Skip to main content

Random Structures in Physics

  • Chapter
Space, Structure and Randomness

Part of the book series: Lecture Notes in Statistics ((LNS,volume 183))

Abstract

One of the major contributions of Georges Matheron to the Sciences of the 20th century concerns the field of Physics of random media. This important aspect of the work of Georges Matheron is not so well known by the communities of Geostatistics and Mathematical Morphology, but it has a large impact in many domains of engineering sciences. In parallel to his work on flows in porous media, Georges Matheron developed in collaboration with Jean Serra the basis of mathematical morphology (like operations of erosion, dilation, opening, ), having in mind the geometrical characterization of complex porous media [48].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altus E. (2001): ‘Statistical modeling of heterogeneous microbeams’, International Journal of solids and structures, Vol. 38, pp. 5915–5934.

    Article  MATH  Google Scholar 

  2. Barbe, F., L. Decker., D. Jeulin, G. Cailletaud (2001): ‘Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: F.E. model’, Int. J. Plasticity 17(4), pp. 513–536.

    Article  MATH  Google Scholar 

  3. Beran, M.J., J. Molyneux (1966): ‘Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media’, Q. Appl. Math. 24, pp. 107–118.

    MATH  Google Scholar 

  4. Beran, M. J. (1968): Statistical Continuum Theories. (J. Wiley, New York).

    MATH  Google Scholar 

  5. Beran M. J. (1980): ‘Fields fluctuations in a two phase random medium’, J. Math. Phys., vol 21, (10), pp. 2583–2585.

    Article  Google Scholar 

  6. Berdin, C., G. Cailletaud, D. Jeulin (1993): ‘Micro-Macro Identification of Fracture Probabilistic Models’. In: Proc. of the International Seminar on Micromechanics of Materials, MECAMAT’93, Fontainebleau, 6–8 July 1993 (Eyrolles, Paris), pp. 499–510.

    Google Scholar 

  7. Beremin, F.M. (1983): ‘A local criterion for cleavage fracture of a nuclear pressure vessel steel’, Metall. Trans. A. 14A, pp. 2277–2287.

    Google Scholar 

  8. Bergman, D. (1978): ‘The dielectric constant of a composite material: a problem in classical physics’, Phys. Rep. C 43, pp. 377–407.

    Article  MathSciNet  Google Scholar 

  9. Berryman, G.J. (1985): ‘Variational bounds on elastic constants for the penetrable sphere model’, J. Phys. D: Appl. Phys. 18, pp. 585–597.

    Article  Google Scholar 

  10. Bobeth M., Diener G. (1986): ‘Field fluctuations in multicomponent mixtures’, J. Mech. Phys. Solids, 36, pp. 1–17.

    Article  Google Scholar 

  11. Brown W.F. (1955): ‘Solid mixture permittivities’, Journal of Chemical Physics, 23, pp. 1514–1517.

    Article  Google Scholar 

  12. Cailletaud, G., D. Jeulin, Ph. Rolland (1994): ‘Size effect on elastic properties of random composites’, Eng. Comput. 11(2), pp. 99–110.

    Google Scholar 

  13. Chudnovsky, A., B. Kunin (1987): ‘A probabilistic model of brittle crack formation’, J. Appl. Phys. 62(10), pp. 4124, 4129.

    Article  Google Scholar 

  14. Decker, L., D. Jeulin (2000): ‘Simulation 3D de matériaux aléatoires polycristallins’, Revue de Métallurgie-CIT/Science et Génie des Matériaux, Feb. 2000, pp. 271–275.

    Google Scholar 

  15. Delarue A. (2001): Prévision du comportement électromagnétique de matériaux composites à partir de leur mode d’élaboration et de leur morphologie, Thesis, Paris School of Mines.

    Google Scholar 

  16. Eyre, D.J., G.W. Milton (1999): ‘A fast numerical scheme for computing the response of composites using grid refinement’, Eur. Phys. J. Appl. Phys. 6, pp. 41–47.

