Bacterial Indicators of Viruses

  • Samuel R. Farrah
Part of the Food Microbiology and Food Safety book series (FMFS)

8.0. Summary

The association between human enteric viruses and disease is well established. However, determining the presence of all of the many types of viruses that are pathogenic to humans in food and water is not practical at this time. Because enteric bacteria are usual inhabitants of the human intestinal tract, they have been used as indicators of fecal pollution and the possible presence of enteric viruses. Several different types of bacteria have been considered for use as indicators. Currently, most tests for indicator microorganisms rely on the detection of lactose-fermenting bacteria (coliforms, fecal coliforms, E. coli). Food and water samples with relatively high levels of these bacteria have frequently been found to contain bacterial and viral pathogens. However, viral pathogens have also been found in food and water samples with no or acceptable levels of indicator bacteria. It may be necessary to supplement tests for bacterial indicators with tests for other indicators, such as bacteriophages (see Chapter 8). Also, it may be desirable to determine the source of indicators, at least to the extent of determining if they are from human or non-human sources. This may lead to a better correlation between the presence of human indicator bacteria and human enteric viruses.


Fecal Coliform Much Probable Number Enteric Virus Indicator Bacterium Fecal Pollution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9.0 References

  1. Allsop, K., and Stickler, D. J., 1984, The enumeration of Bacteroides fragilis organisms from sewage and natural waters. J. Appl. Bact. 56:15–24.Google Scholar
  2. Baggi, F., Demarta, A., and Peduzzi, R., 2001, Persistence of viral pathogens and bacteriophages during sewage treatment: lack of correlation with indicator bacteria. Res. Microbiol. 152:743–751.CrossRefGoogle Scholar
  3. Bagley, S.T., and Seidler, R. J., 1977, Significance of fecal coliform-positive Klebsiella. Appl. Environ. Microbiol. 33:1141–1148.Google Scholar
  4. Berg, G., and Metcalf, T. G., 1978, Indicators of viruses, in: Indicators of Viruses in Water and Food (G. Berg, ed.), Ann Arbor Science Publishers, Ann Arbor, MI, pp. 267–296.Google Scholar
  5. Blackmer, F., Reynolds, K. A., Gerba, C. P., and Pepper, I. L., 2000, Use of integrated cell culture-PCR to evaluate the effectiveness of poliovirus inactivation by chlorine. Appl. Environ. Microbiol. 66:2267–2268.CrossRefGoogle Scholar
  6. Brenner, K. P., Rankin, C. C., Robal, Y. R., Stelma, G. N., Jr., Scarpino, P. V., and Dufour, A. P., 1993, New medium for the simultaneous detection of total coliforms and Escherichia coli in water. Appl. Environ. Microbiol. 59:3534–3544.Google Scholar
  7. Burkhardt, W., III, and Calci, K. R., 2000, Selective accumulation may account for shellfish-associated viral illness. Appl. Environ. Microbiol. 66:1375–1378.CrossRefGoogle Scholar
  8. Cabelli, V. J., Dufour, A. P., McCabe, J. L., and Levin, M.A., 1982, Swimming-associated gastroenteritis and water quality. Am. J. Epidemiol. 115:606–616.Google Scholar
  9. Carson, C. A., Shear, B. L., Ellersieck, M. R., and Asfaw, A., 2001, Identification of ecal Escherichia coli from humans and animals by ribotyping. Appl. Environ. Microbiol. 67:1503–1507.CrossRefGoogle Scholar
