors which influence the enumeration of Bdellovibrio bacteriovorus in sewage and river water. J. Appl. Bacteriol. 36: 1–11.

    Article  Google Scholar 

  • Starich, T., P. Cordes and J. Zissler. 1985. Transposon tagging to detect a latent virus in Myxococcus xanthus. Science 230: 541–543.

    Article  PubMed  CAS  Google Scholar 

  • Starich, T. and J. Zissler. 1989. Movement of multiple DNA units between Myxococcus xanthus cells. J. Bacteriol. 171: 2323ȓ2336.

    PubMed  CAS  Google Scholar 

  • Starr, M.P. and N.L. Baigent. 1966. Parasitic interaction of Bdellovibrio bacteriovorus with other bacteria. J. Bacteriol. 91: 2006–2017.

    PubMed  CAS  Google Scholar 

  • Stein, J. and H. Budzikiewicz. 1987. 1-O-(13-Methyl-1-Z-tetradecenyl)-2-O-(13-methyltetradecanoyl)-glycero-3-phospho-ethanolamin, ein plasmalogen aus Myxococcus stipitatus. Z. Naturforsch. 42b: 1017–1020.

    Google Scholar 

  • Steiner, S., S.F. Conti and R.L. Lester. 1973. Occurrence of phosphon-osphingolipids in Bdellovibrio bacteriovorus strain UKi2. J. Bacteriol. 116: 1199–1211.

    PubMed  CAS  Google Scholar 

  • Stevens, A. 1990. Simulations of the gliding behaviour and aggregation of myxobacteria. In Alt and Hoffmann (Editors), Biological Motion, Springer-Verlag, Heidelberg. pp. 548–555.

    Google Scholar 

  • Stills, H.F., Jr. 1991. Isolation of an intracellular bacterium from hamsters (Mesocricetus auratus) with proliferative ileitis and reproduction of the disease with a pure culture. Infect. Immun. 59: 3227–3236.

    PubMed  CAS  Google Scholar 

  • Stolp, H. 1973. The bdellovibrios: bacterial parasites of bacteria. Annu. Rev. Phytopath. 11: 53–76.

    Article  Google Scholar 

  • Stolp, H. and M.P. Starr. 1963. Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie Leeuwenhoek J. Microbiol. Serol. 29: 217–248.

    Article  CAS  Google Scholar 

  • Straley, S.C. and S.F. Conti. 1974. Chemotaxis in Bdellovibrio bacteriovorus. J. Bacteriol. 120: 549–551.

    PubMed  CAS  Google Scholar 

  • Straley, S.C. and S.F. Conti. 1977. Chemotaxis by Bdellovibrio bacterionorus toward prey. J. Bacteriol. 132: 628–640.

    PubMed  CAS