    Article  Google Scholar 

  17. Frisch U. (1968): ‘Wave propagation in random media’, in: Probabilistic Methods in Applied Mathematics, A.T. Bharucha-Reid (ed.), Vol. 1, pp. 75–198, Academic Press, New York.

    Google Scholar 

  18. Hashin, Z. (1962) ‘The elastic moduli of heterogeneous materials’, J. Appl. Mech. pp. 143–150.

    Google Scholar 

  19. Hashin, Z., S. Shtrikman (1962): ‘A variational approach to the theory of the effective magnetic permeability of multiphase materials’, J. Appl. Phys. 33, pp. 3125–3131.

    Article  MATH  Google Scholar 

  20. Hashin, Z., S. Shtrikman (1963): ‘A variational approach to the theory of the elastic behavior of multiphase materials’, J. Mech. Phys. Solids 11, pp. 127–140.

    Article  MathSciNet  MATH  Google Scholar 

  21. Hill R. (1963) ‘Elastic properties of reinforced solids: some theoretical principles’, J. Mech. Phys. Solids, 11, pp. 357–372.

    Article  MATH  Google Scholar 

  22. Hori, M. (1973): ‘Statistical theory of the effective electrical, thermal, and magnetic properties of random heterogeneous materials. II. Bounds for the effective permittivity of statistically anisotropic materials’, J. Math. Phys. 14, pp. 1942–1948.

    Article  Google Scholar 

  23. Huet C. (1990): ‘Application of variational concepts to size effects in elastic heterogeneous bodies’, J. Mech. Phys. Solids 38, pp. 813–841.

    Article  MathSciNet  Google Scholar 

  24. Jeulin, D., P. Jeulin (1981): ‘Synthesis of Rough Surfaces by Random Morphological Models’. In: Proc. 3rd European Symposium of Stereology, Stereol. Iugosl. 3,suppl. 1, pp. 239–246.

    Google Scholar 

  25. Jeulin, D. (1987): ‘Random structure analysis and modelling by Mathematical Morphology’. In: Proc. CMDS5, ed. by A. J. M. Spencer (Balkema, Rotterdam), pp. 217–226.

    Google Scholar 

  26. Jeulin, D. (1991): Modèles morphologiques de structures aléatoires et de changement d’échelle, Thèse de Doctorat d’Etat, University of Caen.

    Google Scholar 

  27. Jeulin, D. (1992): ‘Some Crack Propagation Models in Random Media’. In: Proc. Symposium on the Macroscopic Behavior of the Heterogeneous Materials from the Microstructure, ASME, Anaheim, Nov 8–13, 1992. AMD Vo. 147, pp. 161–170.

    Google Scholar 

  28. Jeulin, D. (1994): ‘Random structure models for composite media and fracture statistics’. In: Advances in Mathematical Modelling of Composite Materials, ed. by K.Z. Markov (World Scientific Company, Singapore), pp. 239–289.

    Google Scholar 

  29. Jeulin, D., C. Baxevanakis, J. Renard (1995): ‘Statistical modelling of the fracture of laminate composites’. In: Applications of Statistics and Probability, ed. by M. Lemaire, J.L. Favre, A. Mébarki (Balkema, Rotterdam), pp. 203–208.

    Google Scholar 

  30. Jeulin, D., A. Le Coënt (1996): ‘Morphological modeling of random composites’, Proceedings of the CMDS8 Conference (Varna, 11–16 June 1995), ed. by K.Z. Markov (World Scientific, Singapore), pp. 199–206.

    Google Scholar 

  31. Jeulin, D. (ed) (1997): Proceedings of the Symposium on the Advances in the Theory and Applications of Random Sets (Fontainebleau, 9–11 October 1996) (World Scientific, Singapore).

    Google Scholar 

  32. Jeulin, D., L. Savary (1997): ‘Effective Complex Permittivity of Random Composites’, J. Phys. I/ Condens.Matter 7, pp. 1123–1142.