  10. Chang, G. W., Brill, J., and Lum, R., 1989, Proportion of eta-D-glucuronidasenegative scherichia coli in human fecal samples. Appl. Environ. Microbiol. 55:335–339.Google Scholar
  11. Clark, H. F., Geldreich, E. E., Jeter, H. L., and Kabler, P.W., 1951. The membrane filter in sanitary bacteriology. Public Health Rep. 66:951–956.Google Scholar
  12. Clesceri, L. S., Greenberg, A. E., and Eaton, A. D., eds., 1998, Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC, p. 9-1–78.Google Scholar
  13. Dore, W. J., and Lees, D. N., 1995, Behavior of Escherichia coli and male-specific bacteriophage in environmentally contaminated bivalve mollusks before and after depuration. Appl. Environ. Microbiol. 61:2830–2834.Google Scholar
  14. Dore, W. J., Wood, K. H., and Lees, D. N., 2000, Evaluation of F-specific RNA bacteriophage as a candidate human enteric virus indicator for bivalve molluscan shell-fish. Appl. Environ. Microbiol. 66:1280–1285.CrossRefGoogle Scholar
  15. Duncan, D.W., and Razzell, W. E., 1972, Klebsiella biotypes among coliforms isolated from forest environments and farm produce. Appl. Microbiol. 24:933–938.Google Scholar
  16. Dutka, B. J., Chau, A. S. Y., and Coburn, J., 1974, Relationship between bacterial indicators of water pollution and fecal sterols. Water Res. 8:1047–1055.CrossRefGoogle Scholar
  17. Eijkman, C., 1904, Die garungsprobe bei 46° als hilfsmittel bei der trinkwassereruntersuchung. Zentr. Bakteriol. Parasitenk. Abt. I. Orig. 37:742.Google Scholar
  18. Ellender, R. D., Mapp, J. B., Middlebrooks, B. L., Cook, D.W., and Cake, E.W., 1980, Natural enterovirus and fecal coliform contamination of gulf coast oysters. J. Food. Prot. 43:105–110.Google Scholar
  19. Escherich, T., 1885, Die darmbakterien des neugeborenem und sauglings. Fortshr. Med. 3:515–522, 547–554.Google Scholar
  20. Farrah, S. R., Scheuerman, P. R., Eubanks, R. D., and Bitton, G., 1985, Bacteria and viruses in aerobically digested sludge: influence of physical and chemical treatments on survival and association with flocs under laboratory conditions. Water Sci. Tech. 17:165–174.Google Scholar
  21. Feng, P. C. S., and Hartman, P. A., 1982, Fluorogenic assays for immediate confirmation of Escherichia coli. Appl. Environ. Microbiol. 43:1320–1329.Google Scholar
  22. Fiksdal, L., Maki, J. S., LaCroix, S. J., and Staley, J. T., 1985, Survival and detection of Bacteroides spp., prospective indicator bacteria. Appl. Environ. Microbiol. 49: 148–150.Google Scholar
  23. Formiga-Cruz, M., Tofino-Quesada, G., Bofill-Mas, S., Lees, D. N., Henshilwood, K., Allard, A. K., Conden-Hansson, A.-C., Hernroth, B. E., Vantarakis, A., Tsibouxi, A., Papapetropoulou, M., Furones, M. D., and Girones, R., 2002, Distribution of human virus contamination in shellfish from different growing areas in Greece, Spain, Sweden, and the United Kingdom. Appl. Environ. Microbiol. 68:5990–5998.CrossRefGoogle Scholar
  24. Formiga-Cruz, M., Allard, A. K., Conden-Hansson, A.-C., Henshilwood, K., Hernroth, B. E., Jofre, J., Lees, D. N., Lucena, F., Papapetropoulou, M., Rangdale, R. E., Tsibouxi, A., Vantarakis, A., and Girones, R., 2003, Evaluation of potential indicators of viral contamination in shellfish and their applicability to diverse geographical areas. Appl. Environ. Microbiol. 69:1556–1563.CrossRefGoogle Scholar