    Google Scholar 

  33. Jeulin, D. (1998): ‘Bounds of physical properties of some random structure’. In: Proceedings of the CMDS9 Conference (Istanbul, Turkey, June 29–July 3, 1998), ed. by E. Inan and K.Z. Markov (World Scientific, Singapore), pp. 147–154.

    Google Scholar 

  34. Jeulin, D. (2000): ‘Models of random damage’. In: Proc. Euromat 2000 Conference, Tours, France, ed. by D. Miannay, P. Costa, D. François, A. Pineau, pp. 771–776.

    Google Scholar 

  35. Jeulin, D., P. Monnaie, F. Péronnet (2001): ‘Gypsum morphological analysis and modeling’, Cement and Concrete Composites 23(2–3), pp. 299–311.

    Article  Google Scholar 

  36. Jeulin, D. (2001): ‘Random Structure Models for Homogenization and Fracture Statistics’, In: Mechanics of Random and Multiscale Microstructures, ed. by D. Jeulin, M. Ostoja-Starzewski (CISM Lecture Notes No 430, Springer Verlag).

    Google Scholar 

  37. Jeulin D., Delarue A. (2002) Numerical Homogenization of Dielectric Properties of Random Media. Application to Nanocomposites, In: Journée doctorale 2002 Saint-Etienne (20 Novembre 2002), Signaux et milieux complexes, ISBN 2-86272-281-2, Th. Fournel et G. Brun (eds), Presses de l’Université Jean Monnet, pp. 77–87.

    Google Scholar 

  38. Jikov V.V., Kozlov S.M., Oleinik O.A. (1994): Homogenization of Differential Operators and Integral Functionals, Springer Verlag.

    Google Scholar 

  39. Kanit T., Forest S., Galliet I., Mounoury V., Jeulin D. (2003): ‘Determination of the size of the representative volume element for random composites: statistical and numerical approach’, International Journal of solids and structures, Vol. 40, pp. 3647–3679.

    Article  MATH  Google Scholar 

  40. Kanit T. (2003): Notion de Volume élémentaire représentatif pour les matériaux hétérogènes: approche statistique et numérique, Thesis, Paris School of Mines.

    Google Scholar 

  41. Karal F. C., Keller J.B. (1964): ‘Elastic, electromagnetic and other waves in a random medium’, J. Math. Phys. 5, pp. 537–547.

    Article  MATH  MathSciNet  Google Scholar 

  42. Keller J.B., Karal F. C. (1966): ‘Effective dielectric constant, permeability and conductivity of a random medium and attenuation coefficient of coherent waves’, J. Math. Phys. 7, pp. 661–670.

    Article  MathSciNet  Google Scholar 

  43. Keller J.B. (1964): ‘A theorem on the conductivity of a composite medium’, J. Math. Phys. 5 No 4, pp. 548–549.

    Article  MATH  Google Scholar 

  44. Kreher W. (1990): ‘Residual stresses and stored elastic energy of composites and polycristals’, J. Mech. Phys. Solids, 38, pp. 1115–128.

    Google Scholar 

  45. Kröner, E. (1971): Statistical Continuum Mechanics. (Springer Verlag, Berlin).

    Google Scholar 

  46. Le Coënt, A., D. Jeulin (1996): ‘Bounds of effective physical properties for random polygons composites’, C.R. Acad. Sci. Paris, 323, Série II b, pp. 299–306.

    MATH  Google Scholar 

  47. Matheron G. (1964): ‘Equation de la chaleur, écoulements en milieu poreux et diffusion géochimique’, Internal report (Note Géostatistique 55), BRGM.

    Google Scholar 

  48. Matheron G. (1967): Eléments pour une théorie des milieux poreux, Masson, Paris.

    Google Scholar 

  49. Matheron G. (1968): ‘Composition des perméabilités en milieu poreux hétérogène: critique de la règle de pondération géomètrique’, Rev. IFP, vol 23, No 2, pp. 201–218.

    Google Scholar 

  50. Matheron, G. (1971): The theory of regionalized variables and its applications. (Paris School of Mines publication).

    Google Scholar 

  51. Matheron, G. (1975): Random sets and integral geometry. (J. Wiley, New York).

    MATH  Google Scholar 

  52. Matheron G. (1978): Estimer et Choisir, Fascicules du CGMM no7. (Paris School of Mines publication).

    Google Scholar 

  53. Matheron G. (1979): L’émergence de la loi de Darcy. (Paris School of Mines publication, N-592 CMM).

    Google Scholar 

  54. Matheron G. (1989): Estimating and Choosing. (Springer Verlag, Berlin).

    MATH  Google Scholar 

  55. Matheron G. (1991): ‘Géodésiques aléatoires: application à la prospection sismique’, Cahiers de Géostatistique, Fascicule 1, Compte-rendu des Journées de Géostatistique, 6–7 juin 1991, pp. 1–18. (Paris School of Mines publication).

    Google Scholar 

  56. Matheron G. (1992): ‘Analyse harmonique et équations de la Physique’, Internal Seminar, Centre de Géostatistique, 11 Dec 1992.

    Google Scholar 

  57. Matheron G. (1993): ‘Quelques inégalités pour la perméabilité effective d’un milieu poreux hétérogène’, Cahiers de Géostatistique, Fascicule 3, Compte-rendu des Journées de Géostatistique, 25–26 Mai 1993, pp. 1–20. (Paris School of Mines publication).

    Google Scholar 

  58. McCoy, J.J. (1970): ‘On the deplacement field in an elastic medium with random variations of material properties’. In: Recent Advances in Engineering Sciences, Vol. 5 (Gordon and Breach, New York), pp. 235–254.

    Google Scholar 

  59. Miller, M.N. (1969): ‘Bounds for the effective electrical, thermal and magnetic properties of heterogeneous materials’, J. Math. Phys. 10, pp. 1988–2004.

    Article  Google Scholar 

  60. Miller, M.N. (1969): ‘Bounds for effective bulk modulus of heterogeneous materials’, J. Math. Phys. 10, pp. 2005–2013.

    Article  Google Scholar 

  61. Milton, G. W. (1980): ‘Bounds on the complex dielectric constant of a composite material’, Appl. Phys. Lett. 37, pp. 300–302.

    Article  Google Scholar 

  62. Milton, G. W. (1982): ‘Bounds on the elastic and transport properties of two component composites’, J. Mech. Phys. Solids 30, pp. 177–191.

    Article  MATH  MathSciNet  Google Scholar 

  63. Milton G. W. (1986): ‘Modeling the properties of composites by laminates’. In: Homogenization and Effective Moduli of Materials and Media, J.L. Ericksen, D. Kinderlehrer, R. Kohn, J.L. Lions (eds) (Springer Verlag, Berlin), pp. 150–174.

    Google Scholar 

  64. Moulinec H., P. Suquet (1994): ‘A fast numerical method for computing the linear and nonlinear mechanical properties of composites’, C.R. Acad. Sci. Paris, 318, Série II, pp. 1417–1423.

    MATH  Google Scholar 

  65. Ostoja-Starzewski M. (1998): ‘Random field models for heterogeneous materials’, Int. J. Solids Structures, 35 No 19, pp. 2429–2455.

    Article  MATH  Google Scholar 

  66. Pélissonnier-Grosjean, C., D. Jeulin, L. Pottier, D. Fournier, A. Thorel (1997): ‘Mesoscopic modeling of the intergranular structure of Y2O3 doped aluminium nitride and application to the prediction of the effective thermal conductivity’. In: Key Engineering Materials, Volumes 132–136, Part 1 (Transtech Publications, Switzerland), pp. 623–626.

    Google Scholar 

  67. Ponte Castaneda, P. (1996): ‘Variational methods for estimating the effective behavior of nonlinear composite materials’. In: Proceedings of the CMDS8 Conference (Varna, 11–16 June 1995), ed. by K.Z. Markov (World Scientific, Singapore), pp. 268–279.