  25. Fujioka, R. S., and Shizumura, L. K., 1985, Clostridium perfringenes, a reliable indicator of stream water quality. J.Water Pollut. Control Fed. 57:986–992.Google Scholar
  26. Gassilloud, B., Schwartzbrod, L., and Gantzer, C., 2003, Presence of viral genomes in mineral water: a sufficient condition to assume infectious risk? Appl. Environ. Microbiol. 69:3965–3969.CrossRefGoogle Scholar
  27. Geldreich, E. E., and Kenner, B. A., 1969, Concepts of fecal streptococci in stream pollution. J. Water Pollut. Control Fed. 41:R336–R352.Google Scholar
  28. Gerba, C. P., Goyal, S. M., LaBelle, R. L., Cech, I., and Bodgan, G. F., 1979, Am. J. Public Health. 69:1116–1119.CrossRefGoogle Scholar
  29. Goyal, S. M., Gerba, C. P., and Melnick, J. L., 1979, Human enteroviruses in oysters and their overlaying waters. Appl. Environ. Microbiol. 37:572–581.Google Scholar
  30. Hackney, C. R., Ray, B., and Speck, M. L., 1979, Repair detection procedure for enumeration of fecal coliforms and enterococci from seafoods and marine environments. Appl. Environ. Microbiol. 37:947–953.Google Scholar
  31. Hagedorn, C. S., Robinson, S. L., Filtz, J. R., Grubbs, S. M., Angier, T. A., and Reneau, Jr., R. B., 1999, Using antibiotic resistance patterns in the fecal streptococci to determine sources of fecal pollution in a rural Virginia watershed. Appl. Environ. Microbiol. 65:5522–5531.Google Scholar
  32. Halliday, M. L., Kang, L.-Y., Zhou, T.-K., Hu, M.-D., Pan, Q.-C., Fu, T.-Y., Huang, Y.-S., and Hu, S.-L., 1991, An epidemic of hepatitis A attributable to the ingestion of raw clams in Shanghai, China. J. Infect. Dis. 164:852–859.Google Scholar
  33. Hazen, T. C., and Toranzos, G. A., 1990, Tropical source water, in: Drinking Water Microbiology (G. A. McFeters, ed.), Springer-Verlag, New York, pp. 32–54.Google Scholar
  34. Heller, D., Gill, O. N., Raynham, E., Kirkland, T., Zadick, P. M., and Stanwell-Smith, R., 1986, An outbreak of gastrointestinal illness associated with consumption of raw depurated oysters. Br. Med. J. 292:1726–1727.Google Scholar
  35. Hood, M. A., Ness, G. E., and Blake, N. J., 1983, Relationship among fecal coliforms, Escherichia coli, and Salmonella spp. in shellfish. Appl. Environ. Microbiol. 45: 122–126Google Scholar
  36. Hussong, D., Damare, J. M., Weiner, R. M., and Colwell, R. R., 1981, Bacteria associated with false-positive most-probable-number coliform test results for shellfish and estuaries. Appl. Environ. Microbiol. 41:35–45.Google Scholar
  37. Hutin, Y. J. F., Pool, V., Cramer, E. H., Nainan, O.V., Weth, J., Williams, I.T., Goldstein, S.T., Gensheimer, K. F., Bell, B. P., Shapiro, C. N., Alter, M. J., and Margolis, H. S., 1999, N. Engl. J. Med. 340:595–601.CrossRefGoogle Scholar
  38. Johnson, J. M., Weagant, S. D., Jinneman, K. C., and Bryant, J. L., 1995, Use of pulsed field gel electrophoresis for epidemiological study of Escherichia coli O157:H7 during a food-borne outbreak. Appl. Environ. Microbiol. 61:2806–2808.Google Scholar
  39. Kang, D. H., and Siragusa, G. R., 1999, Agar underlay method for recovery of sublethally heat-injured bacteria. Appl. Environ. Microbiol. 65:5334–5337.Google Scholar
  40. Kingsley, D. H., Meade, G. K., and Richards, G. P., 2002, Detection of both hepatitis A virus and Norwalk-like virus in imported clams associated with food-borne illness. Appl. Environ. Microbiol. 68:3914–3918.CrossRefGoogle Scholar
  41. Koh, E. G., Huyn, J. H., and LaRock, P. A., 1994, Pertinence of indicator organisms and sampling variables to Vibrio concentrations. Appl. Environ. Microbiol. 60: 3897–3900.Google Scholar
  42. Kruperman, P. H., 1983, Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 46:165–170.Google Scholar
  43. Le Guyader, F., Apaire-Marchais, V., Brillet, J., and Billaudel, S., 1993, Use of genomic probes to detect hepatitis A virus and enterovirus RNAs in wild shellfish and relationship of virus contamination to bacterial contamination. Appl. Environ. Microbiol. 59:3963–3968.Google Scholar
  44. Le Guyader, F., Dubois, E., Menard, D., and Pommepuy, M., 1994, Detection of hepatitis A virus, rotavirus, and enterovirus in naturally contaminated shellfish and sediment by reverse transcription-seminested PCR. Appl. Environ. Microbiol. 60:3665–3671.Google Scholar
  45. Manafi, M., Kneifel, W., and Bascomb, S., 1991, Fluorogenic and chromogenic substrates used in bacterial diagnostics. Microbiol. Rev. 55:335–348.Google Scholar
  46. McFeters, G. A., Cameron, S. C., and LeChevallier, M.W., 1982, Influence of diluents, media, and membrane filters on detection of injured waterborne coliform bacteria. Appl. Environ. Microbiol. 43:97–103.Google Scholar
  47. Mesquita, de, M. M. F., Evison, L. M., and West, P. A., 1991, Removal of faecal indicator bacteria and bacteriophages from the common mussel (Mytilus edulis) under artifical depuration conditions. J. Appl. Bact. 70:495–501.Google Scholar
  48. Natvig, E. E., Ingham, S. C., Ingham, B. H., Cooperband, L. R., and Roper, T. R., 2002, Salmonella enterica serovar Typhimurium and Escherichia coli contamination of roots and leaf vegetables grown in soils with incorporated bovine manure. Appl. Environ. Microbiol. 68:2737–2744.CrossRefGoogle Scholar
  49. Newton, K. G., Harrison, J. C. L., and Smith, K. M., 1977, Coliforms from hides and meats. Appl. Environ. Microbiol. 33:199–200.Google Scholar
  50. Nishida, T., Kimura, H., Saitoh, M., Shinohara, M., Kato, M., Fukuda, S., Munemura, Y., Mikami, T., Kawamoto, A., Akiyama, M., Kato, Y., Nishi, K., Kozawa, K., and Nisho, O., 2003, Detection, quantitation, and phylogenetic analysis of noroviruses in Japanese oysters. Appl. Environ. Microbiol. 69:5782–5786.CrossRefGoogle Scholar
  51. Niu, M. T., Polish, L. B., Robertson, B. H., Khanna, B. K., Woodruff, B. A., Shapiro, C. N., Miller, M. A., Smith, J. D., Gedrose, J. K., Alter, M. J., and Margolis, H. S., 1992, Multistate outbreak of hepatitis A associated with frozen strawberries. J. Infect. Dis. 166:518–524.Google Scholar
  52. Parshionikar, S. U., William-True, S., Fout, G. S., Robbins, D. E., Seys, S. A., Cassady, J.D., and Harris, R., 2003, Waterborne outbreak of gastroenteritis associated with a norovirus. Appl. Environ. Microbiol. 69:5263–5268.CrossRefGoogle Scholar
  53. Parveen, S., Portier, K. M., Robinson, K., Edminston, L., and Tamplin, M. L., 1999, Discriminant analysis of ribotype profiles of Escherichia coli for differentiating human and nonhuman sources of fecal pollution. Appl. Environ. Microbiol. 65:3142–3147.Google Scholar
  54. Parveen, S., Hodge, N., Stall, R. E., Farrah, S. R., and Tamplin, M. L., 2001, Phenotypic and genotypic characterization of human and nonhuman Escherichia coli. Water Res. 35:379–386.CrossRefGoogle Scholar