    Google Scholar 

  68. Quenec’h, J.L., J.L. Chermant, M. Coster, D. Jeulin (1994): ‘Liquid phase sintered materials modelling by random closed sets’. In: Mathematical morphology and its applications to image processing, ed. by J. Serra, P. Soille (Kluwer, Dordrecht), pp. 225–232.

    Google Scholar 

  69. Rytov S.M., Kravtsov Yu. A., Tatarskii V.I. (1989): Principles of Statistical Radiophysics, vol 3, Elements of Random Fields. (Springer-Verlag, Berlin).

    Google Scholar 

  70. Rintoul, M.D., S. Torquato (1997): ‘Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model’, J. Phys. A: Math. Gen. 30, pp. L585–L592.

    Article  Google Scholar 

  71. Sab K. (1992): ‘On the homogenization and the simulation of random materials’, Eur. J. Mech. Solids, 11, pp. 585–607.

    MATH  MathSciNet  Google Scholar 

  72. Sanchez Palencia E., Zaoui A. (ed) (1987): Homogenization Techniques for Composite Media, Lecture Notes in Physics vol. 272. (Springer Verlag, Berlin).

    MATH  Google Scholar 

  73. Schwydler M.I. (1962): ‘Les courants d’écoulements dans les milieux hétérogènes’, Izv. Akad. Nauk SSSR, Mekh. i; Mas, No 3, pp. 185–190; No 6, pp. 65–7.

    Google Scholar 

  74. Schwydler M.I. (1963): ‘Sur les caractéristiques moyennes des courants d’écoulements dans les milieux à hétérogènéité aléatoire’, Izv. Akad. Nauk SSSR, Mekh. i; Mas, No 4, pp. 127–129; No 5, pp. 148–150.

    Google Scholar 

  75. Serra, J. (1982): Image analysis and mathematical morphology. (Academic Press, London).

    MATH  Google Scholar 

  76. Stoyan, D., W.S. Kendall, J. Mecke (1987): Stochastic Geometry and its Applications. (J. Wiley, New York).

    MATH  Google Scholar 

  77. Stoyan D., Mecke K., this volume.

    Google Scholar 

  78. Suquet P., Ponte Castañeda P. (1993): ‘Small contrast perturbation expansions for the effective properties of nonlinear composites’, C.R. Acad. Sc. Paris, 317, Série II, pp. 1515–1522.

    MATH  Google Scholar 

  79. Torquato, S., G. Stell (1983): ‘Microstructure of two-phase random media III. The n-point matrix probability functions for fully penetrable spheres’, J. Chem. Phys. 79, pp. 1505–1510.

    Article  MathSciNet  Google Scholar 

  80. Torquato, S., F. Lado (1986): ‘Effective properties of two phase disordered composite media: II Evaluation of bounds on the conductivity and bulk modulus of dispersions of impenetrable spheres’, Phys. Rev. B 33, pp. 6428–6434.

    Article  Google Scholar 

  81. Torquato, S. (1991): ‘Random heterogeneous media: microstructure and improved bounds on effective properties’, Appl. Mech. Rev. 44, pp. 37–76.

    MathSciNet  Google Scholar 

  82. Torquato, S. (2002): Random heterogeneous materials: microstructure and macroscopic properties. (Springer Verlag, New York, Berlin).

    MATH  Google Scholar 

  83. Willis, J.R. (1981): ‘Variational and related methods for the overall properties of composites’, Advances in Applied Mechanics, 21, pp. 1–78.

    Article  MATH  MathSciNet  Google Scholar 

  84. Willis, J.R. (1991): ‘On methods for bounding the overall properties of nonlinear composites’, J. Mech. Phys. Solids 39,1, pp. 73–86.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Jeulin, D. (2005). Random Structures in Physics. In: Bilodeau, M., Meyer, F., Schmitt, M. (eds) Space, Structure and Randomness. Lecture Notes in Statistics, vol 183. Springer, New York, NY. https://doi.org/10.1007/0-387-29115-6_9

Download citation

Publish with us

Policies and ethics