  55. Power, U. F., and Collins, J. K., 1989, Differential depuration of poliovirus, Escherichia coli, and a coliphage by the common mussel, Mytilus edulis. Appl. Environ. Microbiol. 55:1386–1390.Google Scholar
  56. Schwab, K. J., Neill, F. H., Estes, K. K., Metcalf, T. G., and Atmar, R. L., 1998, Distribution of Norwalk virus within shellfish following bioaccumulation and subsequent depuration by detection using RT-PCR. J. Food Prot. 61:1674–1680.Google Scholar
  57. Scott, T. M., Rose, J. B., Jenkins, T. M., Farrah, S. R., and Lukasik, J., 2002, Microbial source tracking: current methodology and future directions. Appl. Environ. Microbiol. 68:5796–5803.CrossRefGoogle Scholar
  58. Scott, T. M., Parveen, S., Portier, K. M., Rose, J. B., Tamplin, M. L., Farrah, S. R., Koo, A., and Lukasik, J., 2003, Geographical variation in ribotype profiles of Escherichia coli isolates from humans, swine, poultry, beef, and dairy cattle in Florida. Appl. Environ. Microbiol. 69:1089–1092.CrossRefGoogle Scholar
  59. Singh, A., and McFeters, G. A., 1986, Recovery, growth, and production of heat-stable enterotoxin by Escherichia coli after copper-induced injury. Appl. Environ. Microbiol. 51:738–742.Google Scholar
  60. Skraber, S., Gassilloud, B., and Gantzer, C., 2004, Comparison of coliforms and coliphages as tools for assessment of viral contamination of river water. Appl. Environ. Microbiol. 70:3644–3649.CrossRefGoogle Scholar
  61. Sobsey, M. D., Hackney, C. R., Carrick, R. J., Ray, B., and Speck, M. L., 1980, Occurrence of enteric bacteria and viruses in oysters. J. Food Prot. 43:111–113.Google Scholar
  62. Speck, M. L., Ray, B., and Readm Jr., R. B., 1975, Repair and enumeration of injured coliforms by a plating procedure. Appl. Microbiol. 29:549–550.Google Scholar
  63. Stiles, M. E., and Ng, L-K., 1981, Biochemical characteristics and identification of Enterobacteriaceae isolate from meats. Appl. Environ. Microbiol. 41:639–645.Google Scholar
  64. Tang, T.W., Wang, J. X., Xu, Z.Y., Guo, Y. F., Qian, W. H., and Xu, J. X., 1991, A serologically confirmed, case-control study, of a large outbreak of hepatitis A in China, associated with consumption of clams. Epidemiol. Infect. 107:651–657.CrossRefGoogle Scholar
  65. Toranzos, G. A., and McFeters, G. A., 1997, Detection of indicator microorganisms in environmental freshwaters and drinking water, in: Manual of Environmental Microbiology (C. J. Hurst, G. R. Knudsen, M. J. McInerney, L. D. Stezenbach, and M.V. Walter, eds.), ASM Press, Washington, DC, pp. 184–194.Google Scholar
  66. Wait, D. A., Hackney, C. R., Carrick, R. J., Lovelace, G., and Sobsey, M. D., 1983, Enteric bacterial and viral pathogens and indicator bacteria in hard shell clams. J. Food Prot. 46:493–496.Google Scholar
  67. Wiggins, B. A., Andrews, R.W., Conway, R. A., Corr, C. L., Dobratz, E. J., Dougherty, D. P., Eppard, J. R., Knupp, S. R., Limjoco, M. C., Mettenburg, J. M., Rinehardt, J. M., Sonsino, J., Torrijos, R. L., and Zimmerman, M. E., 1999, Use of antibiotic resistance analysis to identify nonpoint sources of fecal pollution. Appl. Environ. Microbiol. 65:3483–3486.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Samuel R. Farrah
    • 1
  1. 1.Department of MicrobiologyUniversity of FloridaGainesville

Personalised recommendations